
Theoretical Computer Science 96 (1992) 217-248
Elsevier

217

The chemical abstract machine

Gkrard Berry
Ecole Nationale Supkrieure des Mines de Paris, Centre de Mathhmatiques Appliquies,
Sophia-Antipolis, 06560 Valbonne, France

Chard Boudol
INRIA, Sophia-Antipolis, 06560 Valbonne, France

Abstract

Berry, G. and G. Boudol, The chemical abstract machine, Theoretical Computer Science
96 (1992) 217-248.

We introduce a new kind of abstract machine based on the chemical metaphor used in the
r language of Banitre and Le Metayer. States of a machine are chemical solutions where
floating molecules can interact according to reaction rules. Solutions can be stratified
by encapsulating subsolutions within membranes that force reactions to occur locally.
We illustrate the use of this model by describing the operational semantics of the TCCS
and CCS process calculi and of the fragment of Mimer, Parrow and Walker’s Calculus
of Mobile Processes used by Milner to encode the lambda-calculus. We also give ideas
on how to extract a higher-order concurrent i-calculus out of the basic concepts of the
chemical abstract machine.

1. Introduction

We present the notion of a chemical abstract machine or chum, suited to
model concurrent computations. We show that chemical abstract machines
can implement known models of concurrent computation such as algebraic
process calculi [25,8], Milner’s mobile processes calculus [28,26], and a
concurrent I-calculus similar to the one presented in [9].

Abstract machines
Abstract machines are widely used in the classical theory of sequential

computations. Turing machines or random access machines are primary tools
within the theories of recursive functions and computational complexity. The
SECD machine [23] and the categorical abstract machine [121 are used to

0304-3975/92/$05.00 @ 1992-Elsevier Science Publishers B.V. All rights reserved

218 G. Berry, G. Boudol

study and implement the A-calculus, while the SMC machine [27] may be
used to describe the semantics of usual imperative constructs.

The situation is much less clear in the field of concurrent programming.
Models such as Petri nets [301, communicating automata [3 1, or data flow
networks [22] can be considered as abstract machines, but certainly they
lack expressive power. More expressive models such as algebraic process
calculi [25,8] are intended to be specification formalisms for distributed
systems rather than abstract machines. Implementation models of concurrent
programming languages such as CSP [2 1] are conceptually based on standard
sequential machine models augmented with scheduling facilities, not on
specific abstract machines.

The r language
Most available concurrency models are based on architectural concepts,

e.g. networks of processes communicating by means of ports or channels.
Such concepts convey a rigid geometrical vision of concurrency. Our chem-
ical abstract machine model is based on a radically different paradigm,
which originated in the r language of Ban&e and Le Metayer [4,5]. These
authors pointed out that parallel programming with control threads is more
difficult to manage than sequential programming, a fact that contrasts with
the common expectation that parallelism should ease program design. They
argued that a high-level parallel programming methodology should be lib-
erated from control management. Then they proposed a model where the
concurrent components are freely “moving” in the system and communicate
when they come in contact.

Intuitively, the state of a system is like a chemical solution in which
floating molecules can interact with each other according to reaction rules; a
magical mechanism stirs the solution, allowing for possible contacts between
molecules. In chemistry, this is the result of Brownian motion, but we do not
insist on any particular mechanism, this being an implementation matter not
studied here, see [4,11]. The solution transformation process is obviously
inherently parallel: any number of reactions can be performed in parallel,
provided that they involve disjoint sets of molecules.

Let us give a simple but striking example from [4,5]. Assume the solution

is originally made of all integers from 2 to n, along with the rule that any
integer destroys its multiples. Then the solution will end up containing the
prime numbers between 2 and n. See [4,5] for more examples and for
implementation techniques.

Technically, a r program is defined by the structure-of the molecules
it handles and by a set of reaction rules. Solutions are represented by
multisets of molecules: this accounts for the associativity and commutativity
of parallel composition, that is the implicit stirring mechanism. The reaction
rules are multiset rewritings.

The chemical abstract machine 219

Other authors have proposed models in which the flow of control is
made completely implicit: see for example the set of assignments used in
UNITY [111 or the tuple space of Linda [lo]. These models are based on
similar concepts and bear the same degree of potential parallelism. Another
instance of multiset rewriting is the token game in Petri nets: markings are
multisets of places which play the role of molecules, and transitions are rules
to transform markings.

The chemical abstract machine
To define the chemical abstract machine, we elaborate on the original r

language by specifying a syntax for molecules and refining the classification
of rules.

Like when dealing with Turing machines, there are two description levels.
The general chemical abstract machine level abstractly defines a syntactic
framework and a simple set of structural behavior laws. An actual machine
is given by adding a specific molecule syntax and a set of transformation
rules that specify how to produce new molecules from old ones.

At the upper cham level, molecules are bound to be terms of some algebra.
A general membrane construct transforms a solution into a single molecule,
and an associated general airlock construct makes the membrane somewhat
porous to permit communication between an encapsulated solution and its
environment. The laws specify how reactions defined by specific transfor-
mation rules can take place and how membranes and airlocks behave.

A specific machine is defined by giving the molecule algebra and the rules.
The rules have no premisses and are purely local, unlike the inference rules
classically used in structural operational semantics [29].

In a given cham, we (informally) classify molecules and rules. Not all
molecules directly exhibit interaction capabilities. Those which do are called
ions. The interaction capability of an ion is generally determined only by
a part of it that we call its valence. The rules that build new molecules
from ions are called reaction rules. The non-ion molecules can be heated
by heating rules to break them into simpler submolecules. Conversely, a set
of molecules can cool down to a complex molecules using reverse cooZing
rules. In our examples, heating and cooling rules closely correspond to usual
structural equivalence.

The strength of the cham model lies in the membrane notion. Membranes
make it possible to build chemical abstract machines that have the power of
classical process calculi or that behave as concurrent generalisations of the
lambda-calculus.

Structure of the paper
In this paper, we concentrate on the descriptive power of chemical abstract

machines, by illustrating the use of the concept. The techniques needed to

220 G. Berry, G. Boudol

study chemical abstract machines and to compare them with more usual
formalisms remain largely to be developed.

To make the reader familiar with our concepts, the next section presents a
simple machine for a subset of CCS. Section 3 gives some formal definitions.
In Section 4, we treat the full TCCS [151 calculus and indicate how to
handle other process calculi. Section 5 presents a cham for a subset of
Milner’s Calculus of mobile processes [28]. Section 6 is devoted to a
concurrent lambda-calculus similar to that of [9]. In Section 7 we present
the conclusion.

