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Abstract

A new theory of concurrent objects is presented. The theory has the important advan-
tage of being based directly on a simple logic called rewriting logic in which concurrent
object-oriented computation exactly corresponds to logical deduction. This deduction is
performed by concurrent rewriting modulo structural axioms of associativity, commutativ-
ity and identity that capture abstractly the essential aspects of communication in a dis-
tributed object-oriented configuration made up of concurrent objects and messages. This
axiomatization of objects, classes, and concurrent object-oriented computations in terms of
rewriting logic is proposed as a general semantic framework for object-oriented program-
ming. A direct fruit of this theory is a new language, called Maude, that can be used to
program concurrent object-oriented systems in an entirely declarative way using rewriting
logic. Modules written in this language are used to illustrate the main ideas with examples.
Maude supports a highly modular and parameterized programming style, contains OBJ3
as a functional sublanguage, and provides a simple and semantically rigorous unification
of functional programming and concurrent object-oriented programming. A sublanguage
called Simple Maude that can be implemented with reasonable efficiency on a wide variety
of parallel architectures is described. The relationship with Actors and with other models of
concurrent computation is discussed. An extension of Maude called MaudeLog is sketched;
MaudeLog is also based on rewriting logic and unifies the paradigms of functional, rela-
tional, and concurrent object-oriented programming. The model theory of rewriting logic
and an initial model semantics for Maude modules are also discussed.

Contents

1 Introduction 2

∗Supported by Office of Naval Research Contracts N00014-90-C-0086 and N00014-92-C-0518, and by the
Information Technology Promotion Agency, Japan, as a part of the R & D of Basic Technology for Future
Industries “New Models for Software Architecture” sponsored by NEDO (New Energy and Industrial Technology
Development Organization).

1



2 Maude and Concurrent Rewriting 5
2.1 Functional Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Parameterized Functional Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Sort Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 System Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Rewriting Logic 13
3.1 Basic Universal Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Rules of Rewriting Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Concurrent Rewriting as Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 The Meaning of Rewriting Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 A Logical Theory of Concurrent Objects 18
4.1 Object-Oriented Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 General Form of the Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Synchrony, Asynchrony, and Autonomous Objects . . . . . . . . . . . . . . . . . . 24

4.2 Class Inheritance and Reduction to System Modules . . . . . . . . . . . . . . . . . . . . . 25
4.3 Module Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Object Creation and Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Broadcasting Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Generality of the Concurrent Rewriting Model . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Simple Maude 41
5.1 Maude as a Wide Spectrum Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Simple Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Rewriting Modulo Church-Rosser and Terminating Equations . . . . . . . . . . . . 43
5.2.2 Object-Oriented Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Sequential, SIMD, MIMD, and MIMD/SIMD Implementations . . . . . . . . . . . . . . . 45
5.4 Multilingual Extensions and Open Heterogeneous Systems . . . . . . . . . . . . . . . . . . 46

6 More Examples 47
6.1 Eight Queens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 A Communication Protocol Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Maude and MaudeLog as Multiparadigm Logic Programming Languages 52

8 Semantics 55
8.1 The Models of Rewriting Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Preorder, Poset, and Algebra Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3 The Semantics of Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Related Work 62

10 Concluding Remarks 64

1 Introduction

An important reason that makes object-oriented programming very attractive as a programming
language paradigm is its conceptual support for structuring programs as systems made up of
objects that interact with each other. Object-oriented concepts fit well with our intuitive ideas
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about ordinary objects and their interactions in the world and allow us to conceive of a program
as either a simulation or model of some aspects of the world, or—when actual interaction with
the world is desired, as for example in a robotics application—as the addition of a subsystem
of artificial objects as artifacts that interact with other objects in the world.

Since interactions between objects in the real world are concurrent, it would seem to follow
that concurrency should be viewed as an intrinsic property of object-oriented systems. Al-
though this idea was certainly present in the Simula 67 language [32, 16] and was partially
realized there within the constraints of a sequential implementation by means of the notion of
“quasi-parallel” execution, the notion that concurrency is intrinsic to object-oriented program-
ming seems to have been deemphasized or forgotten to a considerable extent in the subsequent
evolution of the field, as the existence of the term “concurrent object-oriented programming”
to indicate a delimited subfield concerned with “adding concurrency” to object-oriented pro-
gramming seems to indicate.

This is an unsatisfactory state of affairs, especially when the following considerations are
added:

1. At present it is considered very difficult to have both concurrency and inheritance in
an object-oriented language. This difficulty is referred to as the “inheritance anomaly”
[67, 90, 38].

2. Type-theoretic approaches to object-oriented programming which are sometimes put for-
ward as providing a semantics for the field seem at present to be altogether silent on
concurrency issues.

3. There seems to exist no agreement on a semantic basis for concurrent object-oriented
programming. Wildly varying proposals to graft all sorts of concurrency constructs and
models quite alien to the concepts of object-oriented programming into existing or new
languages in an ad-hoc way are not only made, but are in some cases followed up with
actual implementations. Certainly, Actors [3, 2] seems the best proposal so far, since
actors do not suffer from the incoherence of other approaches and message passing is a
very flexible communication mechanism, but the addition of inheritance to actor languages
still seems to run into the difficulties already mentioned above.

4. Since just adding concurrency is at present somewhat of a stumbling block, it is not
surprising that there is even less of an agreement on how concurrent object-oriented
programming could be unified in a multiparadigm fashion with functional programming
and with relational programming in a coherent and semantically rigorous way.

Regarding the last consideration, there are very good reasons for seeking a unification of
these three paradigms or “perspectives” as Kristen Nygaard likes to call them. As Nygaard
himself points out [89],

“It seems obvious to the author that all these three perspectives should be supported
within any new general programming language in the future. No perspective will
“win” as some seem to believe.”

Indeed, there is much to be gained in a unification of this kind if it is done right. By “done
right” I mean that the overall unification should in fact be based directly on an adequate logic
so that programs become theories in that logic and computation becomes logical deduction.
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This, however, is not an easy task. The main difficulty has to do with logic, because the
logics on which functional and relational programming are based—namely, equational logic (in
either a first-order or a higher-order version) and first-order Horn logic, respectively—describe
unchanging Platonic structures such as sets, functions and relations as it is fitting for logics
originally introduced to develop logical foundations for mathematics. Such logics, however, deal
very poorly with action and change, and deal particularly poorly with the type of change typical
of concurrent object-oriented systems. This has many manifestations in practice, including
among others the long-term embarrassment of the frame problem1 in artificial intelligence.

This work proposes a simple logic of action called rewriting logic [70, 69, 72] as a general
semantic framework for object-oriented programming with the following characteristics:

1. Concurrency is intrinsic and therefore the semantic framework formalizes concurrent
object-oriented programming. However, concurrency is implicit and does not require
any special extralogical constructs; this agrees with the view that concurrency is inherent
to object-oriented systems and should therefore be directly supported by an adequate
semantic framework.

2. A rigorous semantics for multiple class inheritance is provided in such a way that the
so-called inheritance anomaly blocking the integration of concurrency and inheritance
disappears completely.

3. A declarative version of the actor model appears as a special case, and is given a new
logical and truly concurrent semantics based on rewriting logic.

4. Rewriting logic provides not only a semantic framework, but also a computational model
for concurrent object-oriented programming. This allows a fully declarative programming
style for concurrent object-oriented systems that can be programmed as theories in rewrit-
ing logic and whose concurrent computations correspond to logical deductions in such a
logic. All this is realized in a language called Maude that is directly based on rewriting
logic, and makes possible a natural integration of specification, programming, and formal
reasoning within such a language.

5. Maude naturally unifies the functional programming paradigm with concurrent object-
oriented programming and contains (a slight linguistic variant of) the OBJ language
[45, 53] as its functional sublanguage. An extension of Maude called MaudeLog [73]—also
based entirely on rewriting logic—unifies the three paradigms of functional, relational,
and concurrent object-oriented programming.

6. Rewriting logic is sound and complete and has initial models. The mathematical seman-
tics of Maude modules is based on such initial models which intuitively correspond to
concurrent systems2.

7. Like OBJ [53], Eqlog [48], and FOOPS [49], Maude has modularity and parameterization
mechanisms à la Clear [20]. This, together with its support for multiple class inheritance
and with two new module operations proposed in this paper, endows Maude with pow-
erful mechanisms for program reuse and for programming-in-the-large by adapting and
composing modules together in very flexible ways.

1For a detailed discussion of why rewriting logic entirely avoids the frame problem see [63].
2However, the denotational semantics of functional modules is given by the usual initial algebra semantics as

in OBJ [51].
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8. A sublanguage of Maude called Simple Maude [83] provides a machine independent par-
allel programming language that can be implemented with reasonable efficiency on a wide
variety of parallel architectures. In addition, Simple Maude can be used to incorporate
modules written in conventional code into parallel programs, and to integrate open het-
erogeneous systems in a parallel computing environment.

The paper discusses in more detail all the aspects just mentioned about rewriting logic
as a semantic framework for concurrent object-oriented programming and about the Maude
language, and illustrates many of the ideas with examples. Section 2 introduces Maude’s func-
tional and system modules and their concurrent rewriting computation, and discusses some
basic order-sorted algebra concepts used throughout the paper. Section 3 introduces rewriting
logic, identifies concurrent rewriting computation with deduction in such a logic, and discusses
the intended meaning of the logic. Section 4 presents a logical theory of concurrent objects based
on rewriting logic, introduces Maude’s object-oriented modules, and discusses class and module
inheritance, object creation and deletion, message broadcasting, reflection, and actors. A brief
discussion of the generality of rewriting logic as a model of concurrency is also included at the
end of the section. Section 5 introduces Simple Maude, summarizes implementation ideas for
several parallel architectures, and briefly discusses support for multilingual extensions and open
heterogeneous systems. Section 6 presents and discusses two longer Maude examples. Section
7 gives a brief sketch of Maude and MaudeLog as multiparadigm logic programming languages
and discusses the multiparadigm unification of functional and concurrent object-oriented pro-
gramming, and of functional, relational, and concurrent object-oriented programming that they
respectively provide. Section 8 discusses the model theory of rewriting logic, including initial
and free models, gives a computational interpretation of such models as concurrent systems,
and defines the mathematical semantics of Maude modules in terms of initial models. Section
9 discusses related work. The paper ends with some concluding remarks in Section 10.

2 Maude and Concurrent Rewriting

Concurrent rewriting is motivated with examples of functional and system modules in Maude.
The system module examples show that the traditional interpretation of rewrite rules as equa-
tions must be abandoned and that a new logic and model theory are needed. Rewriting logic—
introduced in Section 3—provides the answer; in it, concurrent computation by rewriting coin-
cides with logical deduction. Discussion of object-oriented aspects, and in particular of Maude’s
object-oriented modules, is deferred to Section 4.

2.1 Functional Modules

The idea of concurrent rewriting is very simple. It is the idea of equational simplification that
we are all familiar with from our secondary school days, plus the obvious remark that we can do
many of those simplifications independently, i.e., in parallel. Consider for example the following
Maude functional modules written in a notation entirely similar to that of OBJ3 [45, 53]:

fmod NAT is fmod NAT-REVERSE is

sorts Nat NzNat . protecting NAT .

subsort NzNat < Nat . sort Tree .

op 0 : -> Nat . subsort Nat < Tree .
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op s_ : Nat -> NzNat . op _^_ : Tree Tree -> Tree .

op p_ : NzNat -> Nat . op rev : Tree -> Tree .

op _+_ : Nat Nat -> Nat [comm] . var N : Nat .

vars N M : Nat . vars T T’ : Tree .

eq p s N = N . eq rev(N) = N .

eq N + 0 = N . eq rev(T ^ T’) =

eq (s N) + (s M) = s s (N + M) . rev(T’) ^ rev(T) .

endfm endfm

The first module defines the natural numbers in Peano notation with successor, predecessor and
addition functions, and the second defines a function to reverse a binary tree whose leaves are
natural numbers. Each module begins with the keyword fmod followed by the module’s name,
and ends with the keyword endfm. A module contains sort and subsort declarations introduced
by the keywords sort(s) and subsort(s) stating the different sorts of data manipulated by
the module and how those sorts are related. As in OBJ3, Maude’s type structure is order-
sorted [51]; therefore, sorts form a partially ordered set and it is possible to declare one sort
as a subsort of another; for example, the declaration NzNat < Nat states that every nonzero
natural number is a natural number, and the declaration Nat < Tree states that every natural
number is a tree consisting of a single node. It is also possible to overload function symbols for
operations that are defined at several levels of a sort hierarchy and agree on their results when
restricted to common subsorts; for example, an addition operation + may be defined for sorts
Nat, Int, and Rat of natural, integer, and rational numbers with

Nat < Int < Rat .

Each of the functions provided by the module, as well as the sorts of their arguments and
the sort of their result, is introduced using the keyword op. The syntax is user-definable, and
permits specifying function symbols in “prefix,” (in the NAT example the functions s and p ),
“infix” ( + ) or any “mixfix” combination as well as standard parenthesized notation (rev).

A functional model for such an order-sorted syntax is called an order-sorted algebra [51]
and consists of a set As for each sort symbol s, so that if s ≤ s′ then As ⊆ As′ , together
with a function fA : As1 × . . . × Asn −→ As for each operator declaration f : s1 . . . sn −→ s
in such a way that if another operator declaration f : s′1 . . . s

′
n −→ s′ has been given, with

s′i ≤ si, i = 1, . . . , n, and s′ ≤ s, then the function fA : As′1 × . . . × As′n −→ As′ is just the
restriction of the function fA : As1× . . .×Asn −→ As to the subset As′1× . . .×As′n . The number
hierarchy from the naturals to the rationals (and of course beyond) provides a good example
of an order-sorted algebra.

Variables to be used for defining equations are declared with their corresponding sorts, and
then equations are given; such equations provide the actual “code” of the module. Deduction
with such equations is a typed variant of equational logic called order-sorted equational logic.
However, operationally, only deduction from left to right by rewriting is performed, as explained
below. As in OBJ3, the mathematical semantics of a Maude functional module is the initial
order-sorted algebra [51] satisfying the equations declared in the module. For the two modules
above, such initial algebras are just what we would expect, namely the natural numbers—with
zero, successor, predecessor and addition—for the NAT module, and binary trees with natural
numbers on their leaves—with tree reversal and binary tree constructor operators—for the
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Figure 1: Concurrent rewriting of a tree of numbers.

NAT-REVERSE module, in which the natural numbers are viewed as the subset of trees consisting
of a single node.

The statement protecting NAT imports NAT as a submodule of NAT-REVERSE and asserts
that the natural numbers are not modified in the sense that no new data of sort Nat is added,
and different numbers are not identified by the new equations declared in NAT-REVERSE.

To compute with such modules, one performs equational simplification by using the equa-
tions from left to right until no more simplifications are possible. Note that this can be done
concurrently, i.e., applying several equations at once, as in the example of Figure 1, in which the
places where the equations have been matched at each step are marked. Notice that the func-
tion symbol + was declared to be commutative by the attribute3 [comm]. This not only asserts
that the equation N + M = M + N is satisfied in the intended semantics, but it also means that
when doing simplification we are allowed to apply the rules for addition not just to terms—in a
purely syntactic way—but to equivalence classes of terms modulo the commutativity equation.
In the example of Figure 1, the equation N + 0 = N is applied (modulo commutativity) with
0 both on the right and on the left.

A particularly appealing feature of this style of concurrent programming is the implicit
nature of the parallelism. Since in the two modules above the equations are Church-Rosser
(also called confluent) and terminating (see Section 3.3 for a definition of these notions, [56, 33]
for further background on the subject, and [59] for corresponding order-sorted versions of such
notions) the order in which the rules are applied does not at all affect the final result. This
agrees with the usual functional programming expectations, since it would be quite strange to
obtain different results for the same functional expression. Indeed, in Maude, the rules in a
functional module are always assumed to be Church-Rosser, but as we shall see later this is not
assumed for either system modules or object-oriented modules, which do not have a functional
interpretation.

2.1.1 Parameterized Functional Modules

As in OBJ3, functional modules can be parameterized . For example, we can define a param-
eterized module by generalizing the NAT-REVERSE module to a parameterized REVERSE[X ::

TRIV] module in which the set of data that can be stored in tree leaves is a parameter. In
parameterized modules, the properties that the parameter must satisfy are specified by one or
more parameter theories. In this case, the (functional) parameter theory is the trivial theory
TRIV

fth TRIV is

sort Elt .

endft

which only requires a set Elt of elements. We can then define

3In Maude, as in OBJ3, it is possible to declare several attributes of this kind for an operator, including also
associativity and identity, and then do rewriting modulo such properties.
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fmod REVERSE[X :: TRIV] is

sort Tree .

subsort Elt < Tree .

op _^_ : Tree Tree -> Tree .

op rev : Tree -> Tree .

var E : Elt .

vars T T’ : Tree .

eq rev(E) = E .

eq rev(T ^ T’) = rev(T’) ^ rev(T) .

endfm

Such a parameterized module can then be instantiated by providing an interpretation—called a
view—mapping the parameter sort Elt to a sort in the module chosen as the actual parameter.
For example, if we interpret Elt as the sort Nat in the NAT module, then we can obtain an
instantiation equivalent to the module NAT-REVERSE in our first example by writing

make NAT-REVERSE is REVERSE[Nat] endmk

Another example of a parameterized functional module is the following module for lists
whose elements belong to a set of elements. The set of elements is a parameter that can be
instantiated to any set; therefore, as in the previous example, the parameter theory is the trivial
theory TRIV.

fmod LIST[X :: TRIV] is

protecting NAT BOOL .

sort List .

subsort Elt < List .

op __ : List List -> List [assoc id: nil] .

op length : List -> Nat .

op remove_from_ : List List -> List .

op _in_ : Elt List -> Bool .

vars E E’ : Elt .

vars L L’ : List .

eq length(nil) = 0 .

eq length(E L) = (s 0) + length(L) .

eq remove nil from L = L .

eq remove L from nil = nil .

eq remove E from (E’ L) = if E == E’ then

remove E from L else E’ remove E from L fi .

eq remove E L’ from L = remove L’ from (remove E from L) .

eq E in nil = false .

eq E in (E’ L) = if E == E’ then true

else E in L fi .

endfm

Note that the “empty syntax” operator has been declared associative and has the constant
nil as its identity element. The boolean operator == compares two terms and evaluates to
true if they both evaluate to the same result and to false otherwise; this operator is built-in,
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but for modules with Church-Rosser and terminating equations it is always possible to define
it equationally4. Rewriting with this module is performed modulo associativity and identity;
this means that we can disregard parentheses and that a List variable can match nil. For
example, if we instantiate this module to form lists of natural numbers by writing

make NAT-LIST is LIST[Nat] endmk

then the second equation for length will match the expression length(s s 0) modulo asso-
ciativity and identity by matching E to s s 0 and L to nil.

2.1.2 Sort Constraints

The expressiveness of the order-sorted type structure can be further increased by the declara-
tion of axioms called sort constraints [78] (declared by the keyword sct) stating that a given
functional expression has a sort smaller than anticipated. We illustrate this notion—which
also appears in OBJ3 with a different syntax [53]—by the (parameterized) definition of sets
as a subsort of multisets using a sort constraint. The example reuses the parameterized LIST

module, adapting it to the present context by renaming the nil list to the null multiset and
the List sort to the MSet sort using a module renaming construct, and by turning list con-
catenation into multiset union thanks to the addition of a commutativity attribute. Such reuse
illustrates a flexible form of module inheritance that is available in Maude through its submod-
ule, parameterization, and module expression mechanisms and is further discussed in Section
4.3. However, as it was also done in the FOOPS language [49], such inheritance at the module
level is sharply distinguished from class inheritance, which will be discussed in Section 4.2 and
which is a special case of subsort inheritance.

fmod MSET[X :: TRIV] is

using LIST[X]*(sort List to MSet, op nil to null) .

sort Set .

subsorts Elt < Set < MSet .

op __ : MSet MSet -> MSet [comm] .

op null : -> Set .

op set : MSet -> Set .

op _U_ : Set Set -> Set .

op |_| : Set -> Nat .

var E : Elt .

var MS : MSet .

vars S S’ : Set .

sct (E S) : Set if not(E in S) .

eq set(null) = null .

eq set(E) = E .

eq set(E MS) = if (E in MS) then set(MS) else E set(S) fi .

eq S U S’ = set(S S’) .

eq | S | = length(S) .

endfm

4Cf. Theorems 54 and 71 in [77].
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The keyword using asserts that, in this importation of the (renamed) LIST module, semantic
modifications are being introduced so that the original equality relation between data elements
will be altered5. The renaming expression

LIST[X]*(sort List to MSet, op nil to null)

changes the syntax of the LIST[X] module by renaming its sort List to MSet and its operator
nil to null.

