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Motivation - Flash
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Flash costs less than DRAM and getting cheaper
Many file systems designed for disk — FFS, XFS, FAT

« Flash Translation Layer of SSD - indirection from logical block to flash
page, wear leveling, copying for performance

Flash file systems designed for embedded apps — JFFS, YAFFS

« Small size, manage raw level of flash
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Background — Flash Memory

Non-volatile Solid State Memory
Update requires erase then re-write

Limited # of erase/write cycles - 1,000 to 10,000 per
cell for MLC, 100,000 per cell for SLC

NOR — random access, read speed
NAND

Sequential access (us), cheaper cost, slow random write
Data is organized into “pages” for transfer (512B-4KB)

Pages are grouped into “erase blocks” (16KB-16MB+)
2ms for 256KB

SLC - single level cell, single bit per cell
MLC — multi-level cell, multiple bits per cell

FusionlO IODrive
SLC NAND flash array connected via PCI-Express
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Challenges - NAND Flash

Requirements
Read/Write multiple pages
Erase entire erasure block
Update copied to empty erasure block
Wear-leveling
Error correction mechanism
HW Parallelism and SW support for performance
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Design
Virtualized Flash Storage

Large virtual block-address space — mapping to flash page
Backward-compatibility for block interface
» 64bit virtual address, 512 byte block

File block allocations/reclamations
o Wear leveling/bulk erasure

Atomic flash block updates for crash recovery

« Write ahead log for every write for a single flash block, group
commit

o Dependencies among metadata and data?
Garbage collector — discard a block or block range
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Design (2)

Direct File System (DFS)

Backward compatibility with traditional block interface

Directory management with FFS metadata — requires
additional logging of directory update

Combine multiple small I/O requests to adjacent regions
into a single larger 1/O
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Flash Storage Abastraction
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(a) Traditional layers of abstractions (b) Our layers of abstractions
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DFS — Logical Block Address Mappi

<fd, byte-offset>

29 for 512 byte flash block
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Virtezalized Flash
D FS Storage Layer

v
<dev, block, page>

|-node — stored in 512 byte block, contains base virtual address
Increased I-node size can reduce dependency (only use 72 bytes)

Virtual Address (Base addr, logical block #, block offset)
-> Physical Address (dev, block, page)
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DFS — File System Layout

System Allocation Allocation
File Chunk Chunk
Small File/
Bootblock Directory
Superblock Small file/
i-node, ——— Large file/ ey
directory
i-node,
\ 2% (2TB) 2% (2TB) 23 (2TB) J

v
27.!

System File Chunk — bootblock, superblock, i-nodes

Allocation Chunk - 32-bit block-addressed

o Small or Large file
» Size chosen at initialization (max size of small file also)

Metadata Update — write ahead log for recovery
Unclear how to handle dependencies among blocks
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Experimental Environments

Environments

Intel Quad Core 2.4 GHz, 4GB DRAM

FusionlO ioDrive with 160GB SLC NAND flash

o Read latency - 50us

o Theoritical maximum throughput for single reader — 20,000
|OPS

o Device driver exports block device interface
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Microbenchmark —Random Read

Read IOPS x 1K

- B raw
"Il dfs
go-H N ext3

1T 2T 3T 4T 8T 16T 32T 64T

4KB |/0O transactions (I0Zone)
Multiple threads utilizes parallelism from flash
DFS performance close to raw level
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Microbenchmark — Random Write

Write IOPS x 1K

oo M raw
"Il dfs
go-Mmext3

1IT 2lT 31T 41T 81T 1éT 3éT 6AI1T
4KB 1/O
Peak at 16 T — overhead on the write path
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Microbenchmark - CPU

Random o Random
Threads| Read Road Write Writo
1 8.1 2.8 9.4 13.8
2 1.3 1.6 12.8 11.5
3 0.4 5.8 10.4 15.3
4 -1.3 -6.8 -15.5 -17.1
8 0.3 -1.0 -3.9 -1.2
16 1.0 1.7 2.0 6.7
32 4.1 8.5 4.8 4.4

Little Improvement for Write with Small # of Threads
Garbage Collector Overhead — 4 cores
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Application Benchmark

Applications

Description

[/O Patterns

Quicksort

A quicksort on a large dataset

Mem-mapped 1/0O

N-Gram

A hash table index for n-grams

collected on the web

Direct. random read

KNNImpute

Missing-value estimation for

bioinformatics microarray data

Mem-mapped 1/0

VM-Update

Simultaneous update of an OS

on several virtual machines

Sequential read & write

TPC-H

Standard benchmark for

Decision Support

Mostly sequential read
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Application Benchmark (2)

Read IOPS x 1000 Write IOPS x 1000
Application Ext3 | DEFS (Change) Ext3 | DFS (Change)
Quick Sort 1989 1558 (0.78) 49576 1914 (0.04)
N-Gram (Zipf) 156 157 (1.01) N/A N/A
KNNImpute 2387 1916 (0.80) 2686 179 (0.07)
VM Update 244 193 (0.79) 3712 1144 (0.31)
TPC-H 6375 3760 (0.59) 52310 3626 (0.07)
Wall Time 1n Sec. Ctx Switch x 1K
Threads Ext3 DES Ext3 DES
1 10.82 10.48 156.66 | 156.65
4 4.25 3.40 308.08 | 160.60
8 4.58 2.46 291.91 | 167.36
16 4.65 245 295.02 | 168.57
32 4.72 1.91 299.73 | 172.34

N-Gram(Zipf)
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Application Benchmark (3)

Wall Time
Application Ext3 | DFS | Speedup
Quick Sort 1268 822 1.54
N-Gram (Zipf) | 4718 | 1912 2.47
KNNImpute 303 248 1.22
VM Update 685 640 1.07
TPC-H 5059 | 4154 1.22

DFS Speedup

Lower file lock contention — per block i-node, write-ahead
log instead of journal

Aggregation of 1/0O request — smaller number with larger
size
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Discussion Points

What improves performance of DFS?
Aggregation, parallelization, simple implementation
More CPU, garbage collection, increased I-node size

Reduced consistency from journal, lack of atomic multi-
block update

Is virtual/physical mapping useful abstraction?

Large logical space can be easily shared by distributed
systems

Fixed first chunk, translation overhead

Is flash fit to cloud?

Cost/Power efficient, Scalable to multi-threads
Wear lifetime
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