

Berkeley Ninja Architecture

ACID vs BASE

1.Strong Consistency

2. Availability not
considered

3. Conservative

--> Traditional
databases

1. Weak consistency

2. Availability is a
primary design
element

3. Aggressive

--> large-scale
distributed systems

CAP Theorem:

 Of the three different
qualities(network partitions,
consistency, availability), at
most two of the three
qualities can be maintained
for any given system.

Boundary between entities

1. Remote Procedure Calls

 --> The way it is used currently is not
sustainable for larger systems

2. Trusting the other side

 --> need to check arguments before
executing RPC

3. Multiplexing between many different clients

 --> How this is done effects boundary
definition

Key Messages

1. Parallel programming tends to avoids the
notion of availability, online evolution,
checkpoint/restart (although currently this is
changing)

2. For Robustness in distributed systems, we
must think probabilistically about system design
qualities

3. Message-Passing seems to be most effective
solution, as boundaries must be clearly defined.

4. Need to have more support for partial failure,
graceful degradation, and parallel I/O

Discussion

1. Do you believe that techniques applied in
distributed database community also can apply
to large-scale distributed systems? Or does a
completely new approach need to be taken?

2. This work was presented in 2000. Do the
principles of robustness apply for today's
distributed systems?

3. Do you agree with the notion that without clear
boundaries, large-scale distributed systems will
remain unmaintainable?

Cumulus: A FileSystem Backup to
the Cloud

Cumulus Design Choice

1. Minimal Interface(4 commands)

2. Highly portable

3. Efficient (through simulation)

4. Practicality (Amazon S3 prototype)

A Cloud Computing Design Decision

Software as a
Service(thick cloud)

1. Highly specific
implies Better
Performance

2. Reduced Flexibility

Utility Computing(thin
cloud)

1. Abstract

2. Portable

3. Less Efficient

What is the right choice? And is there
a right choice?

Comparison of Cumulus to Other
Systems

●Simplest backup system that most will be familiar with: tar, gzip
●Others: rsync, rdiff-backup, Box Backup, Jungle Disk, Duplicity, Brackup

--> In contrast to all other systems, Cumulus supports multiple snapshots, simple
servers, incremental backups , sub-file disk storage, and encryption.

Simple User Commands

Get : given a pathname, retrieve the contents of
a file from the server

Put: Store the complete file on the server, given
its pathname

List: Get the names of files stored on server

Delete: Remove the given file from the server,
reclaiming it's space

With these four commands, one can support incremental
backups on a wide variety of systems.

Snapshot Storage Format

1. The above illustrates how snapshots are structured on a storage server,
using Cumulus.

 2. Two different snapshots are taken(on two different days), and each

snapshot contains two separate files (labeled file1 and file2)

 3. The file1 changes between the two days, while file2 is the same
between the two snapshots.

 4. The snapshot descriptor contains the date, root, and its corresponding

segments.

Cumulus Research Questions

What is the penalty of using a thin cloud service with a very
simple storage interface compared to a more sophisticated
service?

What are the monetary costs for using remote backup for two
typical usage scenarios? How should remote backup strategies
adapt to minimize monetary costs as the ratio of network and
storage prices varies?

How does our prototype implementation compare with other
backup systems? What are the additional benefits (e.g.,
compression, sub-file incrementals) and overheads (e.g.,
metadata) of an implementation not captured in simulation? What
is the performance of using an online service like Amazon S3 for
backup?

Experimental Setup for Simulation
● Two traces are considered as representative workloads for simulation: file-

server and user

● For both workloads, traces contain a daily record of meta-data of all files

● Thin service model is compared to optimal backup, where only the needed
storage/transfer is done, and no more.

● There are justifiable reasons that Cumulus does not try to store each file in
one segment because of the other design goals it aims for(encryption,
compression, etc.)

● Statistics are established for both workloads, as shown below.