The original list concatenation operator is now understood as a multiset union operator; the
original operator was already associative and had nil (now renamed to null) as an identity.
Now we add a commutativity axiom, so that two multisets are equal if one is a permutation
of the other; this is accomplished by adding a [comm] attribute declaration to the imported
multiset union operator. Of course, this changes the equality relation between data elements.
It also changes the rewriting relation in the sense that concurrent rewriting in this module is
performed modulo the associativity, commutativity and identity axioms for the operator .
Therefore, we can disregard parentheses and the order of the arguments. We call rewriting
modulo associativity, commutativity and identity ACI -rewriting .

The subsort Set of sets is defined as the subsort of all multisets with no repeated elements.
This is accomplished by means of four declarations: the subsort declaration Set < MSet; an
operator declaration stating that null is a set; a subsort declaration Elt < Set stating that
singleton multisets are sets; and a sort constraint stating that the addition of an element to a
set yields also a set provided that the element was not already inside the original set.

In general, a sort constraint [78] is a conditional assertion of the form

t(x1, . . . , xn) : s if u1(x1, . . . , xn) = v1(x1, . . . , xn) ∧ . . . ∧ uk(x1, . . . , xn) = vk(x1, . . . , xn)

where s is a sort and t(x1, . . . , xn) and the uj , vj are terms whose variables have sorts, say,
xi : si, i = 1, . . . , n. We say that an order-sorted algebra A satisfies such a sort constraint if,
for any assignment of values ai ∈ Asi to the variables xi, such that for each j = 1, . . . , k the
elements ujA(a1, . . . , an) and vjA(a1, . . . , an)—obtained by evaluating the terms uj and vj in
the algebra A under the assignment—are equal, then the element tA(a1, . . . , an) obtained by
evaluating the term t in the algebra A under the assignment belongs to the set As. For the sort
constraint in the above example, k = 1, with u1 the term not(E in S), and v1 (left implicit)
the term true. If the sort constraint’s condition is empty (k = 0) we speak of an unconditional
sort constraint and adopt the notation

t(x1, . . . , xn) : s

It is a fortunate fact that the class of order-sorted algebras satisfying a given set of equations
and sort constraints has an initial algebra [76]. Of course, the mathematical semantics of
(unparameterized) functional modules containing such sort constraint declarations is precisely
such an initial algebra; a parameterized version of such an initiality result is what applies to
the above multiset and set example. This means what we would naturally expect, i.e., that for
each instantiation of the above module to a given set X of elements, the sort MSet consists of
finite multisets of elements of X, the sort Set consists of finite sets of elements of X, and the
data type operations between such sorts behave as desired.

5In general, further modifications by addition of new data elements to old sorts could also occur in a module
imported with a using declaration; i.e., both addition of “junk” (new data elements) and of “confusion” between
old data elements can take place in a using module importation.
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In particular, the following additional operations have been defined: a function set that
turns each multiset into a set by removing duplicated elements; a set union function U ; and
a set cardinality function | |. Of course, a variety of other set-theoretic operations could have
been defined similarly if desired.

2.2 System Modules

Maude system modules perform concurrent rewriting computations in exactly the same way as
functional modules; however, their behavior is not functional. Consider the following module,
NAT-CHOICE, which adds a nondeterministic choice operator to the natural numbers.

mod NAT-CHOICE is

extending NAT .

op _?_ : Nat Nat -> Nat .

vars N M : Nat .

rl N ? M => N .

rl N ? M => M .

endm

The intuitive operational behavior of this module is quite clear. Natural number addition
remains unchanged and is computed using the two rules in the NAT module. Notice that any
occurrence of the choice operator ? in an expression can be eliminated by choosing either
of the arguments. In the end, we can reduce any ground expression to a natural number in
Peano notation. The mathematical semantics of the module is much less clear. If we adopt any
semantics in which the models are algebras satisfying the rules as equations—in particular an
initial algebra semantics—it follows by the rules of equational deduction with the two equations
in NAT-CHOICE that

N = M

i.e., everything collapses to one point. Therefore, the declaration extending NAT, whose mean-
ing is that two distinct natural numbers in the submodule NAT are not identified by the new
equations introduced in the supermodule NAT-CHOICE, i.e., that no “confusion” is introduced
in the old data, is violated in the worse possible way by this semantics; yet, the operational
behavior in fact respects such a declaration. To indicate that this is not the semantics intended,
system modules are distinguished from functional modules by means of the keyword mod, in-
stead of the previous fmod. Similarly, a new keyword rl is used for rewrite rules—instead of
the usual eq before each equation—and the equal sign is replaced by the new sign “=>” to
suggest that rl declarations must be understood as “rules” and not as equations in the usual
sense. At the operational level the equations introduced by the keyword eq in a functional
module are also implemented as rewrite rules; the difference however lies in the mathematical
semantics given to the module, which for modules like the one above should not be the usual
initial algebra semantics. We need a logic and a model theory that are the perfect match for
this problem. For this solution to be in harmony with the old one, the new logic and the new
model theory should generalize the old ones.

System modules can also be parameterized. For example, we could have defined a parame-
terized module with a nondeterministic choice operator

11
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mod TICKET is

sorts Place Marking .

subsort Place < Marking .

ops $,q,t1,t2 : -> Place .

op __ : Marking Marking -> Marking

[assoc comm id: null] .

rl b-t1 : $ => t1 q q .

rl b-t2 : $ => t2 q .

rl change : $ => q q q q .

rl b’-t1 : q q => t1 .

rl b’-t2 : q q q => t2 .

endm

Figure 2: A Petri net and its code in Maude.

mod CHOICE[X :: TRIV] is

op _?_ : Elt Elt -> Elt .

vars A B : Elt .

rl A ? B => A .

rl A ? B => B .

endm

and could have obtained a module equivalent to NAT-CHOICE by means of the module expression

make NAT-CHOICE is CHOICE[Nat] endmk

Another interesting example of a system module that illustrates both Maude’s expressiveness
and the generality of the concurrent rewriting model is the Petri net in Figure 2, which represents
a machine to buy subway tickets. With a dollar we can buy a ticket t1 by pushing the button
b−t1 and get two quarters back; if we push b−t2 instead, we get a longer distance ticket t2
and one quarter back. Similar buttons allow purchasing the tickets with quarters. Finally, with
one dollar we can get four quarters by pushing change. The corresponding system module,
TICKET, is given in the same figure. Note that the rules in this module are labelled by the name
of the transition which they represent. A key point about this module is that the operator

—corresponding to multiset union—has been declared associative, commutative, and having
an identity element null, and that rewriting is performed modulo those axioms, i.e., it is ACI -
rewriting . In this example, ACI -rewriting captures exactly the concurrent computations of the
Petri net. Suppose, for example, that we begin in a state with four quarters and two dollars.
Then, by first concurrently pushing the buttons b′−t1 and b−t2, and then concurrently pushing
the buttons b′−t2 and b−t2 we end up with a ticket for the shorter distance, three tickets for the
longer distance and a quarter, as shown in the two steps of concurrent ACI -rewriting below:

q q q q $ $ −→ q q t1 t2 q $ −→ t2 t1 t2 t2 q.

As in the NAT-CHOICE example, this example also shows that initial algebra semantics is entirely
inadequate to handle system modules with a nonfunctional behavior. In this case, interpreting
the rules as equations would force the nonsensical identification of the three states above.

12



State ←→ Term
Transition ←→ Rewriting
Distributed Structure ←→ Algebraic Structure

Figure 3: System-oriented interpretation of concurrent rewriting.

System modules denote concurrent systems, not algebras, and rewriting logic is a logic that
expresses directly the concurrent computations of such systems.

Indeed, the passage from functional modules to system modules involves a fundamental
change in perspective, so that basic notions that previously had a very familiar interpretation in
functional terms have now to be reinterpreted in a very different way. In this new interpretation,
terms are no longer understood as functional expressions, but as structured states, where the
structure of the state is given by the operators that happen to appear in the term and by
the structural axioms that they enjoy. For example, a Petri net marking is a state having a
multiset structure given by a binary multiset union operator that enjoys ACI structural axioms.
Similarly, an expression such as (3 ? 5) ? (7 ? 12) is a state having a binary tree structure.
The algebraic structure of the state—as a multiset, binary tree, or whatever—is precisely what
makes the state distributed , i.e., coincides with its distributed structure, and makes concurrency
possible.

In the same way, rewriting is no longer seen as functional evaluation by equational deduction,
but as transition in a system. This is clearly illustrated by the rewrite rules for the Petri net
example, and also by the nondeterministic choice rules for the NAT-CHOICE example, where the
final states are numbers. The states’ algebraic—and therefore distributed—structure makes
possible for many rewritings to occur concurrently , i.e., rewritings are local transitions of a
distributed state that happen independently of each other. Figure 3 summarizes this discussion.

3 Rewriting Logic

Rewriting logic is defined, and concurrent rewriting is formalized as deduction in such a logic.

3.1 Basic Universal Algebra

For the sake of simplifying the exposition, we treat the unsorted case; the many-sorted and
order-sorted cases can be given a similar treatment. Therefore, a set Σ of function symbols is a
ranked alphabet Σ = {Σn | n ∈ IN}. A Σ-algebra is then a set A together with an assignment
of a function fA : An −→ A for each f ∈ Σn with n ∈ IN. We denote by TΣ the Σ-algebra of
ground Σ-terms, and by TΣ(X) the Σ-algebra of Σ-terms with variables in a set X. Similarly,
given a set E of Σ-equations, TΣ,E denotes the Σ-algebra of equivalence classes of ground Σ-
terms modulo the equations E (i.e., modulo provable equality using the equations E); in the
same way, TΣ,E(X) denotes the Σ-algebra of equivalence classes of Σ-terms with variables in X
modulo the equations E. Let t =E t′ denote the congruence modulo E of two terms t, t′, and
let [t]E or just [t] denote the E-equivalence class of t.

Given a term t ∈ TΣ({x1, . . . , xn}), and terms u1, . . . , un, t(u1/x1, . . . , un/xn) denotes the
term obtained from t by simultaneously substituting ui for xi, i = 1, . . . , n. To simplify notation,
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we denote a sequence of objects a1, . . . , an by a, or, to emphasize the length of the sequence,
by an. With this notation, t(u1/x1, . . . , un/xn) can be abbreviated to t(u/x).

3.2 The Rules of Rewriting Logic

We are now ready to introduce the new logic that we are seeking, which we call rewriting logic.
A signature in this logic is a pair (Σ, E) with Σ a ranked alphabet of function symbols and
E a set of Σ-equations. Rewriting will operate on equivalence classes of terms modulo the
set of equations E. In this way, we free rewriting from the syntactic constraints of a term
representation and gain a much greater flexibility in deciding what counts as a data structure;
for example, string rewriting is obtained by imposing an associativity axiom, and multiset
rewriting by imposing associativity and commutativity. Of course, standard term rewriting is
obtained as the particular case in which the set E of equations is empty. The idea of rewriting
in equivalence classes is well known (see, e.g., [56, 33]).

Given a signature (Σ, E), sentences of the logic are sequents of the form [t]E −→ [t′]E with
t, t′ Σ-terms, where t and t′ may possibly involve some variables from the countably infinite set
X = {x1, . . . , xn, . . .}. A theory in this logic, called a rewrite theory, is a slight generalization of
the usual notion of theory—which is typically defined as a pair consisting of a signature and a
set of sentences for it—in that, in addition, we allow rules to be labelled. This is very natural for
many applications, and customary for automata—viewed as labelled transition systems—and
for Petri nets, which are both particular instances of our definition.

A (labelled) rewrite theory6 R is a 4-tuple R = (Σ, E, L,R) where Σ is a ranked alphabet
of function symbols, E is a set of Σ-equations, L is a set of labels, and R is a set of pairs
R ⊆ L× (TΣ,E(X)2) whose first component is a label and whose second component is a pair of
E-equivalence classes of terms, with X = {x1, . . . , xn, . . .} a countably infinite set of variables.
Elements of R are called rewrite rules7. We understand a rule (r, ([t], [t′])) as a labelled sequent
and use for it the notation r : [t] −→ [t′]. To indicate that {x1, . . . , xn} is the set of variables
occurring in either t or t′, we write8 r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)], or in abbreviated
notation r : [t(xn)] −→ [t′(xn)]. 2

Given a rewrite theory R, we say that R entails a sequent [t] −→ [t′] and write R `
[t] −→ [t′] if and only if [t] −→ [t′] can be obtained by finite application of the following rules
of deduction:

1. Reflexivity. For each [t] ∈ TΣ,E(X),

[t] −→ [t]

6We consciously depart from the standard terminology, that would call R a rewrite system. The reason for
this departure is very specific. We want to keep the term “rewrite system” for the models of such a theory, which
will be defined in Section 8 and which really are systems with a dynamic behavior. Strictly speaking, R is not
a system; it is only a static, linguistic, presentation of a class of systems—including the initial and free systems
that most directly embody our dynamic intuitions about rewriting.

7To simplify the exposition the rules of the logic are given for the case of unconditional rewrite rules. However,
all the ideas and results presented here have been extended to conditional rules in [72] with very general rules of
the form

r : [t] −→ [t′] if [u1] −→ [v1] ∧ . . . ∧ [uk] −→ [vk].

This of course increases considerably the expressive power of rewrite theories, as illustrated by several of the
Maude examples presented in this paper.

8Note that, in general, the set {x1, . . . , xn} will depend on the representatives t and t′ chosen; therefore, we
allow any possible such qualification with explicit variables.
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2. Congruence. For each f ∈ Σn, n ∈ IN,

[t1] −→ [t′1] . . . [tn] −→ [t′n]

[f(t1, . . . , tn)] −→ [f(t′1, . . . , t
′
n)]

3. Replacement. For each rewrite rule r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] in R,

[w1] −→ [w′
1] . . . [wn] −→ [w′

n]

[t(w/x)] −→ [t′(w′/x)]

4. Transitivity.
[t1] −→ [t2] [t2] −→ [t3]

[t1] −→ [t3]

Equational logic (modulo a set of axioms E) is obtained from rewriting logic by adding the
following rule:

5. Symmetry.
[t1] −→ [t2]

[t2] −→ [t1]

With this new rule, sequents derivable in equational logic are bidirectional; therefore, in this case
we can adopt the notation [t]↔ [t′] throughout and call such bidirectional sequents equations.

3.3 Concurrent Rewriting as Deduction

A nice consequence of having defined rewriting logic is that concurrent rewriting, rather than
emerging as an operational notion, actually coincides with deduction in such a logic.

Given a rewrite theory R = (Σ, E, L,R), a (Σ, E)-sequent [t] −→ [t′] is called:

• a 0-step concurrent R-rewrite iff it can be derived from R by finite application of the
rules 1 and 2 of rewriting deduction (in which case [t] and [t]′ necessarily coincide);

• a one-step concurrent R-rewrite iff it can be derived from R by finite application of the
rules 1-3, with at least one application of rule 3; if rule 3 is applied exactly once, we then
say that the sequent is a one-step sequential R-rewrite;

• a concurrent R-rewrite (or just a rewrite) iff it can be derived from R by finite application
of the rules 1-4.

We call the rewrite theory R sequential if all one-step R-rewrites are necessarily sequential. A
sequential rewrite theory R is in addition called deterministic if for each [t] there is at most
one one-step (necessarily sequential) rewrite [t] −→ [t′]. 2

Example 1 All rewrite steps in Figure 1 are one-step concurrent rewrites, but none are se-
quential. For example, the first such step can be obtained by first applying replacement twice
for the second rule in NAT to 0-step rewrites given by the substitutions (N 7→ 0, M 7→ s0), and
(N 7→ 0, M 7→ 0), to get sequents

[s0+ss0] −→ [ss(0+s0)], [s0+s0] −→ [ss(0+0)];
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Figure 4: The Church-Rosser property.

then, applying congruence to each of these sequents and appropriate 0-step rewrites to get
sequents

[(s0+ss0)^s0] −→ [ss(0+s0)^s0], [0^(s0+s0)] −→ [0^ss(0+0)];

and finally, applying replacement to those two sequents for the second rule in the REVERSE

module. Note that transitivity was never used. 2

The usual notions of confluence, termination, normal form, etc., as well as the well known
Church-Rosser property of confluent rules, remain unchanged when considered from the per-
spective of concurrent rewriting [72].

Specifically, we call a rewrite theory R terminating if there is no infinite chain of one-step
rewrites (whether sequential or concurrent)

[t] −→ [t1] −→ . . . −→ [tn] −→ . . .

We say that [t′] is an R-normal form of [t] if [t] −→ [t′] is an R-rewrite and there does not exist
any one-step R-rewrite of the form [t′] −→ [t′′]. If each [t] has at least one normal form, we call
the theory R weakly terminating.

We say that a rewrite theory R is Church-Rosser or confluent if given any two concurrent
rewrites [t] −→ [t′], [t] −→ [t′′], there is a [t′′′] and concurrent rewrites [t′] −→ [t′′′], [t′′] −→
[t′′′]. This situation is shown in Figure 4. Likewise, we call R ground Church-Rosser when
the property is only asserted for equivalence classes of ground terms. As already mentioned,
the equations in Maude’s functional modules are expected to be Church-Rosser, but system
modules and object-oriented modules (see Section 4.1) are not expected to be Church-Rosser
and typically they are not so. Indeed, the Church-Rosser property is a mark of functionality,
since it guarantees that any term has at most one normal form, which can be interpreted as
the result of its functional evaluation.

3.4 The Meaning of Rewriting Logic

A logic worth its salt should be understood as a method of correct reasoning about some class
of entities, not as an empty formal game. For equational logic, the entities in question are
sets, functions between them, and the relation of identity between elements. For rewriting
logic, the entities in question are concurrent systems having states, and evolving by means of
transitions. The signature of a rewrite theory describes a particular structure for the states of
a system—e.g., multiset, binary tree, etc.—so that its states can be distributed according to
such a structure. The rewrite rules in the theory describe which elementary local transitions
are possible in the distributed state by concurrent local transformations. What the rules of
rewriting logic allow us to reason correctly about is which general concurrent transitions are
possible in a system satisfying such a description. Clearly, concurrent systems should be the
models giving a semantic interpretation to rewriting logic, in the same way that algebras are
the models giving a semantic interpretation to equational logic. A precise account of the model
theory of rewriting logic, giving rise to an initial model semantics for Maude modules and fully
consistent with the above system-oriented interpretation, is given in Section 8.
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State ↔ Term ↔ Proposition
Transition ↔ Rewriting ↔ Deduction
Dist . Struct . ↔ Alg . Struct . ↔ Prop. Conn.

Figure 5: The meaning of rewriting logic.

Therefore, in rewriting logic a sequent [t] −→ [t′] should not be read as “[t] equals [t′],” but
as “[t] becomes [t′].” Clearly, rewriting logic is a logic of becoming or change, not a logic of
equality in a static Platonic sense. The apparently innocent step of adding the symmetry rule
is in fact a very strong restriction, namely assuming that all change is reversible, thus bringing
us into a timeless Platonic realm in which “before” and “after” have been identified.

A related observation is that [t] should not be understood as a term in the usual first-
order logic sense, but as a proposition—built up using the propositional connectives in Σ—that
asserts being in a certain state having a certain structure. However, unlike most other logics,
the logical connectives Σ and their structural properties E are entirely user-definable. This
provides great flexibility for considering many different state structures and makes rewriting
logic very general in its capacity to deal with many different types of concurrent systems. This
generality is further discussed in Section 4.8, and is treated in greater length in [72].