2. Handling a subset of CCS

Our first illustrative example is a fragment CCS- of Milner’s process
calculus CCS [25], containing the most basic operators 0 (inaction), “.”
(prefixing), and “(” (parallel), as well as the restriction operator “\” to
make the example nontrivial.

Let N = {a, b,. . .} b e a set of Blarney and C = {a, Zi (a E N} be the set of
labels built on N. We use the symbols Q, /3, etc., to range over labels, with
=
CK = cy. The CC% agents p, q, etc., are given by the syntax

P ::= 0 1 a.p I (P IP) I P\Q.

2.1. Inference rules semantics

Process calculi semantics are usually defined by inference rules in Plotkin’s
structural operational semantics style [291, called SOS for short. Milner’s
original rules involve a special r label representing internal communication.
This happens to be quite unnatural with respect to abstract machine ex-
ecutions, where internal transitions should not be visible to the user. We
prefer to use the De Nicola-Hennessy TCCS rules [151 that define two
kinds of transitions between agents: the internal transitions p -+ p’ and the
labelled transitions p 5 p’. Intuitively, p --f p’ means that p can become
p’ by executing an internal action, and p 5 p’ means that p can offer its
environment to accept the action 0: and then become p’.

Both transition systems are defined in a structural way: the behaviour of
an agent is deduced from the behaviours of its components. Since internal
communications generate internal transitions, the inference system for +
invokes the one for 5:

a.p zp

P +a’
plq-p’lq and qlp--‘qlp’

The chemical abstract machine

P ZPp’

plq~p’lq and qlp~qlp’

P 5Pp’ q 9 q’

Pl4-+P’l4’

P --‘PI
p\a + p’\a

PIP’ a${a,al
p\a Zp’\a ’

221

2.2. Basic chemistry: concurrency and communication

We now take the chemical abstract machine point of view, limiting us to
internal transitions of restriction-free agents in this section. Restriction and
external communication will be treated in the next section.

Instead of composing their behaviours, we consider agents as molecules
directly reacting with each other within a solution, that is a multiset S =
(jp, q, . . .I. There are only two basic rules:

Pl4=P, 4 (parallel),

a.p, a.9 + P, 4 (reaction) .

The rules apply to molecules present in the solution; they do not apply
inside molecules.

The first rule is reversible. It says that any molecule of the form p 1 q that
floats in the solution can be heated up (symbol -) to decompose it into
its components p and q, and conversely that any pair p, q of molecules can
be cooled down (symbol -) to rebuild a compound molecule p (q. The
comma “,” appearing in the right-hand side expresses that the heating and
cooling rule respectively yield and take a pair of molecules. This is very
similar to the decomposition of processes into sequential components used
in the translation from CCS to Petri nets presented in [181.

The reaction rule deals with ions, i.e. molecules of the form cr.p. Since a
is the ion’s communication capability, we call it its valence. Whenever two
complementary ions float in the solution, they can react with each other
and release their bodies in the solution. The valences simply vanish. Unlike
the parallel rule, the reaction rule is irreversible.

To execute an agent p, we start from the solution S,J = (IpI. Heating
the solution exhibits the potential communications, which can then be
performed using the reaction rule. Notice that a hot solution obtained by
heating an agent as much as possible contains only ions. Conversely, any
solution obtained by transitions from So can be frozen by cooling rules into
a solution jqb consisting of a single CCS- term.

222 G. Berry, G. Boudol

Example
To see the chemical abstract machine at work, let us consider an execution

of the agent a.b.0) Z.O 15.0.

ga.b.0 1 a.0 1 5.01

_r. ja.b.0, 73.0, 5.01 (parallel)

--t ib.0, 0, b.oD (reaction)

+ 40, 0, 01 (reaction).

2.3. Cleaning up solutions

In the above example, the final solution jO,O,O[) only contains the inert
molecule 0. It is natural to clean it up by using the following additional rule,
which says that 0 evaporates when heated:

O- (inaction cleanup).

A last cleaning step yields the empty solution 4 1.

Nondeterminism
Generally speaking, chemical executions are nondeterministic. For exam-

ple, in the solution ja.0, a.b.0, ZC.OD, the a.0 ion can react with any of the
two others ions, yielding either (lb.0, Z.C.O~ or jZ.b.0, C.O~ after cleanup.

Cham versus SOS
The reader will appreciate the simplicity of the chemical executions com-

pared to SOS executions. The rules for internal execution have no premisses
and do not involve the labelled transitions p 3 p’, which represent external
observation of the communication capabilities. In SOS, labelled transitions
are necessary to overcome the rigidity of syntax when performing commu-
nication between two syntactically distant agents; in a term of the form

(. . . a.p...) 1 (...Zq . . .) the inductive labelled transition system is used to
report the a and a communication capabilities to the parallel operator and
the communication is in fact realised by this operator. On the contrary, in
the cham, we just make the syntactic distance vanish by putting molecules
into contact when they want to communicate, and their communication is
direct. Notice that the notion of a syntactic position disappears even for the
standard parallel construct “I”: it is impossible to know whether Up, qD was
obtained by heating (Jp) qD or Qq 1 pa (unlike in [18]) .

Chemical concurrency is naturally associative and commutative, since
multisets are intrinsically unordered. On the contrary, the SOS semantics
needs to first introduce behaviours to recover concurrency out of syntax,

The chemical abstract machine 223

then to define what it means for processes to be equivalent, and finally to
prove equivalences such as p 1 q - q 1 p.

Furthermore, we treat structural simplifications in the same way as reac-
tions: to suppress a 0, we simply evaporate it. In SOS semantics, one needs
to prove that p 1 o is equivalent to p, and one performs transitions and
simplifications in separate steps and by separate techniques.

Another advantage of the cham appears in the sequences of execution
steps: one can directly chain reactions by keeping the solution hot, while
SOS evaluation involves structural rules at each computation step. In other
words, the use of the structural rules for “I” is factored throughout an
execution by the heating process.

However, the cham can also spend its time looping heating molecules and
cooling them back. To us, this is not really a drawback, but the immediate
consequence of the abstract machine approach: the machine not only per-
forms reactions but also searches for them. In the SOS semantics, the search
for a proof is not part of the formalism, and the operational character is
somewhat doubtful. It is of course possible to superimpose control mecha-
nism or fairness constraints on a given cham, but we have no reason to do
it by default and we shall not do it here.

