Logical Semantics of Petri Nets

Def: A Petri net \(N = (M(P), L, \rightarrow_N) \) is a labeled directed graph such that its set of nodes \(M(P) \) is the commutative monoid of multisets on a set \(P \) of places.

A transition of \(N \) has the form:

\[m \xrightarrow{\ell} m' \text{ where } m, m' \in M(P), \ell \in L \]

We use multiplicative notation for \(M(P) \). For example, if \(P = \{p_1, \ldots, p_k\} \), then \(p_1^3 p_2 p_3 p_5 \in M(P) \), which can be abbreviated to \(p_1^3 p_2 p_5 \). The unit element is denoted \(1 \in M(P) \).

The logic \(\mathcal{L}(N) \) of Petri Net \(N = (M(P), L, \rightarrow_N) \)

Idle/Reflexivity

\[
\text{Idle/Reflexivity} \quad \quad m \in M(P) \\
\text{Idle/Reflexivity} \quad \quad m \xrightarrow{\ell} m
\]

Action

\[
\text{Action} \quad \quad (m, \ell, m') \in \rightarrow_N \\
\text{Action} \quad \quad m \xrightarrow{\ell} m'
\]
Congruence

\[m \xrightarrow{\alpha} m', \quad u \xrightarrow{\beta} u' \]

\[m u \xrightarrow{\alpha \beta} m' u' \]

Transitivity

\[m \xrightarrow{\alpha} u, \quad u \xrightarrow{\beta} v \]

\[m \xrightarrow{\alpha \beta} v \]

Therefore, this logic is exactly as the logic \(L(A) \) of an automaton \(A \), except for the addition of the Congruence inference rule, which allows us to describe parallel computations in \(A \), in the same way that Transitivity allows us to describe sequential computations.

As for automata, we call any \(M \xrightarrow{\alpha} m' \) for which we can build a proof tree in the logic \(L(N) \) a computation specification from state \(M \) to state \(m' \) with proof term \(\alpha \). Again, as for automata, this defines a directed graph:

\[\text{Spec}(N) = (M(P), \text{ProofTerms}, \xrightarrow{\text{spec}(N)}) \]
where \((m, \alpha, m') \in \text{Spec}(N)\) iff \(m \xrightarrow{\alpha} m'\) is a computation specification for \(N\).

The Computations of \(N\)

As for automata, we can ask: (1) When do two computation specifications \(m \xrightarrow{\alpha} m'\) and \(m \xrightarrow{\beta} m'\) describe the same computation from \(m\) to \(m'\)? This question is equivalent to the more interesting question:

(2) What is a concurrent computation of the Petri net \(N\)?

Of course, our answer, as for automata, to question (2) is: a concurrent computation for \(N\) is an equivalence class \([m \xrightarrow{\alpha} m']\) of computation specifications under a natural equivalence relation \(\equiv\) between computation specifications.

How can we define \(\equiv\)? Of course, as for automata, we should also have:

Associativity

\(m \xrightarrow{(\alpha; \beta); \gamma} m' \equiv m \xrightarrow{\alpha; (\beta; \gamma)} m'\)

Identity

\(m \xrightarrow{\alpha} m' \equiv m \xrightarrow{\alpha} m' \equiv m \xrightarrow{\alpha; m'}\)
What else? Obviously, since $M(P)$ is a commutative monoid
we have: $(m \cdot m')m'' = m(m' \cdot m'')$, $m \cdot m' = m' \cdot m$, $m \cdot \text{null} = m$.

But since proof terms such as $\alpha \beta$ and $\beta \alpha$ only
depend on the decomposition mm' versus $m'm$, and so
on, proof terms themselves should also form a commutative
monoid, i.e., we should have for $m_1 \xrightarrow{\alpha} m'_1$, $m_2 \xrightarrow{\beta} m'_2$, $m_3 \xrightarrow{\gamma} m'_3$:

\begin{equation*}
(\text{Parallel) Associativity} \quad m_1 m_2 m_3 \xrightarrow{(\alpha \beta)\gamma} m'_1 m'_2 m'_3 \equiv m_1 m_2 m_3 \xrightarrow{\alpha(\beta\gamma)} m'_1 m'_2 m'_3 \end{equation*}

\begin{equation*}
(\text{Parallel) Unit} \quad m_1 \xrightarrow{\text{null}} m'_1 \equiv m_1 \xrightarrow{\alpha} m'_1 \end{equation*}

\begin{equation*}
(\text{Parallel) Commutativity} \quad m_1 m_2 \xrightarrow{\alpha \beta} m'_1 m'_2 \equiv m_1 m_2 \xrightarrow{\beta \alpha} m'_1 m'_2 \end{equation*}