In summary, the rules of rewriting logic are rules to reason about change in a concurrent
system9. They allow us to draw valid conclusions about the evolution of the system from certain
basic types of change known to be possible thanks to the rules R. Our present discussion is
summarized in Figure 5, which extends Figure 3 by adding each concept’s logical counterpart.

4 A Logical Theory of Concurrent Objects

We are now ready to present a logical theory of concurrent objects based on rewriting logic
deduction modulo ACI . The key idea is to conceptualize the distributed state of a concurrent
object-oriented system—called a configuration—as a multiset of objects and messages that
evolves by concurrent ACI -rewriting using rules that describe the effects of communication
events between some objects and messages. Therefore, we can view concurrent object-oriented
computation as deduction in rewriting logic; in this way, the configurations S that are reachable
from a given initial configuration S0 are exactly those such that the sequent S0 −→ S is provable
in rewriting logic using the rewrite rules that specify the behavior of the given object-oriented
system.

An object in a given state is represented as a term

〈O : C | a1 : v1, . . . , an : vn〉

where O is the object’s name or identifier, C is its class, the ai’s are the names of the object’s
attribute identifiers, and the vi’s are the corresponding values. The basic syntax and sort struc-
ture for attributes, objects, messages and configurations are given by the modules ATTRIBUTES

9Since rewriting logic is a logic of change, it has some similarities with Girard’s linear logic [39, 40] (see also
[65] for a survey of work on the relationship between linear logic and concurrency). In fact, from the perspective
of rewriting logic the quantifier-free fragment of linear logic appears as a particular choice of user-definable
connectives that are expressed in a very direct and natural way within rewriting logic in a conservative way [63].
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and CONFIGURATION below; the first is a functional module defining the data type of attributes,
and the second is a system module comprising all the entities that make up configurations.
Before introducing such modules, we introduce an auxiliary parameterized module MAP that
iterates a given parameter function over a multiset. This auxiliary module is used later to
extract the set of attribute identifiers occurring in a set of attributes.

fth FUNCTION is

sorts A B .

op f: A -> B .

endft

fmod MAP[F :: FUNCTION] is

protecting MSET[A]*(sort MSet to AMSet, sort Set to ASet) .

protecting MSET[B]*(sort MSet to BMSet, sort Set to BSet) .

op map : AMSet -> BMSet .

var X : A .

var AMS : AMSet .

eq map(null) = null .

eq map(X AMS) = f(X) map(AMS) .

endfm

We assume an already existing functional module ID of identifiers containing the sorts OId,
CId and AId of object, class and attribute identifiers respectively (all of which are particular
subsorts of the very general sort Value).

fmod ATTRIBUTES is

protecting ID . *** provides OId, CId and AId

sorts Attribute Attributes Value .

subsorts OId CId AId < Value .

op (_:_) : AId Value -> Attribute .

op aid : Attribute -> AId .

var A : AId .

var V : Value .

eq aid(A : V) = A .

protecting MAP[aid]*(sort AMSet to AttMSet, sort ASet to AttSet,

sort BMSet to AIdMSet, sort BSet to AIdSet,

op (__) : AMSet AMSet -> AMSet to (_,_)) .

subsorts Attribute < Attributes < AttSet .

op null : -> Attributes .

var ATT : Attribute .

var ATTS : Attributes .

sct (ATT, ATTS) : Attributes if not aid(ATT) in map(ATTS) .

endfm

The key sort being defined in the above module is the sort Attributes that will be used for the

18



attributes of an object. A data element of that sort is a set of attributes10—where we have now
adopted a notation that separates the different elements in the set by commas, as described
in the renaming for the instantiation MAP[aid] of the MAP module that maps the parameter
operator f to aid—but it must in addition satisfy the condition that no attribute identifier can
ever appear twice; this would for example be violated by the set of attributes

a: 3, b: true, a: 7

This condition is guaranteed by means of three assertions: the subsort declaration Attribute

< Attributes; the operator declaration null : -> Attributes; and the sort constraint.
We are now ready for introducing objects, messages and configurations in the CONFIGURATION

module below. Some attributes of an object can be hidden. Messages belong to a sort Msg;
some very general messages that can be used to query objects and to get responses are also
defined below.

mod CONFIGURATION is

protecting ATTRIBUTES .

sorts Configuration Object Msg .

subsorts Object Msg < Configuration .

op __ : Configuration Configuration -> Configuration

[assoc comm id: null] .

op <_:_|_> : OId CId Attributes -> Object .

op _._replyto_ : OId AId OId -> Msg .

op to_,_._is_ : OId OId AId Value -> Msg .

var C : CId .

var ATTS : Attributes .

var AIDST : AIdSet .

vars A B : OId .

var AID : AId .

var V : Value .

rl (A . AID replyto B) < A : C | AID : V, ATTS > =>

< A : C | AID : V, ATTS > (to B, A . AID is V)

if not(hidden in map(AID : V, ATTS)) .

rl (A . AID replyto B) < A : C | AID : V, hidden : AIDST, ATTS > =>

< A : C | AID : V, hidden : AIDST, ATTS >

(to B, A . AID is V) if not(AID in AIDST) .

endm

The ACI -operator plays a role entirely similar to that played by the operator with the
same syntax used for Petri nets, namely that of structuring the distributed state as a multiset.
Objects with hidden attributes have an attribute of the form (hidden : AIDST) with AIDST

a set of attribute identifiers specifying what attributes are hidden. Two very general kinds of
messages are introduced. One that permits requesting that the value of an attribute identifier
of a given object is sent to another object, and another for honoring such a request. The two
rewrite rules specify the behavior of an object upon receiving a request for the value of one of

10The convenience of making the “union of attributes” operator , into an ACI -operator will become apparent
when we discuss inheritance issues in Section 4.2 and is also illustrated by the rules for CONFIGURATION below.
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its attributes. If the attribute in question does not appear in the object, or is among those
hidden in the object, or is itself the attribute identifier hidden, then nothing happens, i.e., no
rewrite rule applies11; otherwise, the attribute’s value is sent to the requesting object.

The type structure provided by the above signature is still rather unconstrained. For ex-
ample, the definition of a class C of objects introduced in a given object-oriented module (see
Section 4.1) will have the effect of constraining the attribute identifiers of objects in that class to
contain a specific set {a1, . . . , an} of attribute identifiers, and a subclass definition enlarges such
a set. Similarly, the sort Value is typically the supersort of a possibly quite complex collection
of (functional) algebraic data types, whose computations can also be specified by rewrite rules
introduced in appropriate functional submodules of the system, but could in some cases contain
also nonfunctional entities such as objects or entire configurations (see Section 4.6). In a class
definition, the values v over which an attribute a ranges are typically forced to be in a given
subsort of Value. Such tightening of the type structure to exactly reflect the type requirements
of a given object-oriented system is discussed in Section 4.2.

4.1 Object-Oriented Modules

In Maude, concurrent object-oriented systems can be defined by means of object-oriented mod-
ules—introduced by the keyword omod—using a syntax more convenient than that of system
modules because it assumes acquaintance with basic entities such as objects, messages and
configurations, and supports linguistic distinctions appropriate for the object-oriented case;
however, the syntax and semantics of object-oriented modules can be reduced to that of system
modules as explained in Section 4.2.

For example, the ACCNT object-oriented module below specifies the concurrent behavior of
objects in a very simple class Accnt of bank accounts, each having a bal(ance) attribute, which
may receive messages for crediting or debiting the account, or for transferring funds between
two accounts. We assume an already given functional module REAL for real numbers with a
subsort relation NNReal < Real corresponding to the inclusion of the nonnegative reals (i.e.,
reals greater or equal than zero) into the reals, and with an ordering predicate >= .

omod ACCNT is

protecting REAL .

class Accnt | bal: NNReal .

msgs credit debit : OId NNReal -> Msg .

msg transfer_from_to_ : NNReal OId OId -> Msg .

vars A B : OId .

vars M N N’ : NNReal .

rl credit(A,M) < A : Accnt | bal: N > => < A : Accnt | bal: N + M > .

rl debit(A,M) < A : Accnt | bal: N > => < A : Accnt | bal: N - M >

if N >= M .

rl transfer M from A to B

< A : Accnt | bal: N > < B : Accnt | bal: N’ > =>

< A : Accnt | bal: N - M > < B : Accnt | bal: N’ + M >

if N >= M .

endom

11If desired, one could of course specify additional rules to send back an appropriate error message instead.
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Figure 6: Concurrent rewriting of bank accounts.

After the keyword class, the name of the class—in this case Accnt—is given, followed by a “|”
and by a list of pairs of the form a: S separated by commas, where a is an attribute identifier
and S is the sort inside which the values of such an attribute identifier must range in the given
class. In this example, the only attribute of an account is its bal(ance), which is declared
to be a value in NNReal. The three kinds of messages involving accounts are credit, debit,
and transfer messages, whose user definable syntax is introduced by the keyword msg. The
rewrite rules specify in a declarative way the behavior associated with the credit, debit, and
transfer messages.

The multiset structure of the configuration provides the top level distributed structure of
the system and allows concurrent application of the rules. For example, Figure 6 provides a
snapshot in the evolution by concurrent rewriting of a simple configuration of bank accounts.
To simplify the picture, the arithmetic operations required to update balances have already
been performed. However, the reader should bear in mind that the values in the attributes of
an object can also be computed by means of rewrite rules, and this adds yet another important
level of concurrency to a concurrent object-oriented system, which might be called intra-object
concurrency12. Intra-object concurrency seems to be absent from the standard models and
languages for concurrent object-oriented programming, where only inter-object concurrency is
considered.

The system evolves by concurrent rewriting (modulo ACI ) of the configuration using the
rewrite rules of the system, whose lefthand and righthand sides may—as illustrated in the
example above—involve patterns for several objects and messages. Intuitively, we can think
of messages as “travelling” to come into contact with the objects to which they are sent and
then causing “communication events” by application of rewrite rules. In the model, this trav-
elling is accounted for in a very abstract way by the ACI axioms. This abstract level supports
both synchronous and asynchronous communication and provides great freedom and flexibility
to consider a variety of alternative implementations at lower levels. Such abstraction from
implementation details makes possible high level reasoning about concurrent object-oriented
programs and their semantics without having to go down into the specific details of how com-
munication is actually implemented.

Another example of an object-oriented module is a module for FIFO buffers of bounded
size. The set of elements to be stored in the buffer is a parameter; the other parameter is the
size of the buffer which is specified by the (functional) parameter theory

fth NAT* is

protecting NAT .

op k : -> NzNat .

endft

whose models are choices of a nonzero natural number k. The bounded buffer module is as
follows

omod BD-BUFF[X :: TRIV, K :: NAT*] is

protecting LIST[X] .

12The eight queens example in Section 6.1 provides a good illustration of intra-object concurrency.
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class BdBuff | contents: List [hidden] .

msg put_in_ : Elt OId -> Msg .

msg getfrom_replyto_ : OId OId -> Msg .

msg to_elt-in_is_ : OId OId Elt -> Msg .

vars B I : OId .

var E : Elt .

var Q : List .

rl (put E in B) < B : BdBuff | contents: Q > =>

< B : BdBuff | contents: E Q >

if length(Q) < k .

rl (getfrom B replyto I)

< B : BdBuff | contents: Q E > =>

< B : BdBuff | contents: Q >

(to I elt-in B is E) .

endom

The only attribute of a buffer is its contents, which is a list of elements. Since the contents
should not be visible outside the buffer, this attribute has been declared [hidden]; this means
that no other object can send a message requesting the entire contents of the buffer because
messages of that kind are ruled out for hidden attributes. The two types of communication
events that are possible are specified by the two rules of the module. If an arbitrary object I

possesses the name B of a buffer, then it is possible for that object to either send a message
(put E in B) to put the element E in B, or to send a message (getfrom B replyto I) to B,
and the last rule specifies that, when B has a nonempty queue, it will send the first element of
its queue to I by means of the message (to I elt-in B is E).

The two rules in the bounded buffer module provide a simple declarative solution to the
problem of specifying the appropriate behavior of a bounded buffer that receives a put message
when it is full or a get message when it is empty. The implicit effect of the rules is that the
corresponding messages “float” in the configuration until the appropriate conditions for the
buffer hold; if additional error handling is desired, this can be specified by adding more rules.
By contrast, a language like ABCL/1 [104] requires introducing a special “waiting mode” for
objects and a corresponding “select construct” to reactivate the object appropriately after such
waiting. The simplicity of the treatment afforded by rewrite rules in this example exemplifies a
general fact, namely that using rewrite rules there is no need for any explicit “synchronization
code.” This permits avoiding the “inheritance anomaly” [74], a subject further discussed in
Section 4.2.

Specific instances of the bounded buffer module can then be obtained by providing ap-
propriate views for its two parameter theories. For example, a buffer of length 4,096 holding
characters of sort Char that we assume already introduced in a module CHAR can be defined by

make BD-CHAR-BUFF is BD-BUFF[Char,view to NAT is op k to 4096 . endv] endmk

where the first abbreviated view maps Elt to Char, and the second view sets the value of the
bound k to be 4,096 (we assume standard notation for numbers here).
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4.1.1 General Form of the Rules

In Maude, the general form required of rewrite rules used to specify the behavior of an object-
oriented system is as follows:

(†) M1 . . .Mn 〈O1 : C1 |atts1〉 . . . 〈Om : Cm | attsm〉

−→ 〈Oi1 : C ′
i1
| atts ′i1〉 . . . 〈Oik : C ′

ik
| atts ′ik〉

〈Q1 : D1 | atts ′′1〉 . . . 〈Qp : Dp | atts ′′p〉
M ′

1 . . .M
′
q

if C

where k, p, q ≥ 0, the Ms are message expressions, i1, . . . , ik are different numbers among the
original 1, . . . ,m, and C is the rule’s condition. A rule of this kind expresses a communication
event in which n messages and m distinct objects participate. The outcome of such an event
is as follows:

• the messages M1, . . . ,Mn disappear;

• the state and possibly even the class of the objects Oi1 , . . . , Oik may change;

• all other objects Oj vanish;

• new objects Q1, . . . , Qp are created;

• new messages M ′
1, . . . ,M

′
q are sent.

Notice that, since some of the attributes of an object—as well as the parameters of messages—
can contain object names, very complex and dynamically changing patterns of communication
can be achieved by rules of this kind. Notice also that when k = p = q = 0 all the objects
vanish, and no new objects or messages are created.

In addition, all rules must satisfy the property that rewriting of a configuration without
repeated object names leads to a configuration without repeated object names. In other words,
we are only interested in configurations in which there is a set of objects, not a multiset, and we
never want to reach a configuration in which two objects have the same name; however, there
is no problem in allowing configurations in which identical copies of a message have been sent,
perhaps as the outcome of different communication events. A necessary condition required for
this property to hold for a rule is that if in a ground instance of the rewrite rule the instances of
the object names O1, . . . , Om are all different, then the instances of the object names Q1, . . . , Qm
are also all different and different from the Os. Sufficient conditions to guarantee the uniqueness
of objects are discussed in Section 4.4.

Although the above discussion suffices for the moment, more has to be said on the rules
of object-oriented systems. Section 4.2 explains how rules are inherited and gives notational
conventions that simplify the writing of rules. Also, since the above form of rules is very
general, it is important to identify useful commonly occurring subcases that allow much more
efficient implementation; this is the theme of Section 5 in which the Simple Maude sublanguage
is introduced.
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4.1.2 Synchrony, Asynchrony, and Autonomous Objects

Given the general form (†) of rewrite rules representing communication events in an object-
oriented system, it is possible for one, none, or several objects to appear as participants in the
lefthand sides of rules. If only one object appears in the lefthand side, we call such a commu-
nication event asynchronous, whereas if several objects are involved we call it synchronous and
say that the objects in question are forced to synchronize in the event. For example, the rules
for crediting and debiting accounts describe asynchronous communication events, whereas the
rule for transferring funds between two accounts forces them to synchronize.

Note that a particular case allowed by the general form (†) of the rewrite rules is that in
which no messages at all appear in the lefthand side. This gives rise to a rather striking mode
of activity, namely that of objects that—on their own or synchronizing with other objects—
change their state and/or send messages to other objects without any external prompting by
messages. We call objects that can evolve without receiving messages by means of rules of this
type autonomous objects.

Note that objects, whether autonomous or not, can in some cases exhibit a never-ending
pattern of activity. For example, a clock object having a time attribute (say, a natural number)
may update its time by sending a tick message to itself and having a “ticking rule” that
increases the time by one unit and sends another tick message each time a tick message is
received.

tick(C) < C : Clock | time: T > => < C : Clock | time: T + 1 > tick(C) .

Of course, we could define clocks in a different way as autonomous objects by eliminating the
tick message and giving instead a rule

< C : Clock | time: T > => < C : Clock | time: T + 1 > .

The general form (†) of rules is too general for efficient implementation purposes and we
may very well wish to seek additional restrictions under which an efficient implementation
can be attained at the expense of some loss in expressiveness. This topic, and a particular
set of restrictions leading to a sublanguage called Simple Maude having only asynchronous
communication that we have studied jointly with Timothy Winkler in [83], are discussed in
Section 5. The general idea is to consider Maude as a wide-spectrum language such that more
expressive specification and rapid prototyping can be carried out in Maude, but where efficient
execution assumes the restrictions in Simple Maude. One can then adopt a transformational
approach to move from specifications to—possibly inefficient—prototypes, and from prototypes
to efficient code. We are currently investigating techniques of this kind in joint work with
Patrick Lincoln and Timothy Winkler.

4.2 Class Inheritance and Reduction to System Modules

Class inheritance is directly supported by Maude’s order-sorted type structure. A subclass
declaration C < C’ in an object-oriented module omod O endom is just a particular case of a
subsort declaration C < C’13. As we shall see, the effect of a subclass declaration is that the
attributes, messages and rules of all the superclasses as well as the newly defined attributes,

13The reason why classes, although conceptually distinguished from other sorts, have in essence the same
treatment for their subsort relations as any other sorts will become clearer after we discuss the reduction of
object-oriented modules to system modules later in this section.
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messages and rules of the subclass characterize the structure and behavior of the objects in the
subclass.

For example, we can define an object-oriented module CHK-ACCNT of checking accounts
introducing a subclass ChkAccnt of Accnt with a new attribute chk-hist recording the history
of checks cashed in the account.

omod CHK-ACCNT is

extending ACCNT .

dfn ChkHist is LIST[2TUPLE[Nat,NNReal]] .

class ChkAccnt | chk-hist: ChkHist .

subclass ChkAccnt < Accnt .

msg chk_#_amt_ : OId Nat NNReal -> Msg .

var A : OId .

vars M N : NNReal .

var K : Nat .

var H : ChkHist .

rl (chk A # K amt M) < A : ChkAccnt | bal: N, chk-hist: H >

=> < A : ChkAccnt | bal: N - M, chk-hist: H << K ; M >> >

if N >= M .

endom

Adopting the same convention as in OBJ3, the statement

dfn ChkHist is LIST[2TUPLE[Nat,NNReal]] .

is an abbreviation for the statement

protecting LIST[2TUPLE[Nat,NNReal]]*(sort List to ChkHist) .

which imports a data type of lists of 2-tuples (pairs denoted << ; >>) consisting of a natural
number and a nonnegative real, and renames the principal sort List to ChkHist. The checking
history of the account is then represented as a list of such pairs with the first number in the
pair corresponding to the check number, and the second number corresponding to the check’s
amount.

The best way to understand classes and class inheritance in Maude is by making explicit
the full structure of an object-oriented module which is left somewhat implicit in the syntactic
conventions adopted for them. Indeed, although Maude’s object-oriented modules provide a
convenient syntax for programming object-oriented systems, their semantics can be reduced
to that of system modules; in a sense we can regard the special syntax reserved for object-
oriented modules as syntactic sugar. In fact, each object-oriented module omod O endom can be
translated into a corresponding system module mod O# endm whose semantics is by definition
that of the original object-oriented module14.

However, although Maude’s object-oriented modules can in this way be reduced to system
modules, there are of course important conceptual advantages provided by the syntax of object-
oriented modules, because it allows the user to think and express his or her thoughts in object-
oriented terms whenever such a viewpoint seems best suited for the problem at hand. Those
conceptual advantages would be lost if only system modules were provided.