Observation of a solution
So far, we have seen that the cham framework is well suited to deal

with the execution of processes, as opposed to their observation. This is
in the line of the standard notion of an operational semantics, where one
uses unlabelled transitions for reduction, evaluation, rewriting, or machine
runs, see [29]. However, classical process calculi semantics nicely define
observation, and we must also do it if we want to make any use of chams
and to define appropriate equivalence notions.

A solution should be able to perform an externally observable (Y action
whenever it contains an ion a.p. This ion should then export the a valence
and become p. One could imagine to let it disintegrate into p and emit an
a-particle to the environment. However, we shall see that such a technique
would violate Milner’s most useful principle, which states that observing a
process should not be different from communicating with it, using another
process to describe the observer. The right solution is to make the observer
react with the valence of any molecule of the solution. This requires a richer
machinery developed in the next section.

2.4. More advanced chemistry: membranes and airlocks

Consider a restriction agent p\a floating in a solution. If p is already of
the form cx.q, Q @ {a,??}, we can build a new ion by the following simple

224 G. Berry, G. Boudol

rule:

(w)\a * cr.(q\a) if cy $ {a,Zi} (restriction ion).

But this does not work if p is compound. In this case, p should be able
to freely perform internal reactions and to also propose communications to
other ions floating in the main solution, using its own ions of unrestricted
valences. We need a way to hierarchically structure solutions.

Membranes
To let p evolve on its own, we put it in a new local solution contained

within a membrane (I.D. Technically, we enrich our molecule syntax by
considering any solution contained within a membrane as a single molecule
to which operators such as “\” or “0” (external choice, see [151) can be
applied. We can then construct complex molecules containing subsolutions,
such as 40, a.b.oD\a. The rule that opens or closes a membrane below a
restriction is

P\a * UPD\a (restriction membrane).

Once created, a subsolution evolves by its own and obeys the same rules
as the global solution. Therefore, reactions can now happen under the
restriction operator. To realise global communications, we need to make the
membrane porous to valences. A first simple idea would be to use a heavy
ion formation rule such as

U~.P,Pl,P2,~~~ ,PnD - Q.jP,Pl,P2,. . . ,PnD.

Note that a heavy ion could emit the a-particle to the environment. However,
we reject such a rule for two reasons. First, it does not involve only simple
molecules as did previous rules; on the contrary, it involves finding an ion
within an arbitrary solution, which is neither simple nor general. Second,
it is irreversible, since the information of where Q comes from is lost. If
a wrong valence is chosen, the heavy ion can stay forever in the main
solution, like a precipitate. Consider for example ja.0, @LO, b.@\cD when
choosing 6: we are stuck with the inert solution aa.0, b. (@LO, oD\c>D.

Airlocks
The technique we propose involves two steps. First, we introduce a new

mechanism at the general chemical machine level: the airlock mechanism.
It uses a new molecule constructor “ a ” that builds a molecule m a S out
of a molecule m and a solution S. As well as the membrane constructor,
the airlock constructor is generic and applicable to all sorts of chams, not
only to the CCS one. The reversible airlock creation mechanism extracts

The chemical abstract machine 225

any molecule from a solution (not necessarily an ion), and puts the rest of
the solution within a membrane:

(airlock).

Since it is contained in a membrane, the new subsolution Qmi, m2,. . . , m,D
is allowed to freely continue internal reactions.

Second, we build a heavy ion from any ion in the airlock, using the rule

(a.l,) 4s = cu.(paS) (heavy ion)

In this way, we obtain reversibility by preserving the attachment between o
and p. By creating or removing airlocks, a restriction molecule can propose
several valences in succession to its environment until a communication
takes place.

Example
Let us give a simple example of communication involving a heavy ion.

Ua.0 I G.P I4)\@
2 Ua.0, @.P, qD\Ql (parallel, restriction membrane)

- {a.o, (1Gf.p) a QqDD\bD (airlock)

- Ua.0, @.(p 4 &D)D\Q (heavy ion)

- (la.0, (Z.(p a {q/j))\bD (restriction membrane)

- (la.O, a.((p a QqD)\b)D (restriction ion)

---) Uo, (P dMH\f4 (reaction)

2 UUP Q UqDD\wl (inaction cleanup, res. membrane)

- UUP? qD\Q (airlock).

Unlike in the simple case of the previous section, we cannot simply keep
the solution hot. We must sometimes cleverly cool down the solution to
remove membranes.

Reversibility is guaranteed by the usage of membranes. At the second step,
if we choose to put q in the airlock instead of Zp, there is no precipitate
since we can put q back in the subsolution and build a new airlock with Zp.
Once the heavy ion Zi. ((p a QqD)\b) has been constructed, it is not possible
to put p back into q’s solution before an a-communication occurs, since the
airlock is not any more contained within a membrane. It is not possible to
build such a membrane, since the restriction membrane rule applies only to
molecules and not inside them. This guarantees that we really emulate the
CCS behaviour.

226 G. Berry, G. Boudol

DeJining observations
The airlock technique makes it now easy to define what it means for an

external observer to observe a solution. If the solution is reduced to a single
ion, then the observer can pick up the ion’s valence and release its body.
More precisely, let S,S’ denote solutions. We set S 3 S’ if there exist a
molecule m such that S -“, 4a.m) and urn!) : S’. For example, one has

(la.0, b.oD 4 Qb.oD,

taking m = 0 a (1b.o).
The relation between this new kind of (weak) observational behaviour

and the standard TCCS one will be precisely stated in Section 4. Note that
we could also define the strong labelled transitions p 3 p’ as

3. Formal definitions

3.1. Chemical abstract machines

A chemical abstract machine or cham C is specified by defining molecules
m, m’, etc., solutions S, S’, etc., and transformation rules that determine a
transformation relation S + S’. The transformation rules are divided into
two categories: general laws applicable to all chams, and specific rules that
define a given cham. Only general laws involve premisses. Specific rules are
bound to be elementary rewriting rules.

Molecule syntax, solutions
Molecules are terms of algebras, with specific operations for each cham. So-

lutions S, S’, . . . are finite multisets of molecules, Written 4 m I, m2, . . . , mk b.

Furthermore, in each cham, any solution S can itself be considered as a sin-
gle molecule and can therefore appear as a subsolution of another molecule.
The corresponding Q.D operator is called the membrane operator. Some
chams, but not all of them, use the additional airlock constructor “ a “. An
airlock is a molecule of the form m a S where m is a molecule and S is a
solution. ’

For instance, if 0 and + are the molecule building operations, then 0,
0 + 0, 0 + UO), and {O,O a 40 + 0, Ok) are molecules, the latter also being a
solution.

