
IN BYZANTIUM
Ashish Vulimiri and Shehla Rana

THE BYZANTINE

GENERALS PROBLEM

Leslie Lamport, Robert Shostak, and

Marshall Pease

Presented by: Ashish Vulimiri

OUTLINE

 Introduction

 Impossibility results

 Algorithm: oral messages

 Algorithm: signed messages

 Discussion

 Extensions

INTRODUCTION

INTRODUCTION

 Generals coordinate via messengers

 Problem: traitors

 Attack will only succeed with enough troops

 Coordinate in the presence of traitors

 Note on system model:

 Don’t really need a commander

 Distributed Consensus ↔ Byzantine Agreement

 Just simplifies presentation

PROBLEM

 Commander, N-1 lieutenants. a of the generals

arbitrarily capricious

 Commander sends out Boolean order. Ensure:

 All loyal lieutenants obey same order

 If commander is loyal, his order must be the one obeyed

 Assumptions

 Synchronous, reliable communication

 Fully connected network

 Sender identity cannot be forged

IMPOSSIBLITY RESULT

 Can’t be done with N <= 3a

 Specifically, for N=3, a=1:

IMPOSSIBLITY RESULT (N = 3, A = 1)

DOES THIS CONSTRUCTION GENERALIZE?

 Are the numbers N=3, a=1 special?

 No

 Suppose we have a solution for some (N, a), with

N <= 3a

 Can simulate the three node case

 Intuition: have each of the three nodes simulate roughly

N/3

 Warning: can be tricky to formalize

DOES THIS CONSTRUCTION GENERALIZE?

 Would using non-Boolean values help?

 No

 Suppose we had ints (e.g. timestamps), required

only that the final values be within a certain range

 Reduction: can simulate Boolean case

 E.g. final value bValue = (10 <= iValue <= 15)

 Note: reducibility isn’t everything

ALGORITHM

 Suppose we have N > 3a. Can solve.

 Notation:

 G = set of generals

 N (= |G|) and a as earlier

 BFT(G, a) – the problem we want to solve

 Broadcast(G, a, t) – the algorithm

 Final result:

 Broadcast(G, a, a) solves BFT(G, a)

ALGORITHM

Broadcast(G, a, 0):

T=now

Commander c sends value xc to all lieutenants

Receive messages for T=now

xp = (message received) ? xc : default

Every lieutenant p agrees on yp = xp

ALGORITHM

Broadcast(G, a, t):

T=now

Commander c sends xc to all lieutenants

Receive messages for T = now

Each lieutenant p does

xp = (message received) ? xc : default

Act as general in Broadcast(G\{p}, a-1, t-1)

T=now + t

Receive messages for T = now + t

c decides on xc

p decided on a value for each p’ in G\{p}

yp = majority(value_set)

PHASE I: MESSAGE TREE (N=7, A=2)

0

1 2 3 4 5 6

1 3 4 5 6

1 3 4 6

PHASE II: DECISION TREE (AT NODE 2)

0

01 03 04 05 06

031 034 035 036

Direct value from 0

From 6: “0 told me its

value was x”

From 4: “3 told me 0

said its value was x”

Recursively compute majority value

EXAMPLE (N = 4, A = 1): I

EXAMPLE (N = 4, A = 1): II

WHY DOES THIS WORK?

 Primary result:

 If N > 2a + t, Broadcast(G, a, t) solves BFT(G, a) if

commander is loyal

 That is: enough to ensure some node in every path

is loyal

 This is why we executed for a+1 rounds

 See paper for details

SIGNED MESSAGES

 What if we had signed messages?

 Remember: we needed multiple rounds to

exchange messages like “A told me B told him C

said his value was D”

 We only had one-hop unforgeability guarantees

 If we had end-to-end signatures: could solve for any

N, any a

 Algorithm in paper is reactive (asynchronous)

 Details omitted: see paper

DISCUSSION

 Time complexity O(a)

 But message complexity O(Na)

 Better algorithms exist (see any distsys text)

 Can only overcome faults – cannot identify source

EXTENSION: OTHER TOPOLOGIES

 Lamport et al. show that same algo works for 3-

regular graphs

 Other special cases:

 Rings

 Random graphs

 Hierarchical clusters

 General topology?

EXTENSION: NO SYNCHRONY

 BFT impossible in asynchronous networks (Fischer

et al, 1985)

 However, good approximation algorithms exist

 Dolev et al’s MSR – in each round, do:

 Label value with round number. Broadcast to everyone

else

 Receive at least N-a values, collect into multiset

 Drop largest and smallest a values

 Replace own value with mean

 Problem: what do you converge to?

EXTENSION: BETTER FAULT MODELS

 E.g. work by Azadmanesh, Kieckhafer

 a = arbitrarily capricious faults

 s = symmetric faults

 b = benign/detectable faults (e.g. crashes)

 Requirement is N > 3a + 2s + b + 1

 They also have a five-mode model

 Incorporates two modes of network failure