14For the moment, consider the semantics of the module in terms of concurrent rewriting. Section 8 gives a
model-theoretic semantics for Maude modules that makes completely precise their intended semantics.
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In the translation process, the most basic structure shared by all object-oriented modules
is made explicit by the CONFIGURATION system module defined at the beginning of this section.
The translation of a given object-oriented module extends this structure with the classes, mes-
sages and rules introduced by the module. For example, the following system module ACCNT#

is the translation of the ACCNT module introduced earlier. Note that a subsort <Accnt of CId is
introduced. The purpose of this subsort is to range over the class identifiers of the subclasses
of Accnt. For the moment, no such subclasses have been introduced; therefore, at present the
only constant of sort <Accnt is the class identifier15 Accnt.

mod ACCNT# is

extending CONFIGURATION .

protecting REAL .

sorts <Accnt Accnt .

subsort Accnt < Object .

subsort <Accnt < CId .

subsort NNReal < Value .

op Accnt : -> <Accnt .

ops credit,debit : OId NNReal -> Msg .

op transfer_from_to_ : NNReal OId OId -> Msg .

vars A B : OId .

vars M N N’ : NNReal .

var X : <Accnt .

vars ATTS ATTS’ : Attributes .

sct < A : X | bal: N, ATTS > : Accnt .

rl credit(A,M) < A : X | bal: N, ATTS > => < A : X | bal: N + M, ATTS > .

rl debit(A,M) < A : X | bal: N, ATTS > => < A : X | bal: N - M, ATTS >

if N >= M .

rl transfer M from A to B

< A : X | bal: N, ATTS > < B : X | bal: N’, ATTS’ > =>

< A : X | bal: N - M, ATTS > < B : X | bal: N’ + M, ATTS’ >

if N >= M .

endm

Objects of sort Accnt are defined by a sort constraint requiring that its class identifier has
sort <Accnt and that one of its attributes is of the form (bal : N), with N of sort NNReal.
Note that the rewrite rules originally introduced in the ACCNT module have been modified to
make them applicable not only to objects whose class identifier is exactly Accnt, but also to
other objects with class identifiers for subclasses of Accnt, which may in addition have other
attributes, i.e., indeed to all the objects of the class Accnt. In other words, whenever a class
identifier C appears in the lefthand side of a rule declared in an object-oriented module, we
implicitly understand that a variable ranging over <C is meant instead. This way of inherit-
ing rules was pointed out in Section 4.4 of [69]; I am indebted to Timothy Winkler for later

15Notice the slight ambiguity introduced by this notation, since now Accnt denotes two different things: a
sort name in the sort structure of a module, and a data element in a subsort of a data type of class identifiers.
However, this ambiguity is harmless—the context will always make explicit the intended sense—and could in any
case be easily avoided by an appropriate notational convention; for example, by adopting quotes for the identifier
use.
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suggesting to me the elegant sort structure of the sorts <C as a better alternative to a more
cumbersome identifier data type definition.

Note that the convention just described also involves leaving implicit a variable ATTS, ranging
over the additional attributes that may appear in a subclass. In fact, we can further simplify
the notation used in object-oriented modules by adopting, in addition, the convention of not
mentioning in a given rule those attributes of an object that are not relevant for that rule. To
explain this additional convention, let a : v denote the attribute-value pairs a1 : v1, . . . , an : vn,
where the a are the attribute identifiers of a given class C having s as the corresponding sorts
of values prescribed for those attributes. In this context, the vi can be either terms (with or
without variables) or variables of sort si.

The general convention is that in object-oriented modules we allow rules where the attributes
appearing in the lefthand and righthand side patterns for an object O mentioned in the rule
need not exhaust all the object’s attributes, but can instead be in any two arbitrary subsets of
the object’s attributes16. We can picture this as follows

. . . 〈O : C | al : vl, ab : vb〉 . . .−→ . . . 〈O : C | ab : vb′, ar : vr〉 . . .

where al are the attributes appearing only on the left, ab are the attributes appearing on both
sides, and ar are the attributes appearing only on the right. What this abbreviates in the
corresponding reduction to a system module notation is a rule of the form

. . . 〈O : X | al : vl, ab : vb, ar : x, atts〉 . . .−→ . . . 〈O : X | al : vl, ab : vb′, ar : vr, atts〉 . . .

where X is a variable of sort <C, the x are new “don’t care” variables and atts matches
the remaining attribute-value pairs. The attributes mentioned only on the left are preserved
unchanged, the original values of attributes mentioned only on the right don’t matter, and all
attributes not explicitly mentioned are left unchanged17. We can illustrate this convention with
a simple example, namely a rule for a new type of message requesting the highest check number
already cashed in a checking account

(highest-chk# A reply to B) < A : ChkAccnt | chk-hist: H >

=> < A : ChkAccnt | chk-hist: H >

(to B highest-chk# A is max.1st(H))

where max.1st is an appropriately defined function that computes the highest number among
those in the first components of pairs in the list. Note that the bal attribute is not mentioned
at all, although of course it must be present in all objects in a subclass of Accnt. The rewrite
rule for which the above rule is just a shorthand notation is

(highest-chk# A reply to B) < A : X | bal: M, chk-hist: H, ATTS >

=> < A : X | bal: M, chk-hist: H, ATTS >

(to B highest-chk# A is max.1st(H))

16We assume that, as it is usually but not exclusively the case, the class of the object O does not change due
to the rewrite; however, it should be possible to extend the present convention to some cases of interest in which
the class does change.

17This notational convention generalizes a similar convention in [69] and has been developed in joint work with
Timothy Winkler [83].
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where X is a variable of sort <ChkAccnt, M is a variable of sort NNReal, H is a variable of sort
ChkHist, and ATTS is a variable of sort Attributes.

Note that, since the CONFIGURATION module has been imported, besides the messages for
crediting and debiting accounts, and for transferring funds between accounts, an account A with
balance N can also receive messages of the form (bal . A replyto O) and will then respond to
O by sending the message (to O bal . A is N). Since this capability is built in for arbitrary
objects—unless the requested attribute has been declared hidden—it is never mentioned in the
definition of an object-oriented module.

We are now ready to consider the full structure of subclasses. We can illustrate that structure
by means of the reduction of the CHK-ACCNT module to its system module form.

mod CHK-ACCNT# is

extending ACCNT# .

sorts <ChkAccnt ChkAccnt .

subsort ChkAccnt < Accnt .

subsort <ChkAccnt < <Accnt .

dfn ChkHist is LIST[2TUPLE[Nat,NNReal]] .

subsort ChkHist < Value .

op ChkAccnt : -> <ChkAccnt .

op chk_#_amt_ : OId Nat NNReal -> Msg .

var A : OId .

var X : <ChkAccnt .

var ATTS : Attributes .

vars M N : NNReal .

var K : Nat .

var H : ChkHist .

sct < A : X | bal: N, chk-hist: H, ATTS > : ChkAccnt .

rl (chk A # K amt M) < A : X | bal: N, chk-hist: H, ATTS >

=> < A : X | bal: N - M, chk-hist: H << K ; M >>, ATTS >

if N >= M .

endm

Note that—in addition to a subsort declaration ChkAccnt < Accnt stating that checking ac-
counts are accounts, i.e., the subclass relation—a subsort <ChkAccnt < <Accnt has been de-
clared, having a class identifier ChkAccnt (introduced in a later operator declaration) in that
subsort; i.e., the sort hierarchy for class identifiers mimics the class hierarchy, and has a class
identifier constant (with the same name as that of the class) for each class in the corresponding
point of the hierarchy.

An object in the class ChkAccnt must satisfy the sort constraint that its class identifier has
sort <ChkAccnt and that it has at least two attributes, one called bal with a NNReal value,
and another called chk-hist with a ChkHist value. The rewrite rule given in the original
CHK-ACCNT module is interpreted here—according to the conventions already explained—in a
form that can be inherited by subclasses of ChkAccnt that could be defined later. ChkAccnt

itself inherits the rewrite rules for crediting and debiting accounts, and for transferring funds
between accounts that had been defined for Accnt, and also the rules for requesting the value
of its attributes which had been defined in the CONFIGURATION module.

28



In this example, there is only one class immediately above ChkAccnt, namely, Accnt. In
general, however, a class C may be defined as a subclass of several classes D1, . . . , Dk, i.e.,
multiple inheritance is supported. Each class C has associated with it a family of pairs a : s
each consisting of a different attribute identifier and a sort for its values. In case hidden
attributes have been declared, we also associate with the class C the subset ai1 , . . . , aij of those
attribute identifiers that are hidden. The objects of a class C not having any hidden attributes
are then defined by a sort constraint of the form

〈O : X | a : Y , ATTS 〉 : C

where the variable O has sort OId, X has sort <C, the variables Y have sorts s, and the variable
ATTS has sort Attributes. If hidden attributes ai1 , . . . , aij have been declared, the above sort
constraint must be made conditional on having all the hidden attribute identifiers ai1 , . . . , aij
inside the set denoted by the variable Yq, where aq = hidden. For example, the sort constraint
for the class BdBuff of bounded buffers in the parameterized module BD-BUFF, which has its
contents attribute hidden is

sct < O : X | contents: Q, hidden: S, ATTS > : BdBuff if (contents in S) .

with O of sort OId, X of sort <BdBuff, Q of sort List, and ATTS of sort Attributes.
If an attribute and its sort have already been declared in a superclass, they should not

be declared again in the subclass. Indeed, all such attributes—whether hidden or not—are
inherited , and if they were hidden in a superclass they remain hidden in the subclass. In
the case of multiple inheritance, the only requirement that is made is that if an attribute a
occurs in two different superclasses, then the sort attributed to it in each of those superclasses
is the same18. In summary, a class inherits all the attributes, messages, and rules from all its
superclasses. An object in the subclass behaves exactly as any object in any of the superclasses,
but it may exhibit additional behavior due to the introduction of new attributes, messages and
rules in the subclass.

One caveat: in the case of multiple inheritance, it is in principle possible for a specific kind
of message to have been introduced in two different superclasses, with quite different rules for
handling such messages in each of them. As already mentioned, if a new class is defined as a
subclass of each of those two superclasses, it will inherit the rules from both of them. In some
cases this may be unproblematic, in the sense that everything behaves as expected because
either the rules for one superclass specify the same behavior for that message as the rules
of the other, or each set of rules specifies behavior for mutually exclusive circumstances, or,
more generally, the two sets of rules agree on some cases and do not overlap on the remaining
cases. The problem may arise when genuinely different behavior can result in the same situation
depending on whether the rule applied belongs to one superclass or another, since this difference
in behavior may be unintended. What this could probably indicate is a wrong use of the class
inheritance mechanism on the part of the user. The right solution in such a situation may be
to use module inheritance mechanisms instead (see Section 4.3) to obtain the desired behavior.
In any case, the system should always warn the user whenever a potential source of unintended
behavior arises due to the inheritance of messages from two unrelated superclasses.

18This condition could be relaxed to just requiring that the sorts in question have some common subsorts, and
we could similarly allow that in a subclass the sort of an inherited attribute is restricted to a subsort. However,
although somewhat more expressive, these relaxations would introduce some complications in the inheritance of
rewrite rules. To simplify the exposition we do not treat here this more general case and restrict ourselves to the
simpler sort assumptions just explained.
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Rule inheritance in Maude solves the so-called inheritance anomaly [67, 90, 38] blocking the
combination of inheritance and concurrency in object-oriented languages. The anomaly has to
do with the serious difficulties often found for reusing in a subclass the code that handles the
messages received by an object of a given class and performs appropriate actions. Typically,
if a new kind of message is later introduced for a subclass, it may not be possible to reuse
the original code as given so that the new messages can also be handled. The simplicity of the
solution provided by Maude, which does not require any explicit code for synchronization, is due
to its declarative character and to the very fine granularity of its code, where the basic program
units are rewrite rules. The code for a class is therefore an unstructured set of rewrite rules,
with each rule acting independently of the others. For a subclass, this set of rules is typically
enlarged by adding some new rules, but this in no way alters the previously given rules which
remain exactly as before and are inherited from the superclass or superclasses. There is no
room here for a more detailed discussion of this solution, which can be found in [74], except to
mention that cases where the rules of a superclass cannot be used as originally given but must
be modified in order to obtain a somewhat different behavior can be handled with similar ease
using the module inheritance techniques described in Section 4.3.

4.3 Module Inheritance

There are indeed cases in which one does actually want to modify the original code to adapt
it to a somewhat different situation. The above class and rule inheritance mechanisms will
typically not help in such cases. Rather than doing violence to class inheritance and rule
inheritance in order to force upon them the job of modifying code, the solution adopted in
Maude is to insist on keeping what can be described as an order-sorted semantics for class
inheritance, and then to provide different module inheritance mechanisms to do the job of code
modification. An example already discussed in the functional case is the modification of the
LIST module to obtain the MSET module, and other examples illustrating module inheritance by
importation, parameterization, renaming or their combination have already been given as well.
This distinction between the level of classes (more generally sorts) and the level of modules was
already clearly made in the FOOPS language (besides the original paper [49], see also [54] for
a very good discussion of inheritance issues and of the class-module distinction in the context
of FOOPS), and indeed goes back to the distinction between sorts and modules in OBJ [53].

In Maude, code in modules can be modified or adapted for new purposes by means of a
variety of module operations—and combinations of several such operations in module expres-
sions—whose overall effect is to provide a very flexible style of software reuse that can be
summarized under the name of module inheritance. Module operations of this kind include:

1. importing a module in a protecting, extending, or using way;

2. adding new equations or rules to an imported module;

3. renaming some of the sorts or operations of a module;

4. instantiating a parameterized module by means of views;

5. adding modules to form their union;

6. redefining an operator so that its syntax and sort requirements are kept intact, but its
semantics can be changed by discarding previously given rules or equations involving the
operator so that new rules or equations can be then given in their place;
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7. removing an operator or a sort altogether along with the rules or axioms that depend on
it so that it can be either discarded or replaced by another operator or sort with different
syntax and semantics.

The operations 1–5 are all exactly as in OBJ3 [53]. The operations 6–7 are new and permit
giving a simple solution to the thorny problem of message (or method) specialization without
in any way complicating the class inheritance relation, which remains based on an order-sorted
semantics. The need for message specialization, i.e., for providing a somewhat different behavior
for a message already defined in an old class when received by objects in a new class arises
frequently in practice. For example, a bank may at some point want to introduce a new kind
of checking accounts in which there is a charge of 50 cents for each cashed check, and then the
updating of an account’s balance upon receipt of a message of type (chk A # K amt M) has
to be modified by the extra 50 cents charge. The problem is that if the new class of checking
accounts with checking charges is defined as a subclass of the old, then the nice property of rule
inheritance derived from subclass inheritance as defined in Section 4.2 is completely destroyed,
because the rules for the superclass should not be inherited in the new subclass and would in
fact produce the wrong behavior.

The solution given to this problem in Maude is to understand this as a module inheritance
problem, and to carefully distinguish it from class inheritance. In this case, it is the modules
in which the classes are defined that stand in an inheritance relation, not the classes them-
selves. The redefine operation, with keyword rdfn, provides the appropriate way of modifying
and inheriting the CHK-ACCNT module in the definition of the CHK(0/.50)ACCNT module that
introduces the new class of checking accounts with charges and also keeps around the previous
class of checking accounts without charges.

omod CHK(0/.50)ACCNT is

extending CHK-ACCNT .

using CHK-ACCNT*(class ChkAccnt to Chk.50Accnt, rdfn(msg chk_#_amt_)) .

var A : OId .

vars M N : NNReal .

var K : Nat .

var H : ChkHist .

rl (chk A # K amt M) < A : Chk.50Accnt | bal: N, chk-hist: H >

=> < A : Chk.50Accnt | bal: N - (M + .50), chk-hist: H << K ; M >> >

if N >= (M + .50) .

endom

What the module expression

using CHK-ACCNT*(class ChkAccnt to Chk.50Accnt, rdfn(msg chk_#_amt_)) .

indicates is that a new copy of the CHK-ACCNT module is created and imported (but without
copying its submodules, for example ACCOUNT, which are shared) in such a way that the class
ChkAccnt is renamed to Chk.50Accnt and the message (msg chk # amt ) is redefined , i.e., its
syntax and sort information are maintained, but the rule defining the behavior of the message is
discarded. The new behavior is then introduced in the new rule given at the end of the module.
Space limitations preclude giving a detailed account of the rdfn and rmv (remove) commands;
this will be done elsewhere. However, we can give a fully detailed account of the use of the
rdfn command in the above example by presenting a corresponding system module reduction:
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mod CHK(0/.50)ACCNT# is

extending CHK-ACCNT# .

sorts Chk.50Accnt <Chk.50Accnt .

subsort Chk.50Accnt < Accnt .

subsort <Chk.50Accnt < <Accnt .

op Chk.50Accnt : -> <Chk.50Accnt .

var A : OId .

var X : <Chk.50Accnt .

var ATTS : Attributes .

vars M N : NNReal .

var K : Nat .

var H : ChkHist .

sct < A : X | bal: N, chk-hist: H, ATTS > : Chk.50Accnt .

rl (chk A # K amt M) < A : X | bal: N, chk-hist: H, ATTS >

=> < A : X | bal: N - (M + .50), chk-hist: H << K ; M >>, ATTS >

if N >= (M + .50) .

endm

The essential point is that, although both ChkAccnt and Chk.50Accnt are subclasses of
Accnt, the class Chk.50Accnt is not a subclass of ChkAccnt. Therefore, in the context of the new
module, the old rule for messages of the form (chk A # K amt M) and the new rule charging
50 cents coexist without interference, because they apply to different objects in two different
classes that are incomparable in the class hierarchy. By contrast, the rules for crediting and
debiting accounts and for transferring funds between accounts apply, thanks to rule inheritance,
to all classes of accounts, precisely because all of them are subclasses of Accnt.

The distinction between class inheritance and module inheritance can be illustrated in this
example by means of the diagrams in Figure 7, where the diagram on the left expresses the class
inheritance relation between the three classes involved, and the diagram on the right expresses
the module inheritance relation between the modules used to define those classes. Note that the
arrows in the subclass relation have a very specific meaning, namely that of a subsort relation,
whereas the inheritance arrows between modules can have a much more flexible—yet precise—
variety of meanings, because of the variety of module operations that can be involved. In this
case, the solid arrows correspond to inheritance by extending importation, whereas the dotted
arrow involves sort renaming, message redefinition, and a using importation; note also that
the module CHK-ACCNT is inherited in two different ways by the module CHK(0/.50)ACCNT. In
this way we can have great flexibility of code reuse and a precise and satisfactory semantics
for subclasses that respects the intuitions of what it means to classify objects. By contrast, in
approaches that conflate these two equally laudable goals, flexibility of code reuse is achieved
at the heavy price of emptying the notion of class of most of its conceptual value.