The multiset union of S and S’ is written S H S’. As in the L-calculus [61,
we use the context notation C[] to denote a molecule with a hole [] in
which to place another molecule.

‘Very precise algebraic definitions of these notions are given in [24].

The chemical abstract machine 227

Specific rules
The specific rules have the form

ml, m2,. . . , mk + m;, m;, . . . , m;

where the mi and rn) are molecules.
As usual, the specific rules will be presented by means of rule schemata,

the actual rules being the instances of these schemata. To avoid “multiset
matching”, we require the subsolutions appearing in rule schemata to be
either a single solution variable S that generates all solutions, or of the form
jrnb where m is a single molecule schema.

General laws
All chams obey the following four laws.

l The Reaction Law. An instance of the right-hand side of a rule can replace
the corresponding instance of its left-hand side. Given a rule

ml,m2,..., mk + ml,, m;, . . . , mj

ifMi,M2 ,..., Mk,Mi,M; ,..., kf,! are instances of the mi’s and the m,‘s
by a common substitution, then

l The Chemical Law. Reactions can be performed freely within any solution

s + S’
s u S” -+ S’ u S”

l The Membrane Law. A subsolution can evolve freely in any context

(Ic[s,; I ;LIs’lD
l The Airlock Law.

Remarks
The chemical and membrane laws are the only ones to involve premisses.

They factor out what is usually called “structural rules” in particular calculi.
All other laws and rules are purely local. Note that the transitions of a cham
are always unlabelled ones.

A cham is an intrinsically parallel machine: one can simultaneously apply
several rules to a solution provided that their premisses are not conflicting,
i.e. that no molecule is involved in more than one rule; one can also trans-
form subsolutions in parallel. In this paper, we only study the descriptive
power of chams; it does not depend on using parallel evaluation, since a

228 G. Berry, G. Boudol

nonconflicting parallel application of rules is equivalent, up to permutations,
to any sequence of the individual rules. See [4] for a practical use of parallel
reductions.

3.2. A classification of rules

We usually distinguish between three kinds of rules: heating rules -,
cooling rules -, and reaction rules --f. The distinction is not enforced by
the formalism. Pragmatically, we find it convenient to use the following
conventions:
l Structural manipulation is performed by heating/cooling rule pairs: heat-

ing rules decompose a single molecule into simpler ones, and cooling rules
recompose a compound molecule from its components. We generally write
the heating and cooling rules together, using the symbol 5. In the sequel,
we shall always assume that the transitions given by the airlock law are
heating and cooling ones.

l Cleanup is performed by heating rules, with generally no associated cooling
rule. The purpose is to remove useless molecules.

l Reaction rules really change the information in the solution in an ir-
reversible way. Usually, they involve molecules that cannot be heated
further and are called ions; the way an ion can react with another is
determined by a portion of it that is called its valence.
The reflexive, symmetric, and transitive closure of (- u -) is written 2.

According to our conventions, it is meant to represent structural equivalence.
Given the three kinds of rules, we say that a solution is hot (resp. frozen)

if no heating (resp. cooling) rule applies to it. A solution is inert if no
reaction rule applies to it, nor to any solution structurally equivalent to it.
Since there is no default control mechanism ensuring fairness or distributed
termination detection, these properties are semantic and observer-related.
In particular, a machine has no way to detect that its solution is inert.

4. Process calculi chams

In this section, we finish the treatment of the TCCS process calculus, we
relate the cham semantics with the original structural operational semantics,
and we briefly indicate how to handle other process calculi.

4.1. The full TCCS calculus

We finish the description of the TCCS calculus [151 and of its SOS
semantics. We have already seen the inaction “O”, parallel “I”, prefixing
“.“, and restriction “\” operators. We now add the remaining operators: the
relabelling operator “ [.] “, the two sum operators “a” (internal sum) and

The chemical abstract machine 229

“0” (external sum), and the fixpoint definition f ixi (2 = p'), which is a
shorthand for

letrec X1 = p1 and... and& = pn inx,.

The final syntax is as follows:

P ::= 0 I Q*P I (P 14) I P\U I Pi41

I P @ 4 I P 0 4 1 fixit = $1.

Relabeling
A relabelling is a mapping $: JV H C, extended to labels by setting

4 (E) = 4 (a). The relabelling operator takes an agent p and a relabelling 4
and produces a new agent p [4] that behaves like p except that all its visible
actions are relabelled by 4:

Sums
Sums represent nondeterministic choices. There are several possible sums,

see [151 for an extensive discussion. The simplest sum is the internal sum
@, which nondeterministically chooses a component:

P@q+P, P@q+4.

In an external sum p 0 q, the agents p and q can freely perform internal
actions and can also propose communications to the environment. The
choice is made only when such a communication is performed:

P _P’

POq-‘P’Oq and dlP+dlP’

P :P

pfiqzp’ and qupsp’

Fixpoint
Finally, the fixpoint operation is a simple unfolding. Let p [c/2] denote

the result of the simultaneous substitution of the qi to the x1 in p:

fiXi(2 = p') *Pi[fiX(X' = p')/,?].

4.2. Handling the new operators

We first explain how to handle the new operators. Then we give the exact
syntax of molecules and the complete set of rules of the TCCS cham.

:a.n2 aDjoy ap!s pur?y-MaI ayj .IOJ sapu ayL watuq3we a3uap3A ayl

1aquIauIa.I KIPa.up 01 1IInq sr uoy Leay ayl uayw lll?d Ieulavxr ayl %I?] 01 SF

asooyo aM auo ay_L .tuaIqold sgl aAIos 01 sanby$)al lela,tas asn UED aM

‘,S SF q3TqM put? 24 S! q3!YM asru803ad wnu aM ‘u$lt! alaH

‘24 - Ls‘4

uxloJ ayl Jo alnl %ugoo:, v paau aM fuoy3ajas puewwns

ayl asgsal 01 24 ow! w~o~sue~~ w-nu aM wyl (,s ‘u) _trEd I? ~IFM MaI a_te aM

‘uog3ea.I awes Icq pauInsuo3 s! a3uajaA XI ayl a3uo ‘a~owlayun~ *(,s ‘u) Ired

e uag% s;r 11 uayM ,s 01 lou pue 24 01 s%uolaq a3ualw ayl keys asru%o3al

wnu aIru %ugoo3 aslaAal ayL .alq!slahal alnl aaoqe ayl ayeuI 01 pue sale1

-rdr3ald p!oae 01 Ityale:, aq wnu aM ‘z uog3ag ur passnwp s?? ‘JaaaMoH

‘LS ‘u)-n - (,s ‘UU’4)

