DFS: A Filesystem for
Virtualized Flash Disks

William K. Josephson and Lars A. Bongo,

David Flynn, Fusion-io; Kai Li, Princeton University

FAST 2010

Presenter: Wucherl Yoo

Motivation - Flash

$10,000 —— _—

$1,000 !

M el C
S$100

10 e ——

s1 T T T T T T T T T — = -
.
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2082,

-

s0.1 4 Source: Objective Analysis, August 2007 |

Flash costs less than DRAM and getting cheaper
Many file systems designed for disk — FFS, XFS, FAT

« Flash Translation Layer of SSD - indirection from logical block to flash
page, wear leveling, copying for performance

Flash file systems designed for embedded apps — JFFS, YAFFS

« Small size, manage raw level of flash

CS 525 — Some Figures are borrowed from the slide of the authors)

Background — Flash Memory

Non-volatile Solid State Memory
Update requires erase then re-write

Limited # of erase/write cycles - 1,000 to 10,000 per
cell for MLC, 100,000 per cell for SLC

NOR — random access, read speed
NAND

Sequential access (us), cheaper cost, slow random write
Data is organized into “pages” for transfer (512B-4KB)

Pages are grouped into “erase blocks” (16KB-16MB+)
2ms for 256KB

SLC - single level cell, single bit per cell
MLC — multi-level cell, multiple bits per cell

FusionlO IODrive
SLC NAND flash array connected via PCI-Express

CS 525)

Challenges - NAND Flash

Requirements
Read/Write multiple pages
Erase entire erasure block
Update copied to empty erasure block
Wear-leveling
Error correction mechanism
HW Parallelism and SW support for performance

CS 525)

Design
Virtualized Flash Storage

Large virtual block-address space — mapping to flash page
Backward-compatibility for block interface
» 64bit virtual address, 512 byte block

File block allocations/reclamations
o Wear leveling/bulk erasure

Atomic flash block updates for crash recovery

« Write ahead log for every write for a single flash block, group
commit

o Dependencies among metadata and data?
Garbage collector — discard a block or block range

CS 525)

Design (2)

Direct File System (DFS)

Backward compatibility with traditional block interface

Directory management with FFS metadata — requires
additional logging of directory update

Combine multiple small I/O requests to adjacent regions
into a single larger 1/O

CS 525)

Flash Storage Abastraction

: Traditional Traditional
File System Database ¢ o 0 DFS File System Database « o
Logical block . . Virtual block . p
(physical size) Ops: Read, Write, ... (64-bit block address) I Ops: Read, Write, Deallocate, ...
--------------------- — - I—ixa s e vy 1 P T T S T .~ . ——————— T ——————————————
Traditional Elock Storage Layer Virtualized Flash Storage Layer
i (Remapping, Wear-Leveling, Reliability)
Read Read SRSEeIINGY SREEEEEEELsees e
SectorI V\?raite SectorI Write Block T Page Block T Page
erase Jread, write erase Jread, write
FTL (Remapping) FTL (Remapping)
3 Controller Controller
o Page Page Page Page
Blo.,klerase lwme read e lW"k? Tread Buffer and Log Buffer and Log

NAND Flash Memory NAND Flash Memory NAND Flash Memory NAND Flash Memory
Solid State Disk Solid State Disk ioDrive ioDrive
(a) Traditional layers of abstractions (b) Our layers of abstractions

CS 525)

DFS — Logical Block Address Mappi

<fd, byte-offset>

29 for 512 byte flash block

Fd#| i-nodes l :

’
1 | File block# | block offset |
i

Vir block# | Phy addr

32 bits

sl;

= i

Bas= Addr — e > —
moda 32 bits 64 bits

Linux fd table

-
1

Virtezalized Flash
D FS Storage Layer

v
<dev, block, page>

|-node — stored in 512 byte block, contains base virtual address
Increased I-node size can reduce dependency (only use 72 bytes)

Virtual Address (Base addr, logical block #, block offset)
-> Physical Address (dev, block, page)

CS 525)

DFS — File System Layout

System Allocation Allocation
File Chunk Chunk
Small File/
Bootblock Directory
Superblock Small file/
i-node, ——— Large file/ ey
directory
i-node,
\ 2% (2TB) 2% (2TB) 23 (2TB) J

v
27.!