To illustrate the many possibilities for module inheritance that Maude’s module operations
permit we show below a different, and in fact more general, way of obtaining the two checking
account classes in our example. The idea is to define a parameterized module for checking
accounts with a checking charge, where the amount of the charge is a parameter, and then to
inherit it by two different instantiations to obtain the two desired classes.

fth NNREAL* is

protecting REAL .
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Figure 7: Class inheritance vs. module inheritance for bank accounts.

op c : -> NNReal .

endft

omod CHRG-CHK-ACCNT[C :: NNREAL*] is

extending ACCNT .

dfn ChkHist is LIST[2TUPLE[Nat,NNReal]] .

class ChkAccnt | chk-hist: ChkHist .

subclass ChkAccnt < Accnt .

msg chk_#_amt_ : OId Nat NNReal -> Msg .

var A : OId .

vars M N : NNReal .

var K : Nat .

var H : ChkHist .

rl (chk A # K amt M) < A : ChkAccnt | bal: N, chk-hist: H >

=> < A : ChkAccnt | bal: N - (M + c), chk-hist: H << K ; M >> >

if N >= (M + c) .

endom

then we can define the module with our two desired classes as follows,

omod CHK(0/.50)ACCNT is

extending CHRG-CHK-ACCNT[view to REAL is op c to 0 . endv] .

extending CHRG-CHK-ACCNT[view to REAL is op c to .50 . endv]*(

sort ChkAccnt to Chk.50Accnt) .

endom

4.4 Object Creation and Deletion

In Maude, object creation and deletion can be treated very simply. In fact, a variety of ap-
proaches are possible to ensure the key property required, namely that, under appropriate
initial conditions, we never reach a configuration in which two different objects have the same
name. One possibility is to make object generation indirect , in the sense of being mediated by
messages of one of the two types below

new(C | ATTS) (new C | ATTS ack A req R)

where the first type of message requests that a new object of class C with attributes ATTS is
created, and the second makes the same request but also requires sending an acknowledgement
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to object A with the name of the new object corresponding to its request called R. What we
must assume is that in the initial configuration we only have a collection of different objects
in class ProtoObject and having a single attribute counter whose value is a natural number.
Then the rules for creating objects are

new(C | ATTS) < O : ProtoObject | counter: N >

=> < O : ProtoObject | counter: N + 1 > < O.N : C | ATTS >

(new C | ATTS ack A req R) < O : ProtoObject | counter: N >

=> < O : ProtoObject | counter: N + 1 > < O.N : C | ATTS >

(to A : R is O.N)

This scheme will of course guarantee that all the names of created objects are different. Since
there is in principle no bound on the number of proto-objects in the initial configuration, this
scheme can be highly distributed so that object creation does not become a bottleneck. For
example, in a multicomputer implementation it would be natural to provide one proto-object
per processor in a built-in fashion.

The above scheme for indirect object creation can be slightly modified in order to force
some of the attributes of an object to always have fixed initial values (this can be required by
means of an initially declaration [74] fixing the initial value of an attribute). A more flexible
but similar idea is to allow any initial value for an attribute, but to provide a default value
when the value is not explicitly mentioned in the new message; such default values could either
be declared explicitly or, as in FOOPS [49], could be automatically computed by the system
following some conventions. What is required to support both default and fixed initial attribute
values is to make the state of proto-objects richer—so that they contain the appropriate default
and initially information for the relevant attributes in each class—and to make the above
rules for new messages conditional to the outcome of checking such information.

A similarly indirect approach to object deletion is to use messages of one of the two types
below

delete(A) (delete A ack B)

with corresponding rules

delete(A) < A : X | ATTS > => null

(delete A ack B) < A : X | ATTS > => (to B : A deleted)

We can however allow direct generation or deletion of objects in a variety of very general
circumstances, including situations in which both direct and indirect schemes are used without
conflicting with each other. For example, a very easy scheme for direct object generation that
is compatible with the indirect scheme just presented is to assume that one of the objects, call
it O, matched by the lefthand side of a rule of the form (†) and surviving in the righthand side
of the rule in question has a counter, say with value N . Then, the p new objects created by the
righthand side are given names O.N.1, . . . , O.N.p, and O’s counter is increased. An example
of direct object deletion where objects garbage-collect themselves is given in the eight queens
example of Section 6.1.

In summary, there are many ways by which the uniqueness of objects can always be guaran-
teed in an object-oriented system so that the requirement that the rules preserve this uniqueness
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is satisfied. In addition, object creation can be realized in a highly distributed way. The par-
ticular choice of mechanisms and the corresponding choice of data representations for object
identifiers may depend on particular characteristics of the given application.

4.5 Broadcasting Messages

Besides the communication that objects can perform among themselves, it is often very desirable
to provide more global types of communication so that, for example, all the objects in a given
class receive a certain message. In [69] a scheme for such broadcast communication was proposed
based on the idea of having a “metaobject” for each class containing the list of all the current
objects in the class. This metaobject could broadcast a message to all such objects when
appropriate. However, for massively parallel computations involving large numbers of objects
distributed across many processors this scheme would be undesirable, although it could be
improved by splitting the class metaobject into a hierarchy of metaobjects.

A better approach, developed in joint work with Timothy Winkler and to be further ex-
panded elsewhere, will be briefly sketched below. The key idea is to absorb broadcast com-
munication within the structural axioms E of the rewrite theory in question. This means that
a broadcast can be viewed at this abstract level as happening “by magic” in the sense that
structural axioms are supported by what might be called an “invisible infrastructure” which of
course in practice will require some concrete architectural implementation.

Since broadcasting is a global operation, it should be understood as having an entire con-
figuration as one of its arguments, for example the configuration making up the global state
of all objects and messages at a particular stage of a concurrent computation. The other two
arguments can for example be a message and a class identifier C indicating the class to which
the message should be broadcast. Since the message’s addressee is not unique, it is best to
assume a generic address denoted by the constant “*” that can later be replaced by the real
address, so that our message will initially be of the form M(*). In Maude, the keyword ax is
reserved for equations that are part of the structural axioms E of the rewrite theory specified
in a module. Here are the structural axioms for broadcast communication:

vars S S’ : Configuration .

var MSG : Msg .

ax broadcast(M(*),C,S S’) = broadcast(M(*),C,S) broadcast(M(*),C,S’) .

ax broadcast(M(*),C,MSG) = MSG .

ax broadcast(M(*),C,< O : D | ATTS >) = if (D : <C)

then (subst * by O in M(*)) < O : D | ATTS >

else < O : D | ATTS > fi .

ax broadcast(M(*),C,null) = null .

where the predicate (D : <C) is a special instance of the notion of a sort predicate t : s, testing
whether a given term t has sort s, that is built-in but can be equationally axiomatized using
“retract operators” [51]. The term (subst * by O in M(*)) corresponds to the application
of a substitution operator whose result is M(O), and can be equationally axiomatized for each
type of message.

The effect of the above structural axioms is that the broadcast will travel as if by magic
across the entire configuration, but its only effect will be that a message is created for each
object in the class C. This treatment of broadcasting shows the advantage of rewriting logic’s
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great freedom of choice for the appropriate structural axioms of a rewrite theory, which makes
possible giving an account of broadcast in purely logical terms. By way of related work, Andreoli
and Pareschi [9] consider broadcast in the context of their linear logic based language LO.

4.6 Reflection

The idea of a broadcast suggests the presence of a “master” or “controller” on whose behalf the
broadcast is performed. Since such a master has access to an entire configuration, it is natural
to conceptualize it as a type of “metaobject” having a configuration as one of its attributes,
say

< M : Master | configuration: S, ATTS >

that can then initiate a broadcast for the configuration S under appropriate conditions specified
by rewrite rules for the class Master. Rewrite rules for this class may also specify many other
actions, such as those involved in detecting global termination, in reacting to various types of
feedback from objects in the configuration, or in performing communication with the “outside
world.” In particular, actions taken by “reflecting” on the global state of the computation seem
naturally expressible in this way. All this means that, in general, we should not think of the sort
Value for the values of attributes as involving only data in sorts of functional modules, but as
being capable of involving at times entire configurations, with a subsort relation Configuration

< Value.
This leads to a more structured view of the concurrent state of an object-oriented system,

not as a single configuration, but instead as a possibly quite complex ensemble of configurations
and objects that can contain each other like Russian dolls. This view seems closely related the
notion of “group objects” proposed by Watari et al. [102], and to Matsuoka et al.’s notion of
“hybrid group reflective architecture” [66]. In this way, reflection can be used to better exploit
resources at different levels and to respond dynamically to changes in a concurrent computation.
Since not one but many “metaobjects” can exist and can even contain other metaobjects, this
permits a very distributed style of reflection and allows division of labor, so that higher level
metaobjects may only have to deal with simpler and more abstract representations of the
distributed state that they control, perhaps indirectly, at lower levels.

For example, besides a master object controlling an entire parallel execution, there can be
a group object associated with each processor of the parallel machine in which the execution
is taking place. Under the control of such a group object there can be a set of ordinary
objects for which the group object provides services such as scheduling, sending and delivering
messages to and from objects in other processors, etc. For some purposes, including for example
broadcasting, the master metaobject may only have to communicate with these group objects,
without having to directly involve the objects contained inside each group object. In general,
this style of concurrent reflection may involve messages going up and down an entire hierarchy
of metaobjects. We can therefore refine more and more our previous view of the master object
in the way sketched below

< M : Master | configuration: (< G1: Group | configuration: S1, ATTS1 > S

< Gn: Group | configuration: Sn, ATTSn >), ATTS >

One way in which rewriting logic seems promising in the context of concurrent object-
oriented reflection is that it could provide a simple and uniform semantic basis to deal with
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Actors OOP

Script Class declaration
Actor Object
Actor Machine Object State
Task Message
Acquaintances Attributes

Figure 8: A dictionary for Actors.

metaobjects. It appears that they could be dealt with in exactly the same way as ordinary
objects, with appropriate rewrite rules specifying the behavior of different metaobject classes
such as Master, Group, etc.

A related topic—discussed also in [69]—is that entities such as classes, modules, etc. can
also be represented as metaobjects. This can lead to very flexible and adaptable language
implementations using the metaobject protocol methodology [58], a methodology that has been
adapted to the concurrent case by Matsuoka et al. in [66].

Finding a simple and rigorous semantics for concurrent object-oriented reflection is consid-
ered an important open problem, because this area is undergoing rapid development and seems
very promising in order to better control the execution of concurrent systems so as to use the
computational resources in an optimal way. We refer the reader to [99] for a recent collection of
papers on reflection, including object-oriented approaches. In future work we hope to further
explore the use of rewriting logic in reflection.

4.7 Actors

Actors [3, 2] provide a flexible and attractive style of concurrent object-oriented programming.
However, their mathematical structure, although already described and studied by previous
researchers [28, 2], has remained somewhat hard to understand and, as a consequence, the use
of formal methods to reason about actor systems has remained limited. The present logical
theory of concurrent objects sheds new light on the mathematical structure of actors and
provides a new formal basis for the study of this important approach.

Specifically, the general logical theory of concurrent objects presented in this paper directly
yields as a special case an entirely declarative approach to the theory and programming practice
of actors. The specialization of our model to that of actors can be obtained by first clarifying
terminological issues and then studying their definition by Agha and Hewitt [3].

Actor theory has a terminology of its own which, to make things clearer, we will attempt
to relate to the more standard terminology employed in object-oriented programming. To the
best of our understanding, the table in Figure 8 provides a basic terminological correspondence
of this kind.

The essential idea about actors is clearly summarized in the words of Agha and Hewitt [3]
as follows:

“An actor is a computational agent which carries out its actions in response to
processing a communication. The actions it may perform are:

• Send communications to itself or to other actors.

• Create more actors.
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• Specify the replacement behavior.”

The “replacement behavior” is yet another term to describe the new “actor machine” produced
after processing the communication, i.e., the new state of the actor.

We can now put all this information together and simply conclude that a logical axiomati-
zation in rewriting logic of an actor system—which is of course at the same time an executable
specification of such a system in Maude—exactly corresponds to the special case of a concurrent
object-oriented system in our sense whose rewrite rules instead of being of the general form (†)
are of the special asynchronous and unconditional form

M 〈O : C | atts〉

−→ 〈O : C ′ | atts ′〉
〈Q1 : D1 | atts ′′1〉 . . . 〈Qp : Dp | atts ′′p〉
M ′

1 . . .M
′
q

Therefore, the present theory is considerably more general than that of actors. In com-
parison with existing accounts about actors [3, 2] it seems also fair to say that our theory is
more abstract so that some of those accounts might be now regarded as high level architectural
descriptions of particular ways in which the special case of the abstract model corresponding to
actors can be implemented. In particular, the all-important mail system used in those accounts
to buffer communication is the implementation counterpart of what in our model is abstractly
achieved by the ACI axioms.

Another nice feature of our approach is that it gives a truly concurrent formulation—in
terms of concurrent ACI-rewriting—of actor computations, which seems most natural given
their character. By contrast, Agha [2] presents an interleaving model of sequentialized transi-
tions. Agha is keenly aware of the inadequacy of reducing the essence of true concurrency to
nondeterminism and therefore states (pg. 82) that the correspondence between his interleaving
model and the truly concurrent computation of actors is “representationalistic, not metaphysi-
cal .”

Yet another contribution of rewriting logic is its simple and unproblematic support for class
inheritance in a concurrent context. It seems to be a generally accepted folklore opinion that it
is very difficult to support both concurrency and class inheritance in actor languages; in fact,
a number of actor languages do not support inheritance for this reason, and the whole matter
is considered an open problem for which only partial or tentative solutions seem to have been
suggested so far. Maude’s simple solution to this “inheritance anomaly” [67, 90] was already
mentioned in Section 4.2 and is discussed in full detail in [74].

It is also important to point out that, in our account, the way in which an object changes
its state as a consequence of receiving a message may involve many concurrent rewritings of
its attributes, i.e., objects exhibit intra-object concurrency; by contrast, typical actor languages
treat change of object state as a sequential computation, and formal models of concurrency for
actors such as that in [2] only deal with message-passing inter-object concurrency. In this sense,
the concurrent rewriting model is considerably more fine grained, and when implemented on
an appropriate architecture such as the RRM (see Section 5.3) directly supports the massive
exploitation of both inter-object parallelism (typically by interprocessor communication) and
intra-object parallelism (typically by SIMD data parallelism). A good example exhibiting these
two types of parallelism is the search for solutions to the eight queens problem in Section 6.1.
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Figure 9: Unification of concurrency models.

There is one additional aspect important for actor systems and in general for concurrent
systems, namely fairness. For actors, this takes the form of requiring guarantee of mail delivery .
The issue of fairness for term rewriting has already received attention by several authors,
including Francez and Porat [92] and Tison [100]. Indeed, it is possible to state precisely
a variety of fairness conditions for concurrent rewriting; in particular, one could express the
guarantee of mail delivery for the special case of actors in these terms. However, a detailed
treatment of this topic is outside the scope of this paper and will have to wait for a future
occasion.

4.8 Generality of the Concurrent Rewriting Model

Concurrent rewriting is a very general model of concurrency from which many other models—
besides those discussed in this paper—can be obtained by specialization. Space limitations pre-
clude a detailed discussion, for which we refer the reader to [72]. However, we can summarize
such specializations using Figure 9, where CR stands for concurrent rewriting, the arrows indi-
cate specializations, and the subscripts ∅, AI, and ACI stand for syntactic rewriting, rewriting
modulo associativity and identity, and ACI -rewriting respectively. Within syntactic rewriting
we have labelled transition systems, which are used in interleaving approaches to concurrency;
functional programming (in particular Maude’s functional modules) corresponds to the case of
confluent19 rules, and includes the λ-calculus (see Section 5.2) and the Herbrand-Gödel-Kleene
theory of recursive functions. Rewriting modulo AI yields Post systems and related grammar
formalisms, including Turing machines. Besides the general treatment by ACI -rewriting of
concurrent object-oriented programming that contains Actors as a special case [3], rewriting
modulo ACI includes Petri nets [93], the Gamma language of Banâtre and Le Mètayer [13],
and Berry and Boudol’s chemical abstract machine [15] (which itself specializes to CCS [84];
see [15]), as well as Unity’s model of computation [26]; another special case is Engelfriet et al.’s
POPs and POTs which are higher level Petri nets for actors [36, 35].

The ACI case is quite important, since it contains as special subcases a good number of con-
currency models that have already been studied. In fact, the associativity and commutativity
of the axioms appear in some of those models as “fundamental laws of concurrency.” However,
from the perspective of this work the ACI case—while being important and useful—does not
have a monopoly on the concurrency business. Indeed, “fundamental laws of concurrency”
expressing associativity and commutativity are only valid in this particular case. They are
for example meaningless for the tree-structured case of functional programming. The point is
that the laws satisfied by a concurrent system cannot be determined a priori. They essentially
depend on the actual distributed structure of the system, which is its algebraic structure.

More importantly—and this is a key advantage of Maude’s object-oriented modules—an
ACI operator, even when present, does account only for some of the concurrency of a system
when other operators not having that property are also present. For example, an object may
communicate with other objects in an ACI distributed state, but its attributes can also have a
distributed structure—typically a tree structure—so that their updating can be performed in

19Although not reflected in the picture, rules confluent modulo equations E are also functional.
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parallel. Concurrent rewriting does not discriminate between one level of parallelism (ACI com-
munication between objects) and another (parallel attribute updating); instead, it integrates
both levels within the same formal framework supporting concurrency at all levels.

Of course, the general claim that a system’s distributed structure coincides with its algebraic
structure applies also here. The ACI axioms lead to a state structure that is distributed as
a commutative word, multiset, or bag, all these being different expressions for the same idea.
This is a very fluid and flexible structure which, in particular, is an ideal abstract structure
for communication; as already pointed out, this may only account for the top-level structure
of a system, which in the framework of rewriting logic is seamlessly integrated with any other
distributed structures at lower levels.

5 Simple Maude

This section summarizes joint work with Timothy Winkler [83] on the design of a sublanguage
of Maude called Simple Maude chosen with the purpose of being implementable with reasonable
efficiency on a wide variety of parallel machines. The present summary will focus primarily on
Simple Maude and will touch more briefly on implementation issues and on the use of Maude
as glue to parallelize conventional programs and to put together heterogeneous systems; more
details are given in the joint paper [83].

5.1 Maude as a Wide Spectrum Language

Although concurrent rewriting is a general and flexible model of concurrency and can certainly
be used to reason formally about concurrent systems at a high level of abstraction, it would not
be reasonable to implement this model for programming purposes in its fullest generality. This
is due to the fact that, in its most general form, rewriting can take place modulo an arbitrary
equational theory E which could be undecidable. Of course, a minimum practical requirement
for E is the existence of an algorithm for finding all the matches modulo E for a given rule and
term; however, for some axioms E, this process, even if it is available, can be quite inefficient, so
that its implementation should be considered a theorem proving matter, or at best something to
be supported by an implementation for uses such as rapid prototyping and execution of specifi-
cations, but probably should not be made part of a programming language implementation. A
good example is general AC -rewriting, which can be quite costly for complicated lefthand side
patterns; this can be acceptable for rapid prototyping purposes—in fact, the OBJ3 interpreter
[45, 53] supports this as well as rewriting modulo other similar sets of axioms E—but seems to
us impractical for programming purposes even if a parallel implementation is considered20.

In this regard, it is useful to adopt a transformational point of view. For specification pur-
poses we can allow the full generality of the concurrent rewriting model, whereas for program-
ming purposes we should study subcases that can be efficiently implemented; executable speci-
fications hold a middle ground in which we can be considerably more tolerant of inefficiencies in
exchange for a greater expressiveness. The idea is then to develop program transformation tech-
niques that are semantics-preserving and move us from specifications to programs, and from
less efficient programs—perhaps just executable specifications—to more efficient ones. This
transformational approach fits in very nicely with the design of Maude which, as with OBJ3 in

20Of course, even in a case like this there can be different opinions. Banâtre, Coutant, and Le Mètayer have
in fact considered parallel machine implementations of AC -rewriting for their Gamma language [12].
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Figure 10: Maude and Simple Maude as subsets of Rewriting Logic.

the functional case, can be regarded as a wide spectrum language that integrates both specifica-
tion and computation. Indeed, Maude theories, whether functional, system, or object-oriented,
are used for specification purposes—for example, to specify the semantic requirements of the
parameters of a parameterized module—and therefore need not be executable21. For Maude
modules, which are of course executable, a distinction should be made between use for rapid
prototyping and executable specification, and use for programming, with more stringent re-
strictions imposed in the latter case.

This suggests considering two subsets of rewriting logic. The first subset gives rise to
Maude—in the sense that Maude modules are rewriting logic theories in that subset—and can
be supported by an interpreter implementation adequate for rapid prototyping, debugging, and
executable specification. The second, smaller subset gives rise to Simple Maude, a sublanguage
meant to be used for programming purposes for which a wide variety of machine implemen-
tations can be developed. Program transformation techniques can then support passage from
general rewrite theories to Maude modules and from them to modules in Simple Maude. Fig-
ure 10 summarizes the three levels involved.