aInl ayl asn ue3 aM ‘a3ualeA ayl llodxa 0,~ *(1s D tu) -0 uo! heay B uaql

pue 1s D (24.4’~) y3opp? ue 8urplInq Lq 50 ‘uor uag% ayl su!eluo3 @IO s 3;r

u1 = u %uqsl icq laylra ‘ju’;nb u1.103 ayl s a@ UED aM uayL ‘XI uodxa 01

IUBM aM lE!yl pUE ura, uor ut! sa3npoJd s uoytyosqns $Jal ayl 1~2~) aurnssv

:ajnJ uopuedxa aql puo

(. ‘.) lowado 8ugvd apqozu Mau t? a3npollur aloJaJay1 aM way1 30 y%a

.103 auwqtuatu auo uado aM ‘suoysue~i It?ulaluy unojlad Llaag 01 a1qe aq

yDea ppoys B put! d spuwu.uns ayl aDu!s ‘a183 alotu spaau tuns pzulalxg

urns p4.4a~x~

.MoIaq hrewwns alnl ayl UT saIru w3xa ayi aas .aIru %ugt?ay f!

ApEal:, sy 1~ pue ‘s~yuw_uas ~0s ay$ III SE OSIE s;r apu uorsuedxa lurodxg ayL

.saIru %upeay IOU pue salnl uop3tzaJ wayI 11e3 aM ‘p3nwuis IOU a.n3 sap-u

ayi a3up Wpuetuas ~0s ayl ur SE salnl aunzs ay, dq palpuay sr tuns p?uJaiuI

*saDuaIw uo! hzay SB saweu palIaqt?Ial %uyuodxa pue auwqwatu t! %.upIInq

Aq ‘~owado uoycywal ayl se lsn[paIput?y aq UKI lo%elado %ugIaqvlal ayL

s.iowado qdms

OEZ

The chemical abstract machine 231

Example
Let us give a simple external sum evaluation example.

fla.6.0 1 ((ZO 1 b.0) I] q) j)

z fja.6.0, ({ZO, b.O(), QqD)D

_r, Ua.S.0, (@CO Q Ub.OD>D, flqD)D

-5 ja.Z.0, -6.1: {O a (Ib.OD, (IqD)D

---f (16.0, I: (0 0 (lb.oD, (Jq\)D

- (Iz.0, 0 4 jb.oDD

- 45.0, 0, b.00.

Notice the last step: when an airlock rn a S floats in a solution, one can
cool it down and release m and all the molecules of S in the solution. This
requires to use both the airlock law and the chemical law,

4.3. The corr7plete TCCS cham

We summarise the syntax and rules of the final TCCS cham.

Syntax.

Agents:

P ::= 0 I a.~ I b Id I P\a I PM
I P@4 (P[14 (fixi(~=F).

Molecules:

m ::= p (cr.m (m\a (m[#] (S (maS

1 (m,m)) l:(m,m)) r:(m,m).

Notice that parallel and sums are agent operators, not molecules operators.

Rules.

Pl4”P, 4 (parallel)

a.m, 7i.n t m, II (reaction)

(a.p)aS S a.(paS) (heavy ion)

m\a G jmb\a (restriction membrane)

(a.m)\a + a.(m\a) ifa${a,Z} (restriction ion)

mM1 = UmD[dd (relabelling membrane)

232 G. Berry, G. Boudol

P 0 4 = (QPD, U4D)
(UQ.rn),S) - a.l:(m,S)

(S, @ILmD) - a.r:(S, m)

l:(m,m’) - m

r:(m, m’) - m’

fixj(x’ = p’) - pi[fZX(.? = p’)/x’]

(relabelling ion)

(@-left)

(a-right)

([l-expansion)

(left [l-ion)

(right O-ion)

(le$ projection)

(right projection)

@xpoint).

Additional cleanup rules.

o- (inaction cleanup)

a D\a - (restriction cleanup)

4 D[41- (relabelling cleanup).

4.4. Comparing the chum and SOS

We define weak observation as explained in Section 2.

Definition 4.1. Given a solution S, we write S % S’ if there exists a molecule
m’ such that S -r, l]a.rn’D and {rn’b A S’.

Remember that the structural equivalence 2 between solutions is the
reflexive, symmetric, and transitive closure of the heating and cooling re-
lations. In the sequel, we shall neglect the cleanup rules and consider only
the reversible heating/cooling rules. Then S?S’ if and only if there exists a
sequence of heating or cooling steps from S to S’.

The following result shows that the cham differs from the original TCCS
calculus only in the number of internal steps involved in computations. As
far as observable transitions are concerned, the solution QpD can do whatever
the term p can do, and it cannot do more.

Theorem 4.2. Let p be a TCCS agent.
(1) Zfp -+ p’ in TCCS, then QpD 5 Up’) in the TCCS chum. Zf p % p’

in TCCS, then (IpD 3 (lp’b; more precisely, there exists a molecule m’ such
that UpD -r, Qa.m’D and Urn/D 2 Qp’D.

The chemical abstract machine 233

(2) Zf (IpD A S’, then there exists a TCCS agent p’ such that p 5 p’ and
S’ 2 jp’b. Zf QpD $ S’, then th ere exists a TCCS agent p’ such that p 3 p’
and S’ 2 (Ip’D.

Sketch of proof. To prove (I), one shows how to perform given TCCS
derivations by chaining cham transitions. The proof is by induction on the
size of p and by cases on the form of the given TCCS transition. We show
two typical cases.

Case I: Assume p = p1) p2 + pi 1 pi = p’ with pI -3 pi and p2 3 p; for

some (Y, by induction, there exist ml, and m; such that 4pl) 5 &vnl,~,
(Iml,D 2 (IpiD, Qp2D 2 (la.m$D, and {rn;D 2 UpiD. We build the following
transformation sequence:

UPD = UP1 IP2D

- UP13 P2D (parallel)

2+ (Ia.ml,, z.rn;~ (cham laws)

+ uml,, m;D (reaction)

2 UP;, P;D (cham laws)

- UP; I P;D (parallel)

= UP'D

which shows the required property of p.