System File Chunk — bootblock, superblock, i-nodes

Allocation Chunk - 32-bit block-addressed

o Small or Large file
» Size chosen at initialization (max size of small file also)

Metadata Update — write ahead log for recovery
Unclear how to handle dependencies among blocks

CS 525)

Experimental Environments

Environments

Intel Quad Core 2.4 GHz, 4GB DRAM

FusionlO ioDrive with 160GB SLC NAND flash

o Read latency - 50us

o Theoritical maximum throughput for single reader — 20,000
|OPS

o Device driver exports block device interface

CS 525)

10

Microbenchmark —Random Read

Read IOPS x 1K

- B raw
"Il dfs
go-H N ext3

1T 2T 3T 4T 8T 16T 32T 64T

4KB |/0O transactions (I0Zone)
Multiple threads utilizes parallelism from flash
DFS performance close to raw level

CS 525)

11

Microbenchmark — Random Write

Write IOPS x 1K

oo M raw
"Il dfs
go-Mmext3

1IT 2lT 31T 41T 81T 1éT 3éT 6AI1T
4KB 1/O
Peak at 16 T — overhead on the write path

CS 525)

12

Microbenchmark - CPU

Random o Random
Threads| Read Road Write Writo
1 8.1 2.8 9.4 13.8
2 1.3 1.6 12.8 11.5
3 0.4 5.8 10.4 15.3
4 -1.3 -6.8 -15.5 -17.1
8 0.3 -1.0 -3.9 -1.2
16 1.0 1.7 2.0 6.7
32 4.1 8.5 4.8 4.4

Little Improvement for Write with Small # of Threads
Garbage Collector Overhead — 4 cores

CS 525)

Application Benchmark

Applications

Description

[/O Patterns

Quicksort

A quicksort on a large dataset

Mem-mapped 1/0O

N-Gram

A hash table index for n-grams

collected on the web

Direct. random read

KNNImpute

Missing-value estimation for

bioinformatics microarray data

Mem-mapped 1/0

VM-Update

Simultaneous update of an OS

on several virtual machines

Sequential read & write

TPC-H

Standard benchmark for

Decision Support

Mostly sequential read

CS 525)

14

Application Benchmark (2)

Read IOPS x 1000 Write IOPS x 1000
Application Ext3 | DEFS (Change) Ext3 | DFS (Change)
Quick Sort 1989 1558 (0.78) 49576 1914 (0.04)
N-Gram (Zipf) 156 157 (1.01) N/A N/A
KNNImpute 2387 1916 (0.80) 2686 179 (0.07)
VM Update 244 193 (0.79) 3712 1144 (0.31)
TPC-H 6375 3760 (0.59) 52310 3626 (0.07)
Wall Time 1n Sec. Ctx Switch x 1K
Threads Ext3 DES Ext3 DES
1 10.82 10.48 156.66 | 156.65
4 4.25 3.40 308.08 | 160.60
8 4.58 2.46 291.91 | 167.36
16 4.65 245 295.02 | 168.57
32 4.72 1.91 299.73 | 172.34

N-Gram(Zipf)

CS 525)

15

Application Benchmark (3)

Wall Time
Application Ext3 | DFS | Speedup
Quick Sort 1268 822 1.54
N-Gram (Zipf) | 4718 | 1912 2.47
KNNImpute 303 248 1.22
VM Update 685 640 1.07
TPC-H 5059 | 4154 1.22

DFS Speedup

Lower file lock contention — per block i-node, write-ahead
log instead of journal

Aggregation of 1/0O request — smaller number with larger
size

CS 525)

Discussion Points

What improves performance of DFS?
Aggregation, parallelization, simple implementation
More CPU, garbage collection, increased I-node size

Reduced consistency from journal, lack of atomic multi-
block update

Is virtual/physical mapping useful abstraction?

Large logical space can be easily shared by distributed
systems

Fixed first chunk, translation overhead

Is flash fit to cloud?

Cost/Power efficient, Scalable to multi-threads
Wear lifetime

CS 525) 17