Regarding Maude and its implementation as an interpreter, we plan to support rewriting
modulo all the axioms supported by OBJ3, where a binary operator can be declared to be
associative and/or commutative and/or having a neutral element, and rewriting modulo a com-
bination of those axioms is supported by the implementation. In particular, all the modules in
this paper are executable Maude modules. The Maude interpreter will support rapid prototyp-
ing and debugging of system designs and specifications that, if desired, could also be used to
derive an efficient system by applying to them a series of semantics-preserving transformations
and refinement steps bringing the entire program within the Simple Maude sublanguage; some
program transformations can be automated so that a user can write certain types of programs
in a more abstract way in Maude and could leave the task of transforming them into Simple
Maude programs to a compiler.

21In fact, for the sake of greater expressiveness they may even be theories in logics different from rewriting or
equational logic; details will appear elsewhere.
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5.2 Simple Maude

Simple Maude represents our present design decisions about the subset of rewriting logic that
could be implemented efficiently in a wide variety of machine architectures. In fact, we re-
gard Simple Maude as a machine-independent parallel programming language, which could be
executed with reasonable efficiency on many parallel architectures. As discussed briefly later,
Simple Maude can also support multilingual extensions and can be used as the glue for putting
together open heterogeneous systems encompassing many different machines and special I/O
devices. This section summarizes the language conventions for functional, system, and object-
oriented modules in Simple Maude.

5.2.1 Rewriting Modulo Church-Rosser and Terminating Equations

As work on compilation techniques for functional languages has amply demonstrated, syntac-
tic rewriting, i.e., rewriting modulo an empty set of structural axioms, can be implemented
efficiently on sequential machines; our experience with parallel compilation techniques for syn-
tactic rewriting in the Rewrite Rule Machine (RRM) project [50, 6, 5] leads us to believe that
this can be done even more efficiently on parallel machines. Therefore, functional or system
modules with an empty set of structural axioms are among the easiest to implement and belong
to Simple Maude.

A closely related class of modules also allowed in Simple Maude is that of functional or
system modules having an associated rewrite theory R = (Σ, E, L,R) such that the set E
of structural axioms is Church-Rosser and terminating and has the additional property that,
for the rewrite theory R′ = (Σ, ∅, L,R), whenever we have R′ ` t −→ t′ we also have
R′ ` canE(t) −→ t′′ with canE(t′) = canE(t′′), where canE(t) denotes the (canonical) normal
form to which the term t is reduced by the equations E used as rewrite rules. Under such
circumstances we can implement rewriting modulo E by syntactic rewriting with the rewrite
theory R′′ = (Σ, ∅, L,R ∪ E) provided that we restrict our attention to sequents of the form
canE(t) −→ canE(t′) which faithfully simulate R-rewritings in E-equivalence classes. For
modules of this kind the structural axioms u = v in E are introduced by the syntax

ax u = v .

A functional module defined by a rewrite theory R of this kind has the same initial algebra
as the functional module defined by the associated rewrite theory R′′. However, the semantics
of both modules as defined in Section 8 are different. For system modules of this kind, the
semantics associated with R and with the rewrite theory R′′ that simulates it are even more
different.

Even for functional modules, the possibility of allowing a distinction between rules and
structural axioms is quite convenient and meaningful. For example, we can in this way avoid
all the fuss with variables and substitution in the standard lambda calculus notation by defining
a functional module LAMBDA corresponding to the λσ-calculus of Abadi, Cardelli, Curien, and
Lévy [1] in which we interpret their Beta rule as the only rule, and their set σ of Church-Rosser
and terminating equations for explicit substitution as the set E of structural axioms. The
point is that σ-equivalence classes are isomorphic to standard lambda expressions (modulo α
conversion), and rewritings in σ-equivalence classes correspond to β-reductions.

There are of course a variety of strategies by which we can interleave E-rewriting and
R-rewriting in the implementation of modules of this kind, and some strategies can be more
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efficient than others. It could also be possible to generalize the class of modules that can be
implemented by syntactic rewriting by giving weaker conditions on the relationship between R
and E that are still correct assuming a particular strategy for interleaving R- and E-rewritings.

5.2.2 Object-Oriented Modules

In Maude, the essence of concurrent object-oriented computation is captured by concurrent
ACI -rewriting using rules of the general form (†) described in Section 4.1.1. In a sequential in-
terpreter this can be simulated by performing ACI -rewriting using an ACI -matching algorithm.
However, in a parallel implementation ACI -rewriting should be realized exclusively by means
of communication. The problem is that realizing general AC - or ACI -rewriting in this way can
require unacceptable amounts of communication and therefore can be very inefficient, even for
rules of the form (†) introduced in object-oriented modules that make a somewhat limited use
of ACI -rewriting because no variables are ever used to match multisets. For this reason, our
approach to the object-oriented modules of Simple Maude is to only allow conditional rules of
the form

(‡) M 〈O : F | atts〉

−→ (〈O : F ′ | atts ′〉)
〈Q1 : D1 | atts ′′1〉 . . . 〈Qp : Dp | atts ′′p〉
M ′

1 . . .M
′
q

if C

involving only one object and one message in their lefthand side, where p, q ≥ 0, and where the
notation (〈O : F ′ | atts ′〉) means that the object O—in a possibly different state—is only an
optional part of the righthand side, i.e., that it can be omitted in some rules. We allow as well
conditional rules for autonomous objects of the form (again, with p, q ≥ 0)

(§) 〈O : F | atts〉

−→ (〈O : F ′ | atts ′〉)
〈Q1 : D1 | atts ′′1〉 . . . 〈Qp : Dp | atts ′′p〉
M ′

1 . . .M
′
q

if C

Specifically, the lefthand sides in rules of the form (‡) should fit the general pattern22

M(O) 〈O : C | atts〉

where O could be a variable, a constant, or more generally—in case object identifiers are
endowed with additional structure—a term. Under such circumstances, an efficient way of
realizing AC -rewriting by communication is available to us for rules of the form (‡), namely we
can associate object identifiers with specific addresses in the machine where the object is located
and send messages addressed to the object to the corresponding address. For example, a rule
to credit money to an account can be implemented this way by routing the credit message to

22However, the rules for object creation using proto-objects given in Section 4.4 which do not fit this pattern
are also allowed in Simple Maude.

43



Sequential

MIMD/SequentialSIMD

MIMD/SIMD

Figure 11: Specialization relationships among parallel architectures.

the location of its addressee so that when both come into contact the rewrite rule for crediting
the account can be applied. Rules of the form (§) are even simpler to implement, since their
matching does not require any communication by messages; however, both types of rules assume
the existence of a basic mechanism for sending the messages generated in the righthand side to
their appropriate destination.

How should the gap between the more general rules (†) allowed in Maude modules and the
more restricted rules (‡) and (§) permitted in Simple Maude modules be mediated? Our ap-
proach to this problem—in forthcoming joint work with Patrick Lincoln and Timothy Winkler—
has been to develop program transformation techniques that, under appropriate fairness as-
sumptions, guarantee that rewriting with rules of the form (†) can be simulated by rewriting
using rules of the form (‡) and (§). The basic idea is that a (†) rule in general requires the
synchronization of several objects—what in some contexts is called a multiparty interaction—
but this synchronization can be achieved in an asynchronous way by an appropriate sending of
messages using rules of the form (‡). Transformations of this kind can be automated and rele-
gated to a compiler, so that a user could write object-oriented modules in Maude and not have
to worry about the corresponding expression of his program in Simple Maude. However, Sim-
ple Maude is already quite expressive—in particular, more expressive than Actors—and many
programs will fall naturally within this class without any need for further transformations.

The strategy described in this section for Simple Maude’s object-oriented modules can be
generalized to system modules23 so that they can also perform concurrent AC -rewriting by
asynchronous message-passing communication; this generalization is discussed in [83].

5.3 Sequential, SIMD, MIMD, and MIMD/SIMD Implementations

Simple Maude can be implemented on a wide variety of parallel architectures. The diagram in
Figure 11 shows the relationship among some general classes that we have considered. There
are two orthogonal choices giving rise to four classes of machines: the processing nodes can be
either a single sequential processor or a SIMD array of processors, and there can be either just a
single processing node or a network of them. The arrows in the diamond denote specializations
from a more general and concurrent architecture to degenerate special cases, with the sequential
case at the bottom. The arrows pointing to the left correspond to specializing a network of

23As discussed before, we also allow Simple Maude system modules where the structural axioms E are given
by Church-Rosser and terminating equations.
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processing nodes to the degenerate case with only one processing node; the arrows pointing to
the right correspond to specializing a SIMD array to the degenerate case of a single processor.

Each of these architectures is naturally suited for a different way of performing rewriting
computations. Simple Maude has been chosen so that concurrent rewriting with rules in this
sublanguage should be relatively easy to implement in any of these four classes of machines; the
paper [83] discusses this matter in greater detail; here we limit ourselves to a brief sketch. In
the MIMD/Sequential (multiple instruction stream, multiple data) case many different rewrite
rules can be applied at many different places at once, but only one rule is applied at one place
in each processor. The implementation of object-oriented rules of the form (‡), involving a
message and an object, can be achieved by interprocessor communication, sending the message
to the processor in which the addressee object is located, so that when the message arrives the
corresponding rules can be applied. The sequential case corresponds to a single conventional
sequential processor and can be viewed as the degenerate case of a MIMD/Sequential machine
with only one processor. In this case, at most one rule is applied to a single place in the data at
a time. Since there is only one processor in which all objects are located, implementing rules of
the form (‡) does not require any interprocessor communication. The SIMD (single instruction
stream, multiple data) case corresponds to applying rewrite rules one at a time, possibly to
many places in the data. The implementation of rules of the form (‡) will require special SIMD
code for message passing in addition to the SIMD code for performing the rewriting. The
MIMD/SIMD case is at present more exotic; the Rewrite Rule Machine (RRM) [52, 7, 6, 5] is
an architecture in this class in which the processing nodes are two-dimensional SIMD arrays
realized on a chip and the higher level structure is a network operating in MIMD mode. This case
corresponds to applying many rules to many different places in the data, but here a single rule
may be applied at many places simultaneously within a single processing node. The message
passing required for rules of the form (‡) can be performed in a way entirely similar to the
MIMD/Sequential case. From the point of view of maximizing the amount and flexibility of the
rewriting that can happen in parallel, the MIMD/SIMD case provides the most general solution
and offers the best prospects for reaching extremely high performance in many applications.

5.4 Multilingual Extensions and Open Heterogeneous Systems

Simple Maude will support the integration of modules written in conventional languages such as
Fortran and C; this will allow reusing and parallelizing code originally developed for sequential
machines. More generally, not only conventional code, but entire systems and special-purpose
hardware devices can be integrated in a similar way. The joint paper [83] provides a more
detailed discussion of this aspect of the language, which is briefly summarized below.

The way in which this integration can be accomplished generalizes a facility already available
in Maude’s functional sublanguage (OBJ) for defining built-in sorts and built-in rules [45, 53].
This facility has provided valuable experience with multilingual support, in this case for OBJ
and Common Lisp, and can be generalized to a facility for defining foreign interface modules in
Maude. Such foreign interface modules have abstract interfaces that allow them to be integrated
with other Maude modules and to be executed concurrently with other computations; however,
they are treated as “black boxes.” In particular, Maude’s model of computation and its modular
style provide a simple way of gluing a concurrent program together out of pieces that can be
either written in Simple Maude or can be sequential code written in conventional languages.
Foreign interface modules may provide either a functional data type, or an object-oriented class.
In the first case, the treatment will be extremely similar to that provided in OBJ. In the second
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case, the abstract interface will be provided by the specification of the messages that act upon
the new class of objects. This second case is also the approach used to interface to existing
systems or applications and to special-purpose hardware devices; they are treated as, possibly
quite complex, black boxes.

Future computing environments will be heterogeneous, involving many different machine
architectures, and evolving, with components being attached and removed over time. It has
long been recognized that message-passing models provide one of the best ways to integrate
distributed heterogeneous systems. Designs based on message passing also make it relatively
easy to add or remove resources, and to deal with variations in the size of parallel architectures
(the number of processing nodes). The advantage of the concurrent rewriting model is that
it integrates message passing within a simple and mathematically precise abstract model of
computation and can therefore be used as both a semantic framework and as a language for
the integration of heterogeneous systems. In order to incorporate something (whether it be
a special-purpose processor, an I/O device, a database, or a program written in C) into the
abstract model, it is just necessary to treat it as a black box and to specify its interface to the
system, i.e., the message protocol that is used for interacting with it.

Related efforts in multilingual support for parallel programming include: the Linda lan-
guage developed by D. Gelernter and his collaborators at Yale [25], the Strand language de-
signed by I. Foster and S. Taylor [37], the Program Composition Notation (PCN) designed by
K. M. Chandy and S. Taylor at Caltech [27], and the GLU language developed by R. Jagan-
nathan and A. Faustini at SRI International [57].

6 More Examples

This section presents two somewhat longer Maude examples: a module for autonomous ob-
jects that search all the solutions to the eight queens problem in parallel, and a fault-tolerant
communication protocol.

6.1 Eight Queens

The following example illustrates several Maude features, including autonomous objects, object
creation and deletion, the convenience of the notational conventions for rules involving objects
introduced in Section 4.2 that allow omitting mention of attributes irrelevant for a particular
rule, extensive use of intra-object concurrency, and parameterization. The example is the well-
known eight queens problem of finding all board configurations on an 8×8 board in which eight
queens are placed on the board in such a way that no queen is able to capture any other queen.
According to the rules of chess, a queen can capture any other piece along its same row, column,
or diagonals. An actor treatment of this problem has appeared in [11]. The idea in both [11]
and in the example below is to search all the solutions in parallel without any backtracking.

We make the size of the board a parameter, and represent a partial solution as a list of pairs
of nonzero natural numbers (1, n1), . . . , (i, ni), indicating that i queens have already been placed
successfully on the first i columns of the board, in the positions contained in the list. Of course,
since only one queen can be placed per row (or per column) in a solution, the only rows that
remain free as potential candidates for placing new queens are in the set {1, . . . , k}−{n1, . . . , ni},
with k × k the assumed size of the board. This is the set of row positions in column i+ 1 that
we have to examine to try to expand the partial solution (1, n1), . . . , (i, ni) by adding a new

46



queen in column i + 1. Since, by construction, there will be only one queen per row and per
column in this expanded partial solution, the only thing that we have to check is that the row
position chosen in the set of free rows to place the queen on the i + 1-th column is not in
the same diagonal as any of the previous queens. This can be done by applying the predicate
in-diag defined in the auxiliary functional module DIAG below; we can then gather together
all successful row positions failing the in-diag test by means of the function good-rows. We
assume that the INT module has a sort NzNat of nonzero natural numbers, and an absolute
value function | |.

fmod DIAG is

protecting INT .

protecting BOOL .

protecting LIST[2TUPLE[NzNat,NzNat]*(sort 2Tuple to NzNatPair)]*(

sort List to PairList) .

protecting LIST[NzNat]*(sort List to NzNatList) .

op in-diag : NzNat NzNat PairList -> Bool .

*** the arguments to in-diag are: a row position, the column being

*** considered, and a partial solution up to the previous column

vars C R C’ R’ : NzNat .

var P : NzNatPair .

var L : NzNatList .

var Q : PairList .

eq in-diag(R,C,P Q) = in-diag(R,C,P) or in-diag(R,C,Q)

eq in-diag(R,C,<< C’ ; R’ >>) = (| R - R’ | == | C - C’ |) .

eq in-diag(R,C,nil) = false .

op good-rows : NzNatList NzNat PairList -> NzNatList .

*** the arguments to good-rows are: a list of free rows, the column

*** being considered, and a partial solution up to the previous column

eq good-rows(R L,C,Q) = good-rows(R,C,Q) good-rows(L,C,Q) .

eq good-rows(nil,C,Q) = nil .

eq good-rows(R,C,Q) = if in-diag(R,C,Q) then nil else R fi .

endfm

The search for all the solutions will use objects in a class QAgent having attributes caller

(the name of the external object that requested the eight queens solutions), psol (a partial
solution), column (the last column in the partial solution), free-rows (the unoccuppied rows),
good-rows (the rows in the next column that can expand the partial solution), and tested

(whether or not the free rows have been tested as expansions of the solution). The search will
begin in a configuration involving the set of k objects

< N : QAgent | caller: B, psol: << 1 ; N >>, column: 1,
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free-rows: remove N from (1 ... K), good-rows: nil, tested: false >

for N varying from 1 to k, with object N beginning the search at row N in the first column and
searching for good rows in column 2. The module defining QAgent has the functional theory
NAT* of Section 4.1 as its parameter, to specify the side size k of the k × k board.

omod K-QUEENS[K :: NAT*] is

protecting DIAG .

class QAgent | caller: OId, psol: PairList, column: NzNat ,

free-rows: NzNatList, good-rows: NzNatList, tested: Bool .

msg to_sol_ : OId PairList -> Msg .

vars A B : OId .

vars R C : Nznat .

var Q : PairList .

vars L L’ : NzNatList .

*** the agent tests which free rows are good for placing a queen in the

*** next column, and records the information

rl < A : QAgent | psol: Q, column: C, free-rows: L,

tested: false > =>

< A : QAgent | good-rows: good-rows(L,C + 1,Q), tested: true > .

*** for each good row found, a new object continuing the search

*** with that row in the expanded partial solution is created, except

*** in case the good row is in the last column, where the solution

*** is sent to the caller and the agent garbage-collects itself

rl < A : QAgent | caller: B, psol: Q, column: C, free-rows: L,

good-rows: N L’ > =>

if (C + 1) < k then

< A : QAgent | good-rows: L’ >

new(QAgent | caller: B, psol: Q << C + 1 ; N >>, column: C + 1,

free-rows: remove N from L, good-rows: nil, tested: false)

else (to B sol Q << k ; N >>) fi .

*** if no good row is left, the agent garbage-collects itself

rl < A : QAgent | good-rows: nil, tested: true > => null .

endom

The classical eight queens case can be obtained by a simple instantiation

make 8-QUEENS is K-QUEENS[view to NAT is op k to 8 . endv] endmk

6.2 A Communication Protocol Example

If a communication mechanism does not provide reliable, in-order delivery of messages, it may
be necessary to generate this service using the given unreliable basis. The following example,
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developed jointly with Timothy Winkler and borrowed with slight modifications from [83], shows
how this might be done. Since unreliable communication is a more serious issue across different
machines, this example illustrates the application of Maude to heterogeneous open systems
(see Section 5.4). This was derived from the alternating bit protocol as presented in Lam and
Shankar [60], although, since we do not assume in-order delivery, we cannot use the alternating
bit protocol. The same kind of example is discussed in a somewhat different way in Chandy
and Misra [26]. The following definition creates a generic, fault-tolerant connection between
a specific sender and receiver pair. Notice that—thanks to the abstractness of the concurrent
rewriting model and to the parameterization mechanisms of the language—the module is very
general in several respects:

• it makes very few assumptions about the communication between sender and receiver;

• the parameter ELT can be instantiated to any type of data to be sent;

• the parameters S and R can be instantiated to any two previously defined classes of objects.

The requirement that the parameters S and R have to satisfy is expressed by the object-oriented
theory CLASS below, whose Cl sort can be instantiated to any class of an object-oriented module.
To disambiguate the use of the parameter sort Cl in S and R, we use the notation Cl.S and
Cl.R.

oth CLASS is

class Cl .

endoth

omod PROTOCOL[ELT :: TRIV, S :: CLASS, R :: CLASS] is

protecting LIST[ELT] .

protecting NAT .

sort Contents .

subsort Elt < Contents .

op empty : -> Contents .

msg to:_(_,_) : OId Elt Nat -> Msg . *** data to receiver

msg to:_ack_ : OId Nat -> Msg . *** acknowledgement to sender

class Sender | rec: OId, sendq: List, sendbuff: Contents ,

sendcnt: Nat .

subclass Sender < Cl.S .