Case 2: Assume p = q\a -5 q’\a = p’, with u $ {a,a}. By induction, there
exists n’ such that QqD + f(~~.n’b and (In/D 2 {q/D. Let m’ = n’\a. We build
the transformation sequence

UPD = Uq\aD
- UUqD\aD (restriction membrane)

A Qja.n’)\aD (cham laws)

- Q (a.n’)\aD (restriction membrane)

- (1a. (n'\a)) (restriction ion)

= {OZ’~.

Furthermore, one has:

Urn’‘’ = Un’\aD

- gj&l)\aD (restriction membrane)

234 G. Berry, G. Boudol

2 Q{q’D\a)D (cham laws)

- Qd\4l

= QP’D.

(restriction membrane)

which shows the required property of p.

Proving (2) is harder and we just sketch the proof architecture. The
properties of -5 and 7 are proved together by induction on the number of
irreversible rules applied in the given derivations.

If this number is 0, then the property of 5 is obvious with p’ = p. To
prove the property of 3, we use a lemma about ion formation.

The lemma shows how ions a.m can be formed in arbitrary subsolutions
using only heating and cooling rules. The valences of such ions always come
from label positions in TCCS terms that yield observable transitions. Fur-
thermore, the ion bodies are kept untouched in the heating-cooling process.
More formally, let p be a TCCS term and assume {pb 5 C [CLWZ] where
the ion u.m floats in some subsolution. Then one can structurally transform
C [cr.m] into C’ [a.q] in such a way that a.q is exactly a subexpression of
the original agent p = C, [aq], with the additional properties p 5 CI [q]

in TCCS and {CL [q]D 5 QC’[q]D.
Now if QpD 2 (IcuTz’), one can use the lemma to show that p has the form

C[cr.q] with C[q] 2 m’. This shows the required property of 8, taking

P’ = C[ql.
Assume now that the number of irreversible transitions in a given deriva-

tion is strictly positive. The derivation can be written S A Si + & -r, S’
with S 5 Si and where Si --+ S2 is irreversible. The only difficult case is the
one where the transition from S, to Sz is a reaction. By a slight extension
of the lemma to two-hole contexts, one can show that p = C [a.q] [KJ],

P -+P’ = C[q] [r] in TCCS, and jp’D 5 C’[q] [r] with Si 5 C[a.q] [EJ]
and S2 2 C [q] [Y] . The global induction hypothesis applies to p’ and gives
the final result. q

4.5. Handling other process calculi

In Milner’s original calculus CCS, there is no notion of an internal unla-
belled transition. The special label r is used to report transitions provoked
by internal communications. The sum p + q is defined by the following rule:

P z P’

P+qzP’ and q +p -5 P’

in which one can take u: = r. Therefore, a summand can be chosen either
by an external communication or by an internal one.

The chemical abstract machine 235

To simulate CCS by a cham, we abandon the simple reaction rule of
TCCS and replace it by the following rule:

a.m, Zn -+ ~.(m 1 n) (z-reaction).

Since a r-ion can neither be heated nor interact with another molecule, the
only thing it can do is to traverse all membranes up to the external observer.
An observation & by this observer consumes the 7 valence, and frees the
ion body that can be heated to release the parallel components. With this
new definition of reaction, the rules of + are simply the above rules of 0.

Notice that performing an internal communication is more than just build-
ing a 7: the communication is really performed only when the final observer
accepts it by consuming this 7. Therefore, the machine’s behaviour can no
longer be defined independently of the observation process. Furthermore,
the r-reaction rule reduces the potential parallelism of the execution ma-
chine to a bare minimum. The simulation of CCS is rather unsatisfactory.
We don’t believe that CCS can be “implemented” in a more natural way,
which is an indication that 7 and + might not be good programming primi-
tives compared to those of TCCS. This is actually quite well-known to CCS
simulator implementors.

Handling other process calculi raises no particular problem. For example,
one can define a cham for MEIJE [8], which is universal among the labelled
process calculi [171. One has to use a reaction rule similar to the one
for CCS, and introduce two heating/cooling pairs for the ticking construct,
similar to the ones for relabelling:

a*msa*jmD (ticking membrane),

Q * (/3.m) = (a. j?>.(a * m) (ticking ion).

5. Milner’s calculus of mobile processes

Milner’s n-calculus of mobile processes is an extension of CCS that deals
with name passing. Intuitively, channel names can be passed between pro-
cesses through named channels. We only consider the restricted calculus
studied in [261, which is powerful enough to simulate the lambda-calculus.
The full n-calculus has other operators such as sums; they can be handled
by chams just like the corresponding CCS operators.

Like CCS, the rc-calculus deals with a set N of names and a set C of
labels. We use the symbols x,y, z, . . . to range over names. The syntax of
agents is as follows:

p ::= 0 1 x(y).p I xy.P I (P I PI I (X)P I !P-

236 G. Berry, G. Boudol

There are two bindings operators: x (y).p binds y in p and (x)p binds x
in p. Both bindings are subject to a-conversion. Intuitively, the agent x (v) .p
waits to receive a name on channel x, and substitutes y by this name in p
after reception. The agent sSy.p sends the name y on channel x. Parallelism
is interleaving, and replication conveniently replaces recursion: ! p generates

PI !P.

5.1. The original semantics

In [26], Milner presents a semantics in a mixture of SOS and cham
styles. Terms are considered modulo structural equalities, which include
in particular associativity and commutativity of
amounts to handle cham multisets in a purely
exact structural equalities are:

Pl4’4lP, P I (4 I r) = (P 14) I r

p G q if p and q are cu-convertible

!p -p I !p

(x)(plq)Epl (x)q ifxnotfreeinp

Plo=P, (x)0 s 0

(X)(Y)P = (Y)(X)P

The inference rules are:

the parallel operator. This
algebraic framework. The

(multiset)

(a-conversion)

(replication)

(scope extension)

(cleanup)

(restriction commutation).

X(Y).P I xz.q + P [Z/Y1 I 4 (communication)

P -)Pl

Pl4-$P’l4

P “PI

(Y)P * (Y)P’

(parallel)

(restriction)

= P’P
I I- I - =

q-+4
(structural equivalence).

Scoping and name generation
The strength and difficulty of the calculus come from the dynamic char-

acter of name scoping. Reception binding is classical and raises no problem.
Restriction binding is much more subtle, since it creates new names that
can be exported outside their original scope. Consider for example the term
(x(y).yu.O) 1 ((z) (Zz.z(v).w)). Initially, the scope of z is limited to the
second branch of the parallel, and z is unknown in the first branch. By
scope extension, the term is equivalent to (z) ((x(y).jJu.~) ((Xz.z(v).v)).