Anything else? Yes! We should capture the very intuitive
fact that parallel and sequential compositions "commute with
each other in the following sense: if we have a parallel
composition specification $m_1 m_2 \xrightarrow{\alpha \beta} m'_1 m'_2$ this should
be equivalent to first drop α and then β or in vice versa, i.e.,

\begin{equation*}
(\star) \quad \xrightarrow{\alpha m_2} \quad \equiv \quad \xrightarrow{\alpha m'_2} \quad \equiv \quad \xrightarrow{m'_1 \beta} \end{equation*}
We can express this "commutation between sequential and parallel computation" in an even more general way (so that, using the identity of sequential composition we get [Exercise!] the equivalence \(\ast\) as special case as follows: Let
\[m_1 \xrightarrow{\alpha'} m'_1 \quad \text{and} \quad m_2 \xrightarrow{\beta'} m'_2 \]
be also computation specifications. Then we have:

\[
\begin{align*}
 m_1 m_2 & \xrightarrow{\alpha, \beta} m'_1 m'_2 \\
 (M_1 M_2) & \xrightarrow{\alpha, \beta} (M'_1 M'_2) \equiv \frac{M_1 M_2 \equiv M'_1 M'_2}{M_1 m_2 \equiv m'_1 M_2}
\end{align*}
\]

The strict symmetric monoidal category of computations \(\mathcal{J}_N\) of \(N\) is defined as the category:

\[\mathcal{J}_N = (M(P), \text{ProofTerm}/\equiv, \rightarrow_{\mathcal{J}_N}) \]

where

\[\frac{m \xrightarrow{\alpha} m'}{\mathcal{J}_N} \iff m \xrightarrow{\alpha} m' \text{ is a computation specification.} \]

Because of the associativity and identity axioms for \(-\rightarrow_{\mathcal{J}_N}\), \(\mathcal{J}_N\) is obviously a category of computations. But it has the additional structure of a strict symmetric monoidal category. What is that?
$$\left(\frac{\text{weight} \times \text{speed}^2}{\text{mass} + \text{mass}}\right) = \left(\frac{\text{weight} \times \text{speed}^2}{\text{mass} + \text{mass}}\right)$$

(2) Fundamental. The + operation on constant previous constants.

Given + varies with time, we have the

Fundamental

In this way, the operation + on objects + and on

we have an answer of the form: \[\text{min} \left(\frac{\text{speed}^2}{\text{mass}}, \frac{\text{weight}}{\text{mass}} \right) \]

(4) For any \(m \in M \) and \(n \in N \), then in \(G \), there

+ \(A \times A \rightarrow A \) such that:

+ on \(M \) is just the restriction to \(M \) of the operator + on \(M \), which is commutative. In fact, the

commutative

in \(M, \) \((A, +) \in (A, +) \in (A, +) \) together with +, commutative

where, without any of previous we assume + = + for each

Moreover, commuting in a category \(G \in (M, A, +) \),

Definition (Strict Symmetric Monoid). A strict symmetric

...
Theorem. The category of computations \(\mathcal{C}_N \) of a Petri net \(N \) is a strict symmetric monoidal category.

Proof. This follows immediately from the Associativity, Identity, Parallel Associativity, Concurrency and Unit, and Functionality axioms defining the equivalence relation \(\equiv \).

Exercise. Prove that for any Petri net \(N \), any computation \(m \xrightarrow{c} m' \) has a [in general not unique] interleaving description as a sequential composition of basic transitions:

\[
\begin{align*}
(m_0 \xrightarrow{c_1} m_1) &= (m_0, m_1) \\
(m_1 \xrightarrow{c_2} m_2) &= (m_1, m_2) \\
&m_{n+1} = m_n \\
&\quad \forall 0 \leq n \leq m+2
\end{align*}
\]

where:

\[
(m_i \xrightarrow{c_i} m_{i+1}) \in \mathcal{N} \quad , \quad 1 \leq i \leq m+2
\]

Hint: Try induction on the depth of the proof tree for \(m \xrightarrow{c} m' \).