*** rec is the receiver, sendq is the outgoing queue, sendbuff

*** is either empty of the current data, sendcnt is the sender

*** sequence number

vars S R : OId .

var N : Nat .

var E : Elt .

var L : List .
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var C : Contents .

rl produce :

< S : Sender | rec: R, sendq: E . L,

sendbuff: empty, sendcnt: N > =>

< S : Sender | rec: R, sendq: L, sendbuff: E, sendcnt: N + 1 > .

rl send :

< S : Sender | rec: R, sendq: L, sendbuff: E, sendcnt: N > =>

< S : Sender | rec: R, sendq: L, sendbuff: E, sendcnt: N >

(to: R (E,N)) .

rl rec-ack :

< S : Sender | rec: R, sendq: L, sendbuff: C, sendcnt: N >

(to: S ack M) =>

< S : Sender | rec: R, sendq: L,

sendbuff: (if N == M then empty else C fi),

sendcnt: N > .

class Receiver | sender: OId, recq: List, reccnt: Nat .

subclass Receiver < Cl.R .

*** sender is the sender, recq is the incoming queue,

*** and reccnt is the receiver sequence number

rl receive :

< R : Receiver | sender: S, recq: L, reccnt: M > (to: R (E,N)) =>

(if N == M + 1 then

< R : Receiver | sender: S, recq: L . E, reccnt: M + 1 >

else

< R : Receiver | sender: S, recq: L, reccnt: M >

fi)

(to: S ack N)

endom

Under reasonable fairness assumptions, these definitions will generate a reliable, in-order com-
munication mechanism from an unreliable one. The message counts are used to ignore all out-
of-order messages. The fairness assumption will ensure that the send action and corresponding
receive actions will be repeated until a rec-ack can be performed; thus each produce nec-
essarily leads to a corresponding rec-ack. Note that the send operation is enabled until the
corresponding rec-ack occurs.

We can explicitly model the fault modes of the communication channel as in the following
definition:

omod PROTOCOL-IN-FAULTY-ENV[ELT :: TRIV, S :: CLASS, R :: CLASS] is

extending PROTOCOL[ELT,S,R] .
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var M : Msg .

rl duplicate :

M => M M .

class Destroyer | sender: OId, rec: OId, cnt: Nat .

var N : Nat .

var E : Elt .

vars S R D : OId .

rl destroy1 :

< D : Destroyer | sender: S, rec: R, cnt: N > (to: R (E,N)) =>

< D : Destroyer | sender: S, rec: R, cnt: N > .

rl destroy2 :

< D : Destroyer | sender: S, rec: R, cnt: N > (to: S ack N) =>

< D : Destroyer | sender: S, rec: R, cnt: N > .

rl limited-injury :

< D : Destroyer | sender: S, receiver: R, cnt: N > =>

< D : Destroyer | sender: S, receiver: R, cnt: N + 1 > .

endom

Messages may be duplicated or destroyed. The limited-injury rule, under an assumption of
fair application of the total set of rules, will ensure that messages are not always destroyed. The
new system, with the Destroyer, will also satisfy the same correctness condition regardless of
messages being duplicated, being destroyed, or arriving out of order.

7 Maude and MaudeLog as Multiparadigm Logic Programming
Languages

The statement made in the Introduction about Maude being a language directly based on a
logic—namely rewriting logic—so that programs in Maude are logical theories and concurrent
Maude computation is logical deduction has by now been explained and illustrated with ex-
amples in great detail. Calling Maude a “logic programming language” is therefore entirely
justified, provided that we use this term in a broad sense that allows choosing among many
logics the one that best suits our particular needs. In addition, Section 8 will discuss how initial
models for rewriting logic can be used to give a denotational semantics to Maude programs in
agreement with the logic programming nature of Maude.

In fact, although this has been kept implicit in the exposition, Maude’s design is based on
a general axiomatic notion of “logic programming language” which is itself based on a general
axiomatic theory of logics. This theory of “general logics” and the associated general notion of
“logic programming language” were developed in [68], and were inspired by previous work of
Goguen and Burstall on “institutions” [44]. The paper [73] introduces these general concepts,
discusses general methods for designing multiparadigm logic programming languages using such
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concepts, and explains how Maude and MaudeLog were designed according to those methods.
We briefly sketch here some of the ideas of [73] to give the reader a better insight about the
multiparadigm aspects of Maude and of MaudeLog.

For designing multiparadigm logic programming languages, a key technical tool is the use
of mappings between logics that relate the syntax, sentences, entailments, and models of two
different logics by appropriate translations. Technically, a unification of paradigms is achieved
by mapping the logics of each paradigm into a richer logic in which the paradigms are unified.

In the case of Maude and MaudeLog, what is done is to define a new logic—rewriting logic—
in which concurrent computations—and in particular concurrent object-oriented computations—
can be expressed in a natural way, and then to formally relate this logic to the logics of the
functional and relational paradigms, i.e., to equational logic and to Horn logic, by means of maps
of logics that provide a simple and rigorous unification of paradigms. As it has already been
mentioned, we actually assume an order-sorted structure throughout, and therefore the logics in
question are: order-sorted rewriting logic, denoted OSRWLogic, order-sorted equational logic,
denoted OSEqtl , and order-sorted Horn logic, denoted OSHorn.

At first sight one might conjecture that in order to extend functional programming to han-
dle concurrent systems and object-oriented computations one has to complicate the logic, by
embedding equational logic inside a more involved formalism. Maude’s solution to this prob-
lem, provided by rewriting logic, achieves a very simple unification of functional programming
within the broader context of concurrent systems programming and concurrent object-oriented
programming by doing just the opposite. That is, rewriting logic actually has simpler rules
of deduction than equational logic; indeed, as has already been mentioned, it can be obtained
from equational logic by dropping the symmetry rule. The point, however, is that rewriting
logic has a much broader class of models than equational logic (see Section 8), and the new
models, corresponding to concurrent systems, are just what we need.

Rather than trying to force nonfunctional applications within a functional world, what it is
done in this solution is to abandon any such attempts altogether, i.e., to leave the functional
world untouched, and then to show that the logic of functional programming—in the particular
variant discussed here of order-sorted equational logic—can be embedded within (order-sorted)
rewriting logic by means of a map of logics

OSEqtl −→ OSRWLogic.

The details of this map of logics are discussed in Appendix B of [73]. At the programming
language level, such a map corresponds to the inclusion of Maude’s functional modules (es-
sentially identical to OBJ3 modules) within the language. The key point of having a map of
this kind is that it relates both the proof-theoretic and the model-theoretic aspects of both
logics. This permits maintaining intact the standard initial algebra semantics as the mathe-
matical semantics of Maude’s functional modules, just as in OBJ3, while allowing for a different
semantics—based on the model theory of rewriting logic (see Section 8)—for Maude’s system
modules and object-oriented modules.

Since the power and the range of applications of a multiparadigm logic programming lan-
guage can be substantially increased if it is possible to solve queries involving logical variables
in the sense of relational programming, as in the Prolog language, we are naturally led to seek
a unification of the three paradigms of functional, relational and concurrent object-oriented
programming into a single multiparadigm logic programming language. This unification can be
attained in a language extension of Maude called MaudeLog.
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As before, the method used to achieve a unification of this kind in a simple and rigorous
manner is to combine the logics involved by means of mappings. In addition to the mapping
from equational logic to rewriting logic just discussed, which provides the integration of the
functional facet, what remains is the integration of Horn logic. Such an integration is achieved
by a map of logics

OSHorn −→ OSRWLogic

that systematically relates order-sorted Horn logic to order-sorted rewriting logic. The details
of this map are discussed in Appendix C of [73].

The difference between Maude and MaudeLog does not consist in any change in the under-
lying logic; indeed, both languages are based on rewriting logic, and both have rewrite theories
as programs. It resides, rather, in an enlargement of the set of queries that can be presented,
so that, while keeping the same syntax and models, in MaudeLog we also consider queries
involving existential formulas of the form

∃x [u1(x)] −→ [v1(x)] ∧ . . . ∧ [uk(x)] −→ [vk(x)].

Therefore, the sentences and the deductive rules and mechanisms that are now needed require
further extensions of rewriting logic deduction. In particular, solving such existential queries
requires performing unification, specifically—given Maude’s typing structure—order-sorted uni-
fication [79].

The above map of logics means that, after a simple translation, we can view a (pure) Prolog
program as a MaudeLog program. We illustrate this translation by means of a simple example
of family relations.

Here is the example in terms of Horn clauses:

Parent(X,Y) :- Father(X,Y)

Parent(X,Y) :- Mother(X,Y)

Grandparent(X,Z) :- Parent(X,Y), Parent(Y,Z)

Father(Peter,Paul)

Mother(Mary,Paul)

Father(Arthur,Peter)

Mother(Claire,Peter)

Father(Robert,Mary)

Mother(Louise,Mary)

This is the MaudeLog translation24:

mod FAMILY is

extending PROP .

sort People .

ops father mother parent grandparent : People People -> Prop .

ops peter paul mary arthur claire robert louise : -> People .

vars X Y Z : People .

rl father(X,Y) => parent(X,Y) .

rl mother(X,Y) => parent(X,Y) .

24Although the clauses are translated as illustrated below, the rewrite theory obtained by this translation
makes additional requirements on the models, as explained in Appendix C of [73].
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rl parent(X,Y), parent(Y,Z) => grandparent(X,Z) .

rl true => father(peter,paul) .

rl true => mother(mary,paul) .

rl true => father(arthur,peter) .

rl true => mother(claire,peter) .

rl true => father(robert,mary) .

rl true => mother(louise,mary) .

endm

The imported module PROP has a conjunction operator , : Prop Prop -> Prop as a
multiset operator (i.e., it is associative and commutative) with identity true. In addition, it
has the rule rl X => true.

Then the query

grandparent(X,Paul)?

is translated into the existential formula

∃X : People . true => grandparent(X,Paul)

To solve this, we do backward search from the goal using the rewrite rules. In fact, because
there exists an endomorphism of rewriting logic mapping the theory FAMILY to a version with
all =>’s reversed, this could be reformulated in terms appropriate for forward search if desired.

Although the basic relationship formalized by the map of logics between Horn logic and
rewriting logic is well understood, the design of MaudeLog is at a more preliminary stage than
that of Maude and much work remains to be done at the theoretical level, in the deduction
and operational semantics aspects, at the language design level, and eventually in an actual
implementation.

8 Semantics

In this section we discuss models for rewriting logic and explain how such models are used to
give semantics to modules in Maude. We will focus on the basic ideas and intuitions and leave
out some of the details, which can be found in [72].

8.1 The Models of Rewriting Logic

We first sketch the construction of initial and free models for a rewrite theory R = (Σ, E, L,R).
Such models capture nicely the intuitive idea of a “rewrite system” in the sense that they are
systems whose states are E-equivalence classes of terms, and whose transitions are concurrent
rewritings using the rules in R. Such systems have a natural category structure [62], with states
as objects, transitions as morphisms, and sequential composition as morphism composition, and
in them dynamic behavior exactly corresponds to deduction.

Given a rewrite theory R = (Σ, E, L,R), the model that we are seeking is a category
TR(X) whose objects are equivalence classes of terms [t] ∈ TΣ,E(X) and whose morphisms are
equivalence classes of “proof terms” representing proofs in rewriting deduction, i.e., concurrent
R-rewrites. The rules for generating such proof terms, with the specification of their respective
domain and codomain, are given below; they just “decorate” with proof terms the rules 1-4
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of rewriting logic given in Section 3.2. Note that we always use “diagrammatic” notation for
morphism composition, i.e., α;β always means the composition of α followed by β.

1. Identities. For each [t] ∈ TΣ,E(X),

[t] : [t] −→ [t]

2. Σ-structure. For each f ∈ Σn, n ∈ IN,

α1 : [t1] −→ [t′1] . . . αn : [tn] −→ [t′n]

f(α1, . . . , αn) : [f(t1, . . . , tn)] −→ [f(t′1, . . . , t
′
n)]

3. Replacement. For each rewrite rule r : [t(xn)] −→ [t′(xn)] in R,

α1 : [w1] −→ [w′
1] . . . αn : [wn] −→ [w′

n]

r(α1, . . . , αn) : [t(w/x)] −→ [t′(w′/x)]

4. Composition.
α : [t1] −→ [t2] β : [t2] −→ [t3]

α;β : [t1] −→ [t3]

Convention and Warning. In the case when the same label r appears in two different rules
of R, the “proof terms” r(α) can sometimes be ambiguous. We assume that such ambiguity
problems have been resolved by disambiguating the label r in the proof terms r(α) if necessary;
with this understanding, we adopt the simpler notation r(α) to ease the exposition.

Each of the above rules of generation defines a different operation taking certain proof
terms as arguments and returning a resulting proof term. In other words, proof terms form an
algebraic structure PR(X) consisting of a graph with nodes TΣ,E(X), with identity arrows, and
with operations f (for each f ∈ Σ), r (for each rewrite rule), and ; (for composing arrows).
Our desired model TR(X) is the quotient of PR(X) modulo the following equations25:

1. Category.

(a) Associativity. For all α, β, γ
(α;β); γ = α; (β; γ)

(b) Identities. For each α : [t] −→ [t′]

α; [t′] = α and [t];α = α

2. Functoriality of the Σ-algebraic structure. For each f ∈ Σn, n ∈ IN,

(a) Preservation of composition. For all α1, . . . , αn, β1, . . . , βn,

f(α1;β1, . . . , αn;βn) = f(α1, . . . , αn); f(β1, . . . , βn)

(b) Preservation of identities.

f([t1], . . . , [tn]) = [f(t1, . . . , tn)]

25In the expressions appearing in the equations, when compositions of morphisms are involved, we always
implicitly assume that the corresponding domains and codomains match.
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3. Axioms in E. For t(x1, . . . , xn) = t′(x1, . . . , xn) an axiom in E, for all α1, . . . , αn,

t(α1, . . . , αn) = t′(α1, . . . , αn)

4. Exchange. For each r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] in R,

α1 : [w1] −→ [w′
1] . . . αn : [wn] −→ [w′

n]

r(α) = r([w]); t′(α) = t(α); r([w′])

Note that the set X of variables is actually a parameter of these constructions, and we need
not assume X to be fixed and countable. In particular, for X = ∅, we adopt the notation
TR. The equations in 1 make TR(X) a category, the equations in 2 make each f ∈ Σ a
functor, and 3 forces the axioms E. The exchange law states that any rewriting of the form
r(α)—which represents the simultaneous rewriting of the term at the top using rule r and
“below,” i.e., in the subterms matched by the variables, using the rewrites α—is equivalent
to the sequential composition r([w]); t′(α), corresponding to first rewriting on top with r and
then below on the subterms matched by the variables with α, and is also equivalent to the
sequential composition t(α); r([w′]) corresponding to first rewriting below with α and then on
top with r. Therefore, the exchange law states that rewriting at the top by means of rule r and
rewriting “below” using α are processes that are independent of each other and can be done
either simultaneously or in any order. Since [t(x1, . . . , xn)] and [t′(x1, . . . , xn)] can be regarded
as functors TR(X)n −→ TR(X), from the mathematical point of view the exchange law just
asserts that r is a natural transformation [62], i.e.,

Lemma 2 For each r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] in R, the family of morphisms

{r([w]) : [t(w/x)] −→ [t′(w/x)] | [w] ∈ TΣ,E(X)n}

is a natural transformation r : [t(x1, . . . , xn)] =⇒ [t′(x1, . . . , xn)] between the functors

[t(x1, . . . , xn)], [t′(x1, . . . , xn)] : TR(X)n −→ TR(X).

2

What the exchange law provides in general is a way of abstracting a rewriting computation
by considering immaterial the order in which rewrites are performed “above” and “below” in the
term; further abstraction among proof terms is obtained from the functoriality equations. The
equations 1-4 provide in a sense the most abstract “true concurrency” view of the computations
of the rewrite theory R that can reasonably be given. In particular, we can prove that all proof
terms have an equivalent expression as a composition of one-step rewrites:

Lemma 3 For each [α] : [t] −→ [t′] in TR(X), either [t] = [t′] and [α] = [[t]], or there is an
n ∈ IN and a chain of morphisms [αi], 0 ≤ i ≤ n, whose terms αi describe one-step (concurrent)
rewrites

[t]
α0−→ [t1]

α1−→ . . .
αn−1−→ [tn]

αn−→ [t′]

such that [α] = [α0; . . . ;αn]. In addition, we can always choose all the αi corresponding to
sequential rewrites, i.e., we can decompose [α] into an interleaving sequence. 2
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The category TR(X) is just one among many models that can be assigned to the rewrite
theory R. The general notion of model, called an R-system, is defined as follows:

Given a rewrite theory R = (Σ, E, L,R), an R-system S is a category S together with:

• a (Σ, E)-algebra structure given by a family of functors

{fS : Sn −→ S | f ∈ Σn, n ∈ IN}

satisfying the equations E, i.e., for any t(x1, . . . , xn) = t′(x1, . . . , xn) in E we have an
identity of functors tS = t′S , where the functor tS is defined inductively from the functors
fS in the obvious way.

• for each rewrite rule r : [t(x)] −→ [t′(x)] in R a natural transformation rS : tS =⇒ t′S .

An R-homomorphism F : S −→ S ′ between two R-systems is then a functor F : S −→ S ′
such that it is a Σ-algebra homomorphism—i.e., fS ∗ F = Fn ∗ fS′ , for each f in Σn, n ∈ IN—
and such that “F preserves R,” i.e., for each rewrite rule r : [t(x)] −→ [t′(x)] in R we have
the identity of natural transformations26 rS ∗ F = Fn ∗ rS′ , where n is the number of variables
appearing in the rule. This defines a category R-Sys in the obvious way. 2

What the above definition captures formally is the idea that the models of a rewrite theory
are systems. By a “system” we of course mean a machine-like entity that can be in a variety of
states, and that can change its state by performing certain transitions. Such transitions are of
course transitive, and it is natural and convenient to view states as “idle” transitions that do
not change the state. In other words, a system can be naturally regarded as a category , whose
objects are the states of the system and whose morphisms are the system’s transitions.

For sequential systems such as labelled transition systems this is in a sense the end of the
story; such systems exhibit nondeterminism, but do not have the required algebraic structure in
their states and transitions to exhibit true concurrency [70, 72]. Indeed, what makes a system
concurrent is precisely the existence of an additional algebraic structure. Ugo Montanari and I
first observed this fact for the particular case of Petri nets for which the algebraic structure is
precisely that of a commutative monoid [81, 80]; this has been illustrated by the TICKET example
in Section 2.2 where the commutative monoid operation made possible the concurrent firing of
several transitions. However, this observation holds in full generality for any algebraic structure
whatever .

What the algebraic structure captures is twofold. Firstly, the states themselves are dis-
tributed according to such a structure; for Petri nets the distribution takes the form of a multiset
that we can visualize with tokens and places; for a functional program involving just syntactic
rewriting, the distribution takes the form of a labelled tree structure which can be spatially dis-
tributed in such a way that many transitions (i.e., rewrites) can happen concurrently in a way
analogous to the concurrent firing of transitions in a Petri net. A concurrent object-oriented
system as specified by a Maude module combines in a sense aspects of the functional and Petri
net examples, because its configuration evolves by multiset ACI -rewriting but, underneath such
transitions for objects and messages, arbitrarily complex concurrent computations of a func-
tional nature can take place in order to update the values of object attributes as specified by
appropriate functional submodules. Secondly, concurrent transitions are themselves distributed
according to the same algebraic structure; this is what the notion of R-system captures, and

26Note that we use diagrammatic order for the horizontal , α ∗ β, and vertical , γ; δ, composition of natural
transformations (see [62]).
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System ←→ Category
State ←→ Object
Transition ←→ Morphism
Procedure ←→ Natural Transformation
Distributed Structure ←→ Algebraic Structure

Figure 12: The mathematical structure of concurrent systems.

is for example manifested in the concurrent firing of Petri nets, the evolution of concurrent
object-oriented systems and, more generally, in any type of concurrent rewriting.

The expressive power of rewrite theories to specify concurrent transition systems27 is greatly
increased by the possibility of having not only transitions, but also parameterized transitions,
i.e., procedures. This is what rewrite rules—with variables—provide. The family of states to
which the procedure applies is given by those states where a component of the (distributed)
state is a substitution instance of the lefthand side of the rule in question. The rewrite rule is
then a procedure28 which transforms the state locally , by replacing such a substitution instance
by the corresponding substitution instance of the righthand side. The fact that this can take
place concurrently with other transitions “below” is precisely what the concept of a natural
transformation formalizes. The table of Figure 12 summarizes our present discussion.