One can then pass z to the first branch, obtaining the term (z) ((Tu.0) 1

The chemical abstract machine 237

(z (V).v)). From now on, z can be used as a communication channel be-
tween both branches. A last communication yields the term (z) (0 1 u),

which is structurally equivalent to U.

5.2. A cham version of mobile processes

Mimer’s semantic rules are already in the spirit of the cham and are
perfectly adequate to reason about term behaviors. However, they are fairly
numerous and not very operational in character. Moreover, some of them
are really naturally taken care of by the cham: the parallel and structural
equivalence rules just express the chemical law, the other structural equalities
correspond to simple heating/cooling rules, and the restriction rule is akin
to the membrane law.

We present here two simple chams that perform all possible computations
using only a small number of simple rules. Both chams share the following
four elementary rules:

P14=P, 4 (parallel)

x(y).p, Xz.q -p[z/y], q (reaction)

!p = P, !P (replication)

o- (inaction cleanup).

The chams differ only in the way they handle restriction, The first one uses
membranes and airlocks; it requires to implement a-conversion. The second
one gets rid of a-conversion by using a name server, as do many operating
systems mechanisms; it does not use membranes.

Mobile processes with membranes and airlocks
In the first cham, we consider the restriction operation (x) as a molecule

constructor that operates on solutions, just as we did in Section 4 for CCS.
The specific rules are:

(X)P = (Y)Pb/Xl if y is not free in p (a-conversion)

(X)P = (X>QPk (restriction membrane)

(x)X P = (x,qPaql if x is not free in p (scope extension).

A restriction agent (x)p can be heated into a molecule (x) {pi that can
become (x)S whenever jpD can become S. To realize scope extension,
we simply make the membrane permeable to agents q not having x as
a free variable. If q meets (x),5, the restriction membrane rule puts in
an airlock to be absorbed by S, yielding a molecule (x) (14 a SD than can
become (x) (SU QqD). If x is free in q, then q cannot penetrate S; it is then

238 G. Berry, G. Boudol

necessary to cool the restricted solution down, to perform an a-conversion
on the cold agent, and to heat up again to build an a-converted restricted
solution into which q can enter. Notice than molecules can freely leave a
restricted solution when the restricted name is not free in them; for this, it
suffices to use the heating/cooling rules backwards.

Mobile processes with name servers
The idea of our second cham is to forget about a-conversion and scope

extension by actually generating names using a name server, as often done in
operating systems. Technically, we enumerate the set of names, N = (3, II E
N}. The molecules are the n-calculus agents and the names themselves.
There is only one specific rule:

WP, rz-~hlxl, n + 1 (restriction).

To execute an agent p, we start with the solution jp, ~1 where yt is any
name of index bigger than those free in p. The initial molecule n plays
the role of the name server that generates new names for restrictions. Each
name generation reconfigurates the name server.

In fact, we have suppressed a-conversion only for restriction, and we may
still have to perform it in substitutions. We can also suppress this remaining
a-conversion if we don’t stick to Milner’s original view and introduce two
separate name spaces for true constant names and for name variables, again
as in operating systems. We then only allow name variables to be substituted
by constant names, and we restrict communications to take place only on
channels of constant names and to pass constant names. If we denote
constant names by m,l~. and name variables by x, y, the new syntax is:

U ::= 111 1 x,

p ::= 0 I UbY).P I UU.P I (P I P) I (X)P I !P.

Only the reaction rule needs to be adapted:

rn(Y).PY “c12.4 + P b/Y I, 4 (reaction).

This technique could as well be applied to the original calculus.

We shall not give more details nor formally compare our chams with
the original calculus. Clearly, it is easier to execute programs on the cham
and transform them or reason about them using the algebraic presentation.
Notice that real formal reasoning would actually require a precise definition
of a-conversion, which will certainly involve computations on names such
as those realised by using the name server.

The chemical abstract machine

6. A Concurrent il-calculus

239

6.1. Generalising the ;l-calculus

Algebraic process calculi model concurrency but have a limited expressive
power compared to the &calculus, where one is able to express all possible
combinators and to code many types of data. On the other hand, the A-
calculus is intrinsically sequential [6,7] and cannot handle even the weakest
form of concurrency. Building new calculi that combine both abilities is
a goal of primary importance [9,3 11. In [91, we introduced such a ten-
tative concurrent lambda-calculus called the y-calculus. We could describe
the (lazy) evaluation in this calculus by means of a cham. However, our
formalism itself suggests a simpler and perhaps better calculus of the same
kind. To introduce this new calculus, let us first say a few words about the
A- and y-calculi. Some familiarity with the A-calculus will be assumed. We
just recall the syntax:

M ::= x 1 (ilx.M) 1 (MM)

where x stands for any variable. We are interested here in the lazy evaluation
of A-terms (following [2]), that is the reflexive and transitive closure of the
relation MD M’ inductively given by

Mr>M’ + MNr>M’N.

P-Reduction as communication
Intuitively, a d-calculus redex (;lx.M)N is like a valued CCS commu-

nication of the form Ax.M [X(N), since both yield M[N/x] as a result.
Hence one could imagine treating the lambda-calculus as a CCS-like process
calculus where agents are communicable values, /1 becoming a particular
label. In such a calculus, functional application should appear as a particu-
lar parallel combination of two agents, the function and its argument, and
P-reduction should be just a particular case of communication. However,
the above simple redex translation would not take care of the nonassociative
character of application and would not treat double applications correctly.
Consider, for instance, the A-term ((Ax./ly.M)N)P. The translation would
be 2x.Ay.M 1 X(N) 1 I(P). The associative/commutative character of con-
currency would make the arguments N and P interchangeable, which is
clearly wrong. Thomsen solved this problem in [31] using the CCS op-
erators of restriction and renaming. However in his higher order calculus,
P-reduction is performed in two steps, involving an intermediary state which

240 G. Berry, G. Boudol

does not represent a A-term. Then the I-calculus is not exactly a sub-calculus
of Thornsen’s CHOCS calculus.