Establishing Cleaning Threshold

1. As the cost of storage increases, cleaning more aggressively gives
advantage

2. Ideal threshold stabilizes at .5 to .6, when storage is 10 times as
expensive as network

Cumulus Experimental Simulation

Broader Impact

“Can one build a competitive product economy around a
cloud of abstract commodity resources, or do underlying
technical reasons ultimately favor an integrated service-
oriented architecture?”

→ On one hand, if Cumulus is to be accepted as a general
solution for file system backup, many more application
must be tested and simulated.

→ On the other hand, the need for standardization in the
cloud is very important, and a solution like Cumulus should
be adopted as quickly as possible.

Discussion Questions for Cumulus

1. Application-specific solutions vs. general light-
weight, portable solutions?

2. Who are the users of Cumulus? Would such a
backup tool be easy to pick up for a novice?

3. Is the interface provided adequate? Should
there be more functionality?

4. Is the issue of security with backing up data
adequately addressed?

1

Smoke and Mirrors: Reflecting
Files at a Geographically

Remote Location Without Loss
of Performance

USENIX 09

2

Why mirror data?

 Faster Access
 Better Availability
 Data protection against loss (Disaster

Tolerance)

3

Synchronous Mirroring
(Remote Sync)

Application

Mirroring Agent

Local Storage Remote Storage

1
6

2

3

5

4

Mirroring Agent

•Reliable
•Slow (Application effectively pauses between step 1 and 6)

4

Semi-synchronous Mirroring

3 4

6

Application

Mirroring Agent

Local Storage Remote Storage

1

2

•Faster
•Less Reliable

Mirroring Agent

5

5

Asynchronous Mirroring
(Local Sync)

3 4

6

Application

Mirroring Agent

Local Storage Remote Storage

1

2

•Faster
•Least Reliable

Mirroring Agent

5

6

Mirroring Options:

Mirroring Solutions

Asynchronous
Mirroring

Semi­
Synchronous

Mirroring

Synchronous
Mirroring

Decreasing Reliability, Decreasing Mirroring Latency

7

Failure Model

 Can occur at any level
 Simultaneous or in sequence (rolling disaster)
 Network elements can drop packets

8

Data Loss Model

Data LossData LossData LossPrimary and
Mirror

Data LossData LossNo LossPrimary and
Packet Loss on
Link

Data LossNo LossNo LossPrimary only

Asynchronous
Mirroring

Semi­Synchronous
Mirroring

Synchronous
Mirroring

Failure

9

Network Sync Remote
Mirroring
 Proactively send error recovery data
 Expose status of data to the application

10

Network Sync Remote
Mirroring

Primary Remote
Mirror
Site

1:Data

2:Data

5: Redundancy
Feedback

4:Redundancy 3:Data

6: Recover Lost Packets
7: Data

8: Storage
ACK

9: Storage
ACK

Network Sync at
Egress Router

Network Sync at
Ingress Router

Primary

10: Storage
ACK

11

Smoke and Mirror File System
(SMFS)
 A distributed log­

structured file system
 Clients interact with file

server
 File server interacts

with storage servers
 create(), append(),

free() operations
mirrored

12

Experimental Set-up

 Emulab
 Two clusters of 8 machines each (Primary

and Remote)
 Separated by WAN 50­200ms RTT and

1Gbps
 Workload of upto 64 testers

 Tester is an individual application with only one
outstanding request at a time

13

Evaluation Metrics

 Data Loss
 Latency
 Throughput

14

Experimental Configurations

 Local­sync
 Remote­sync
 Network­sync
 Local­sync+FEC
 Remote­sync+FEC

15

Results: Data Loss

 Wide area link
failure

 Primary site
crash

 Loss rate
increased for
0.5sec before
disaster

16

Results: Varying the level of
Redundancy

17

Results: Throughput

18

Discussion

 Solution is still imperfect
 What if there are multiple remote sites to

choose from?
 Split data across different sites?