A detailed proof of the following theorem on the existence of initial and free R-systems for
the more general case of conditional rewrite theories is given in [72], where the soundness and
completeness of rewriting logic for R-system models is also proved. Below, for C a category,
Obj(C) denotes the set of its objects.

Theorem 4 TR is an initial object in the category R-Sys. More generally, TR(X) has the
following universal property: Given an R-system S, each function F : X −→ Obj (S) extends
uniquely to an R-homomorphism F \ : TR(X) −→ S. 2

8.2 Preorder, Poset, and Algebra Models

SinceR-systems are an “essentially algebraic” concept29, we can consider classes Θ ofR-systems
defined by the satisfaction of additional equations. Such classes give rise to full subcategory
inclusions Θ ↪→ R-Sys, and by general universal algebra results about essentially algebraic
theories (see, e.g., [14]) such inclusions are reflective [62], i.e., for each R-system S there is an
R-system RΘ(S) ∈ Θ and an R-homomorphism ρΘ(S) : S −→ RΘ(S) such that for any R-
homomorphism F : S −→ D with D ∈ Θ there is a uniqueR-homomorphism F♦ : RΘ(S) −→ D
such that F = ρΘ(S);F♦. The assignment S 7−→ RΘ(S) extends to a functor R-Sys −→ Θ,
called the reflection functor.

Therefore, we can consider subcategories of R-Sys that are defined by certain equations and
be guaranteed that they have initial and free objects, that they are closed by subobjects and

27Such expressive power is further increased by allowing conditional rewrite rules, a more general case to which
all that is said in this paper has been extended in [72].

28Its actual parameters are precisely given by a substitution.
29In the precise sense of being specifiable by an “essentially algebraic theory” or a “sketch” [14]; see [72].
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products, etc. Consider for example the following equations:

∀f, g ∈ Arrows, f = g if ∂0(f) = ∂0(g) ∧ ∂1(f) = ∂1(g)

∀f, g ∈ Arrows, f = g if ∂0(f) = ∂1(g) ∧ ∂1(f) = ∂0(g)

∀f ∈ Arrows, ∂0(f) = ∂1(f).

where ∂0(f) and ∂1(f) denote the source and target of an arrow f respectively. The first
equation forces a category to be a preorder, the addition of the second requires this preorder
to be a poset, and the three equations together force the poset to be discrete, i.e., just a set.
By imposing the first one, the first two, or all three, we get full subcategories

R-Alg ⊆ R-Pos ⊆ R-Preord ⊆ R-Sys.

A routine inspection of R-Preord for R = (Σ, E, L,R) reveals that its objects are preordered Σ-
algebras (A,≤) (i.e., preordered sets with a Σ-algebra structure such that all the operations in
Σ are monotonic) that satisfy the equations E and such that for each rewrite rule r : [t(x)] −→
[t′(x)] in R and for each a ∈ An we have, tA(a) ≥ t′A(a). The poset case is entirely analogous,
except that the relation ≤ is a partial order instead of being a preorder. Finally, R-Alg is the
category of ordinary Σ-algebras that satisfy the equations E ∪ unlabel(R), where the unlabel
function removes the labels from the rules and turns the sequent signs “−→” into equality signs.

The reflection functor associated with the inclusion R-Preord ⊆ R-Sys sends TR(X) to
the familiar R-rewriting relation30 → R(X) on E-equivalence classes of terms with variables
in X. Similarly, the reflection associated to the inclusion R-Pos ⊆ R-Sys maps TR(X) to
the partial order ≥ R(X) obtained from the preorder → R(X) by identifying any two [t], [t′]
such that [t] → R(X)[t

′] and [t′] → R(X)[t]. Finally, the reflection functor into R-Alg maps
TR(X) to TR(X), the free Σ-algebra on X satisfying the equations E ∪ unlabel(R); therefore,
the classical initial algebra semantics of (functional) equational specifications reappears here
associated with a very special class of models which—when viewed as systems—have only trivial
identity transitions.

8.3 The Semantics of Maude

This paper has shown that, by generalizing the logic and the model theory of equational logic
to those of rewriting logic, a much broader field of applications for rewrite rule programming
is possible—based on the idea of programming concurrent systems rather than algebras, and
including, in particular, concurrent object-oriented programming. The same high standards of
mathematical rigor enjoyed by equational logic can be maintained in giving semantics to a lan-
guage like Maude in the broader context of rewriting logic. We present below a specific proposal
for such a semantics having the advantages of keeping functional modules as a sublanguage with
a more specialized semantics. Another appealing characteristic of the proposed semantics is
that the operational and mathematical semantics of modules are related in a particularly nice
way. As already mentioned, all the ideas and results in this paper extend without problem31 to
the order-sorted case; the unsorted case has only been used for the sake of a simpler exposition.
Therefore, all that is said below is understood in the context of order-sorted rewriting logic.

30It is perhaps more suggestive to call →R(X) the reachability relation of the system TR(X).
31Exercising of course the well known precaution of making explicit the universal quantification of rules.
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We have already seen that object-oriented modules can be reduced to equivalent system
modules having the same behavior but giving a more explicit description of the type structure.
Therefore, of the three kinds of modules existing in Maude, namely functional, system and
object-oriented, we need only provide a semantics for functional and system modules; they are
respectively of the form fmod R endfm, and mod R′ endm, for R and R′ rewrite theories32. Their
semantics is given in terms of an initial machine linking the module’s operational semantics
with its denotational semantics. The general notion of a machine is as follows.

For R a rewrite theory and Θ ↪→ R-Sys a reflective full subcategory, an R-machine over
Θ is an R-homomorphism [[ ]] : S −→ M, called the machine’s abstraction map, with S an
R-system and M ∈ Θ. Given R-machines over Θ, [[ ]] : S −→ M and [[ ]]′ : S ′ −→ M′, an
R-machine homomorphism is a pair of R-homomorphisms (F,G), F : S −→ S ′, G :M−→M′,
such that [[ ]];G = F ; [[ ]]′. This defines a category R-Mach/Θ; it is easy to check that the initial
object in this category is the unique R-homomorphism TR −→ RΘ(TR). 2

The intuitive idea behind a machine [[ ]] : S −→M is that we can use a system S to compute
a result relevant for a model M of interest in a class Θ of models. What we do is to perform
a certain computation in S, and then output the result by means of the abstraction map [[ ]].
A very good example is an arithmetic machine with S = TNAT, for NAT the rewriting theory
of the Peano natural numbers corresponding to the module NAT33 in Section 2, with M = IN,
and with [[ ]] the unique homomorphism from the initial NAT-system TNAT; i.e., this is the initial
machine in NAT-Mach/NAT-Alg . To compute the result of an arithmetic expression t, we perform
a terminating rewriting and output the corresponding number, which is an element of IN.

Each choice of a reflective full subcategory Θ as a category of models yields a different
semantics. As already implicit in the arithmetic machine example, the semantics of a functional
module34 fmod R endfm is the initial machine in R-Mach/R-Alg . For the semantics of a system
module mod R endm not having any functional submodules, we propose the initial machine in
R-Mach/R-Preord , but other choices are also possible. On the one hand, we could choose to be
as concrete as possible and take Θ = R-Sys in which case the abstraction map is the identity
homomorphism for TR. On the other hand, we could instead be even more abstract, and
choose Θ = R-Pos; however, this would have the unfortunate effect of collapsing all the states
of a cyclic rewriting, which seems inappropriate for many “reactive” systems. If the machine
TR −→ M is the semantics of a functional or system module with rewrite theory R, then we
call TR the module’s operational semantics, and M its denotational semantics. Therefore, the
operational and denotational semantics of a module can be extracted from its initial machine
semantics by projecting to the domain or codomain of the abstraction map. This makes Maude
a logic programming language in the general axiomatic sense of [68] mentioned in Section 7.

9 Related Work

Within the limits of this paper it is impossible to do justice to the wealth of related liter-
ature on concurrent object-oriented programming, term and graph rewriting, abstract data

32Note that, although in a functional module fmod R endfm, R is an equational theory, we can regard R as
a rewrite theory whose rules are its Church-Rosser equations, and whose structural axioms E are those axioms
modulo which we are rewriting, such as associativity, commutativity, identity . . . . Note also that in the case
of system modules having functional submodules, which is treated in [70], the semantics given below would be
inaccurate, because we must “remember” that the submodule in question is functional.

33In this case E is the commutativity attribute, and R consists of the two rules for addition.
34For this semantics to behave well, the rules R in the functional module R should be confluent modulo E.
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types, concurrency theory, Petri nets, linear and equational logic, ordered, continuous and
nondeterministic algebras, etc. The paper [72] contains 125 such references. In the area of
concurrent object-oriented programming alone there are many references; one may start with
[105, 4, 103, 101] and references there, plus papers in recent OOPSLA and ECOOP proceedings,
and of course this volume. Here the attempt will be much more restricted, and will only try to
briefly discuss a limited amount of work in some related areas.

FOOPS. Since the work on FOOPS and FOOPLog [49] was the first attempt, in joint work
with Joseph Goguen, to achieve the two ends of providing a semantic framework for object-
oriented programming and of unifying functional, relational, and object-oriented programming,
and since in fact the ideas and experience of FOOPS have had an important influence on Maude,
a few remarks should be made by way of comparison between the two languages.

Although both projects share the two ends just mentioned, their semantic frameworks—
which provide the means to attain those ends—are quite different. There are indeed important
similarities, such as the use of order-sorted techniques, the sharing of OBJ as a functional
sublanguage, the basic agreement on modularity and parameterization techniques, and the
shared distinction between the levels of sorts, classes and modules. However, the semantic
frameworks actually developed are so different that a comparison amounting to something like
an explanation of one framework in terms of the other seems quite difficult.

The original semantic framework of FOOPS given in [49] used two different semantic ac-
counts. One based on order-sorted equational logic with hidden sorts—using the ideas of [47]
and [77] about algebraic data types with state which have been further developed in [42, 54]—
and another based on reflective equational logic. The two accounts complemented each other
well, but neither of them was comprehensive enough to warrant abandoning the other. For
example, creation and deletion of objects and interactions between objects are not covered by
the hidden sort account but have a good explanation in terms of reflective equational logic.
Recent work by Joseph Goguen and his coworkers at Oxford has developed a third semantic
account of FOOPS in terms of sheaves [43, 55] which is very useful for treating concurrency
aspects not covered in [49].

In spite of the many good contributions provided by FOOPS, the reason that motivated the
present work was a vague dissatisfaction with the somewhat limited way in which the two goals
of providing a semantic framework for object-oriented programming and of unifying functional,
relational, and object-oriented programming were achieved by the FOOPS framework. On the
one hand, the need to rely on several semantic accounts suggested seeking a simple logical
framework that could fully account for all aspects of object-oriented systems, including their
concurrency; on the other, having a logic on which concurrent object-oriented programming
could be defined as logic programming in the strict axiomatic sense of [68] and on which
the functional and relational paradigms could be unified by maps of logics seemed the most
satisfactory way of achieving the desired unification of paradigms. Although FOOPS and
FOOPLog are certainly declarative languages, for the moment they fall short of being logic
programming languages in the precise axiomatic sense of [68], although this does not exclude
that they could be shown to be so in the future.

Algebraic Approaches to Object-Oriented Programming. Besides the recent work on
FOOPS at Oxford already discussed, there is also important work on the semantics of object-
oriented programming using algebraic techniques by members of the ESPRIT research group
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IS-CORE including Amı́lcar Sernadas, Hans-Dieter Ehrich, Udo Lipeck, Tom Maibaum, Robert
Meersman, and their collaborators (see [95] for a collection of papers), and there is joint work by
Hans-Dieter Ehrich, Joseph Goguen and Amı́lcar Sernadas relating Goguen’s sheaf semantics
to ideas in the IS-CORE group [34]. Although we can generally say that this body of work
makes use of algebraic data type techniques and aims at a conceptual clarification of the notion
of object, a detailed comparison of the work of the IS-CORE group with the present work is
beyond the scope of this paper.

There is also important work by Milner, Parrow and Walker on the π-calculus [86] giving
a semantics to actors in a generalization of Milner’s CCS. As the recent work of Milner shows
[85], the π-calculus, or at least a good part of it, seems to be naturally expressible in terms
of Berry and Boudol’s Chemical Abstract Machine [15] and therefore by rewrite rules modulo
ACI. This suggests that the π-calculus, or important fragments of it, can be viewed naturally as
a specialization of the concurrency model provided by rewriting logic; however, a more detailed
comparison will have to wait for a future occasion.

More generally, there is a broad body of work using a variety of algebraic approaches in
the specification of concurrency that has been recently surveyed thanks to the efforts of Egidio
Astesiano and Gianna Reggio [10].

Type Theory Approaches. In recent years there has been a steady increase in the use of
constructive type theory to give semantics to some aspects of object-oriented programming.
Early important references include the original work of Reynolds on subtypes [94], Cardelli’s
paper on the semantics of inheritance [21], and the paper of Cardelli and Wegner on the FUN
language [24]; a good number of other papers by a variety of authors have been written since
then. For the most part, work in this area seems to take what might be described as a “trans-
lational” approach in which, by using increasingly more powerful constructive type theories,
aspects and features of object-oriented programming are translated into type-theoretic accounts
of them. In this way, a number of aspects have been studied, such as, for example, applicative
models of inheritance (e.g., [22, 19, 17, 91]), record operations (e.g., [23]), reuse aspects of
inheritance (e.g., [29, 88, 18]), and type-checking issues (e.g., [87, 31, 61]).

Although valuable contributions clarifying some aspects of object-oriented programming
have been made by proponents of this approach, it seems for the moment uncertain whether
the general approach of translating object-oriented programming features into type-theoretic
formulations will ultimately succeed in covering in a satisfactory way all the aspects of object-
oriented programming. Judging from the experience of previous work on the denotational
semantics of imperative languages—of which these type-theoretic approaches are in a sense
a further development—one might be inclined to think that the addition of concurrency, on
which these approaches seem to be silent, could prove quite hard. Since most constructive
type theories have their origins in the foundations of mathematics and were designed to deal
with unchanging mathematical entities35, the difficulties in dealing with action and change in
most of them can be quite intrinsic. In addition, a difficulty with some of the current work
in this area is the sheer complexity of the formalisms into which object-oriented concepts are
sometimes translated, which makes at times difficult to understand whether a given account
does justice to and sheds light on the original problem, and raises some doubts about whether
a simpler account should instead be sought. One of the proponents of this approach seems to
acknowledge to some extent this difficulty in the statement [18],

35One notable exception is Girard’s Linear Logic [39].
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“While the semantics of our language is rather complex, involving fixed points at
both the element and the type level, we believe that this complexity underlies the
basic concepts of object-oriented programming languages.”

Maude—and for that matter FOOPS [49] and OBJ [53]—shares with type-theoretic ap-
proaches the use of subtypes. In those three languages the typing is order-sorted and uses ideas
that go back to the original paper by Goguen [41] and have been further developed by several
authors (see [51] and references there), whereas the theories of subtypes used in type-theoretic
approaches can be traced back to the work of Reynolds on implicit conversions and generic op-
erators [94]. Although there are some differences between both approaches—for example, the
notion of subtype as inclusion tends to be lost in type-theoretic approaches—the two are in fact
closely related, as recent joint work with Narciso Mart́ı-Oliet [64] has demonstrated by extend-
ing the logic and the model theory of order-sorted algebra to higher types in an approach that
subsumes those of [51] and [94] while maintaining a distinction between inclusive and coercive
notions of subtype. However, by making the option of having higher-order types orthogonal
to subtyping issues, the order-sorted approach is in fact a considerably simpler formalism and
affords a simpler treatment of object-oriented concepts.

In the case of Maude, one essential difference is that order-sortedness pervades not only
equational logic, which is used for functional modules, but also rewriting logic which is the
logic used to give semantics to system modules and to object-oriented modules; therefore,
concurrent actions—which would be problematic in a functional context—mesh very well with
subclasses in a rewriting logic account that, as shown in this paper, provides a simple semantic
framework for object-oriented programming.

Logic Programming Approaches. The theoretical work ahead should include an explo-
ration of how the approach presented here for MaudeLog can be precisely related to other recent
(relational) logic programming approaches such as concurrent logic programming (see the sur-
vey [97]), which is in a sense related to object-oriented programming [98], the work of Corradini
and Montanari [30] which addresses concurrency issues and also belongs to this general area,
the work of Saraswat and others on concurrent constraint programming [96], and the work of
Andreoli and Pareschi on linear logic programming [8, 9], which is directly aimed at supporting
concurrent object-oriented computations. Since quantifier-free linear logic can be regarded as
a special case of rewriting logic [63], this last approach, though different, is somewhat closer in
spirit to Maude and MaudeLog. Detailed comparisons of this kind may also provide additional
semantic insights on issues hitherto addressed in a more operational or proof-theoretic way in
some of these other approaches.

10 Concluding Remarks

This paper has presented a general semantic framework for object-oriented programming based
on rewriting logic that is intrinsically concurrent and provides a simple and rigorous account
of key concepts such as objects, classes and class inheritance, concurrent object-oriented syn-
chronous and asynchronous communication, autonomous objects, and object creation and dele-
tion. A declarative version of the actor model has been obtained as a special case of the
framework. In addition, the Maude language—based on rewriting logic—which unifies in a
fully declarative way the functional and concurrent object-oriented paradigms has been intro-
duced, and its features and expressive power have been illustrated with examples. It has been
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explained that in Maude the simultaneous support of concurrent communication and class
inheritance is entirely unproblematic. The parameterization and modularity mechanisms of
Maude have been illustrated with examples and it has been shown how such mechanisms can
support flexible ways of code reuse that complement those of class inheritance. The Simple
Maude sublanguage has been described, and its capabilities as a machine independent parallel
language with support for multilingual extensions and open heterogeneous systems, as well as
implementation ideas for mapping it on several parallel architectures have been discussed. The
logic and model theory of rewriting logic have been presented and have been used to give a
mathematical semantics to Maude modules. Finally, an extension of Maude called MaudeLog
that is also based on rewriting logic has been proposed as a fully declarative unification of the
functional, relational, and concurrent object-oriented paradigms.

The present paper is a report of work in progress. Although the logical foundations of
Maude are well established, much remains to be done to move the ideas forward in several
directions, including the following:

• More experience should be gained with examples to advance the language design and to
further explore the capabilities of the language. This will also help in sharpening and
expanding the boundaries of Maude and Simple Maude.

• Applications of Maude and MaudeLog and of the rewriting logic formalism to a number
of areas such as distributed artificial intelligence36, object-oriented databases37, commu-
nication protocols, and discrete event simulation should be investigated and illustrated
with examples.

• Specification and verification aspects should be studied and should be illustrated with
examples. The specification logics should not be limited to equational and rewriting
logic. Rewriting logic should be embedded within a richer logic to be used for specification
purposes. This will increase the expressiveness of Maude’s functional, system and object-
oriented theories.

• The study of parameterization and modularity issues, already initiated in [71] and [70]
respectively, and of the module inheritance techniques discussed in this paper should be
advanced.

• The work on program transformations to derive more efficient and more easily imple-
mentable modules from less efficient ones or even from specifications should be continued
and advanced. More generally, the design of machine-independent program analysis and
program optimization tools based on the concurrent rewriting model should be explored.

• Implementation and compilation techniques for various classes of parallel architectures
should be studied in more detail, trying to achieve the greatest possible degree of portabil-
ity and genericity across different machine implementations. A Maude interpreter should
be developed, as well as a portable parallel implementation of Simple Maude.

• Multilingual extensions and uses of Maude in the context of open heterogeneous systems
should be studied in greater detail.

36For a Maude example of distributed coordination between agents see Section 7 of [75].
37A first step in applying rewriting logic to the semantics of object-oriented databases has been taken in [82].
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• All aspects of MaudeLog should be further developed; much work remains to be done on
its language design, on its underlying theory and relations to other approaches, on its
deduction and operational semantics, and eventually on an actual implementation.
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[76] José Meseguer and Joseph Goguen. Order-sorted algebra II. In preparation.
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