IN BYZANTIUM
Ashish Vulimiri and Shehla Rana
THE BYZANTINE GENERALS PROBLEM

Leslie Lamport, Robert Shostak, and Marshall Pease

Presented by: Ashish Vulimiri
OUTLINE

- Introduction
- Impossibility results
- Algorithm: oral messages
- Algorithm: signed messages
- Discussion
- Extensions
INTRODUCTION
INTRODUCTION

- Generals coordinate via messengers
- Problem: traitors
- Attack will only succeed with enough troops
- Coordinate in the presence of traitors

Note on system model:
- Don’t really need a commander
- Distributed Consensus ↔ Byzantine Agreement
- Just simplifies presentation
PROBLEM

- Commander, $N-1$ lieutenants. A of the generals arbitrarily capricious

- Commander sends out Boolean order. Ensure:
 - All loyal lieutenants obey same order
 - If commander is loyal, his order must be the one obeyed

- Assumptions
 - Synchronous, reliable communication
 - Fully connected network
 - Sender identity cannot be forged
IMPOSSIBILITY RESULT

- Can’t be done with $N \leq 3a$
- Specifically, for $N=3$, $a=1$:
IMPOSSIBILITY RESULT (N = 3, a = 1)
Does this construction generalize?

- Are the numbers \(N=3, \ a=1\) special?
- No
- Suppose we have a solution for some \((N, \ a)\), with \(N \leq 3a\)
- Can simulate the three node case
 - Intuition: have each of the three nodes simulate roughly \(N/3\)
 - Warning: can be tricky to formalize
Does this construction generalize?

- Would using non-Boolean values help?
- No
- Suppose we had ints (e.g. timestamps), required only that the final values be within a certain range
- Reduction: can simulate Boolean case
 - E.g. final value bValue = (10 <= iValue <= 15)
- Note: reducibility isn’t everything
Suppose we have $N > 3a$. Can solve.

Notation:
- $G =$ set of generals
- $N (= |G|)$ and a as earlier
- BFT(G, a) – the problem we want to solve
- Broadcast(G, a, t) – the algorithm

Final result:
- Broadcast(G, a, a) solves BFT(G, a)
ALGORITHM

Broadcast(G, a, 0):
 T=now
 Commander c sends value x_c to all lieutenants
 Receive messages for T=now
 $x_p = (\text{message received}) \ ? \ x_c : \text{default}$
 Every lieutenant p agrees on $y_p = x_p$
ALGORITHM

Broadcast(G, a, t):
 T=now
 Commander c sends x_c to all lieutenants
 Receive messages for $T = now$
 Each lieutenant p does
 $x_p = (\text{message received}) \ ? \ x_c : \text{default}$
 Act as general in Broadcast($G \setminus \{p\}$, a-1, t-1)
 T=now + t
 Receive messages for $T = now + t$
 c decides on x_c
 p decided on a value for each p' in $G \setminus \{p\}$
 $y_p = \text{majority}(\text{value_set})$
PHASE I: MESSAGE TREE (N=7, A=2)
PHASE II: DECISION TREE (AT NODE 2)

Direct value from 0

From 6: “0 told me its value was x”

From 4: “3 told me 0 said its value was x”

Recursively compute majority value
Example ($N = 4, a = 1$): I
EXAMPLE (N = 4, A = 1): II
Why does this work?

- Primary result:
 - If $N > 2a + t$, Broadcast(G, a, t) solves BFT(G, a) if commander is loyal
 - That is: enough to ensure *some* node in every path is loyal
 - This is why we executed for $a+1$ rounds
 - See paper for details
Signed Messages

- What if we had signed messages?
- Remember: we needed multiple rounds to exchange messages like “A told me B told him C said his value was D”
- We only had one-hop unforgeability guarantees
- If we had end-to-end signatures: could solve for any N, any a
- Algorithm in paper is reactive (asynchronous)
- Details omitted: see paper
DISCUSSION

- Time complexity $O(a)$
- But message complexity $O(N^a)$
- Better algorithms exist (see any distsys text)
- Can only overcome faults – cannot identify source
EXTENSION: OTHER TOPOLOGIES

- Lamport et al. show that same algo works for 3-regular graphs
- Other special cases:
 - Rings
 - Random graphs
 - Hierarchical clusters
- General topology?
EXTENSION: NO SYNCHRONY

- BFT impossible in asynchronous networks (Fischer et al, 1985)
- However, good approximation algorithms exist
- Dolev et al’s MSR – in each round, do:
 - Label value with round number. Broadcast to everyone else
 - Receive at least $N-a$ values, collect into multiset
 - Drop largest and smallest a values
 - Replace own value with mean
- Problem: what do you converge to?
EXTENSION: BETTER FAULT MODELS

- E.g. work by Azadmanesh, Kieckhafer
- \(a \) = arbitrarily capricious faults
- \(s \) = symmetric faults
- \(b \) = benign/detectable faults (e.g. crashes)
- Requirement is \(N > 3a + 2s + b + 1 \)
- They also have a five-mode model
 - Incorporates two modes of network failure