
CS 525

Presenter: Wucherl Yoo

2 CS 525 – Some Figures are borrowed from the slide of the authors

  Flash costs less than DRAM and getting cheaper
  Many file systems designed for disk – FFS, XFS, FAT

  Flash Translation Layer of SSD - indirection from logical block to flash
page, wear leveling, copying for performance

  Flash file systems designed for embedded apps – JFFS, YAFFS
  Small size, manage raw level of flash

  Non-volatile Solid State Memory
  Update requires erase then re-write
  Limited # of erase/write cycles - 1,000 to 10,000 per

cell for MLC, 100,000 per cell for SLC
  NOR – random access, read speed
  NAND

  Sequential access (µs), cheaper cost, slow random write
  Data is organized into “pages” for transfer (512B-4KB)
  Pages are grouped into “erase blocks” (16KB-16MB+)

  2ms for 256KB
  SLC – single level cell, single bit per cell
  MLC – multi-level cell, multiple bits per cell

  FusionIO IODrive
  SLC NAND flash array connected via PCI-Express

3 CS 525

  Requirements
  Read/Write multiple pages
  Erase entire erasure block
  Update copied to empty erasure block
  Wear-leveling
  Error correction mechanism
  HW Parallelism and SW support for performance

4 CS 525

  Virtualized Flash Storage
  Large virtual block-address space – mapping to flash page

  Backward-compatibility for block interface
  64bit virtual address, 512 byte block

  File block allocations/reclamations
  Wear leveling/bulk erasure

  Atomic flash block updates for crash recovery
  Write ahead log for every write for a single flash block, group

commit
  Dependencies among metadata and data?

  Garbage collector – discard a block or block range

5 CS 525

  Direct File System (DFS)
  Backward compatibility with traditional block interface
  Directory management with FFS metadata – requires

additional logging of directory update
  Combine multiple small I/O requests to adjacent regions

into a single larger I/O

6 CS 525

7 CS 525

  I-node – stored in 512 byte block, contains base virtual address
  Increased I-node size can reduce dependency (only use 72 bytes)

  Virtual Address (Base addr, logical block #, block offset)
 -> Physical Address (dev, block, page)

8 CS 525

29 for 512 byte flash block

  System File Chunk – bootblock, superblock, i-nodes
  Allocation Chunk - 32-bit block-addressed

  Small or Large file
  Size chosen at initialization (max size of small file also)

  Metadata Update – write ahead log for recovery
  Unclear how to handle dependencies among blocks

9 CS 525

  Environments
  Intel Quad Core 2.4 GHz, 4GB DRAM
  FusionIO ioDrive with 160GB SLC NAND flash

  Read latency - 50µs
  Theoritical maximum throughput for single reader – 20,000

IOPS
  Device driver exports block device interface

10 CS 525

  4KB I/O transactions (IOZone)
  Multiple threads utilizes parallelism from flash
  DFS performance close to raw level

11 CS 525

  4KB I/O
  Peak at 16T – overhead on the write path

12 CS 525

  Little Improvement for Write with Small # of Threads
  Garbage Collector Overhead – 4 cores

13 CS 525

14 CS 525

N-Gram(Zipf)

15 CS 525

16 CS 525

  DFS Speedup
  Lower file lock contention – per block i-node, write-ahead

log instead of journal
  Aggregation of I/O request – smaller number with larger

size

  What improves performance of DFS?
  Aggregation, parallelization, simple implementation
  More CPU, garbage collection, increased I-node size
  Reduced consistency from journal, lack of atomic multi-

block update

  Is virtual/physical mapping useful abstraction?
  Large logical space can be easily shared by distributed

systems
  Fixed first chunk, translation overhead

  Is flash fit to cloud?
  Cost/Power efficient, Scalable to multi-threads
  Wear lifetime

17 CS 525