Restricting communication-a first attempt
Another solution was presented in [9] using two concurrency operators:

an interleaving operator “I” and a binary communication operator “o”.
Communications arise as follows: in a term (M 0 N), all “I” concurrent
components of M can communicate with all concurrent components of
N, up to termination of M or N, termination being written as a special
symbol I. Then the o operator disappears by application of the simplification
rule (M o 1) = (I o M) = M, and J-application can be represented by
(M o x(N)). For instance, the above double application works in the
following way (assuming x,y not free in N):

((Ix.Jy.M@)S(N)) &?(I’))

+ ((Iy.M[N/x] o 1) o;s(P)) (communication)

= ((Iy.M[N/x]) o%(P)) (simplification)

+ (M[N/xl [Ply1 o I) (communication)

= M[NIxl [J-‘/Y] (simplification) _

A cham describing this calculus would treat the terms Ax.M and x(N) as
ions, but the interpretation of the concurrency operators of this calculus
would be somewhat unnatural. In a cham, the parallelism is always com-
mutative and associative and allows for communication, while (44 1 N)
disallows communication and o is nonassociative. As a matter of fact,
the cham framework indicates another possibility for representing properly
the A-application, by means of an encapsulated parallel combination of the
function and its argument.

6.2. The y-calculus

The key idea of our new higher-order concurrent calculus is to internalise
the concepts of the chemical abstract machine within the syntax. Let us
review these concepts.
l Solutions: these are built by heating a parallel combination of molecules.

Therefore the corresponding syntactic construct is parallel composition
(M) N). Since solutions are multisets of possibly interacting processes,
this operator allows communication.

l Membrane: encapsulating a subsolution within a membrane forces reac-
tions to occur locally. Here we will introduce a corresponding localisation
construct (M).

The chemical abstract machine 241

l Reactions: basically, these occur when opposite ions float inside the same
solution. We shall distinguish two kinds of reactive molecules, the negative
ones, or receptors, and the positive ones, or emitters.

Typically, a receptor in the A-calculus is an abstraction 2x.M. To emphasize
the ion character, we shall denote such an atomic receptor x-M, and an
atomic emitter sending the value M will be denoted M+. Therefore the
syntax of our calculus is

M ::= x I X-M 1 (M)+ 1 (Ml M)) (M).

where x stands for any variable. As usual we shall omit (or add) some
parentheses in writing the terms, which will be called processes or sometimes
agents. In what follows we shall call this concurrent calculus the y-calculus,
superseding the one proposed in [9 1.

To formalise the execution mechanism, we need a syntactic notion of
stable state, generalising that of weak head normal form. Basically, a stable
term is made out of ions of the same valence (either positive or negative),
and will therefore represent an inert solution. Formally, the syntax for pure
emitters or receptors and for stable terms is given by

E ::= M+ ((E 1 E),

R ::= x-M 1 (R) R),

W ::= E 1 R.

Now we give the y-cham describing the (lazy) evaluation of terms. The
molecules are either terms written M, M’, N or solutions written S, S’. The
symbol W denotes a stable term.

MIN = M, N (solution)

(M) = QMD (membrane)

(W) = w (hatching)

x-M, N+ --f M[N/x] (/I-reaction).

Note that the reaction rule that embodies communication is the only ir-
reversible rule. The power of the calculus is essentially due to the rules
concerning the membrane construct. This should not be confused with CCS
restriction: if a membrane encloses a stable state (i.e. emitter or receptor),
then it may vanish. The hatching rule conveniently replaces the termination
equations concerning the cooperation operator of [91 (in our calculus, a
“cooperation” operator would be (M (N)). In what follows we shall use the
notation M A N as an abbreviation for {MD -r, {ND.

242 G. Berry, G. Boudol

Embedding the A-calculus
The y-calculus contains the A-calculus, since we can now define the appli-

cation (MN) as the combination (M 1 N+). Let us see this point in some
detail; we define a translation 0 from the set of A-terms to the set of terms
given by the grammar:

it4 ::= x 1 x-A4 1 (A4 1 M+).

The translation is as follows:

e(x) = x,

8(Ax.M) = x-e(M),

B(MN) = (8(M) 1 O(N)+).

Then we can show that there is a close correspondence between lazy eval-
uation of I.-terms and evaluation in the y-cham of their translation. More
precisely, it is easy to prove that

and, moreover, that each intermediate state in the evaluation of 6’ (44) cools
down to a A-term. For instance, the above double application works as
follows.

(WY-M I N+) I f’+)

-5 jjx-y-M, N+ j), P+ D (membrane, solution)

--) UWM[N/xlD> P+D (reaction)

- Il(~-M[Nlxl)> P+D (membrane)

- UY-M[N/xl, J’+D (hatching)

--t UM[N/xl [f’/ylD (reaction).

Encoding the full A-calculus
As a matter of fact, we can also easily encode the full A-calculus: we just

have to extend the evaluation mechanism to deal with the < and ,u rules.
These rules allow to evaluate the body of an abstraction, i.e. M in ;Ix.M, and
the operand of an application, i.e. N in MN. The corresponding cham for
the extended y-calculus has new molecule constructors x-U and U+ where
U is an arbitrary molecule, and two additional rules creating membranes
encapsulating the subterms to evaluate:

x-A4 = x-{MD, Al+ s @4~‘.

The chemical abstract machine 243

Notice that there is no interference between these new rules and P-reduction:
once a membrane is opened within a term, this term cannot participate in
a P-reduction, since such a reduction involves only terms and not arbitrary
molecules.

Classical and nondeterministic combinators
Since the A-calculus is embedded in our y-calculus, we can define arbitrary

combinators such as a “replicator”, D, that satisfies (DM) 5 M 1 (DM)
for all M, or a “killer”, U, that satisfies (UM) 5 U. For example, let Y
be Kleene’s fixpoint combinator that satisfies YM D M(YM). We can set
D = Y(Af.Lx.(x 1 (fjx+)>,.

Moreover, our concurrent y-calculus is more powerful than the A-calculus.
Power is gained by making more than two molecules cooperate. The most
important non-l-definable object that can now be constructed is the internal
choice (or more accurately join) operator. To see this, let us denote by K
and F the two cancellators, i.e., respectively /2x./ly.x and ;Ix.lly.y (in our
syntax x-y-x and x-y-y). Then the internal choice operator is defined by

@ gf (KI K+ 1 F+)

This operator may be evaluated either into K, like (KK)F, or into F,
like (KF)K. Therefore one easily sees that @MN A A4 and @MN -5 N.
Clearly such a combinator is not I-definable since it does not preserve the
Church-Rosser property.

Concurrent abstractions
As in [9], we extend our syntax by defining concurrent abstractions, that

is sets of negative valences. More precisely, we define receptors of the form
[Xl (... 1 x,1-M where x1,..., xn are distinct variables. Such a term is
able to receive n values to be substituted for the xi’s in M in any order.
Obviously these generalised receptors can be incorporated in our calculus
with an additional rule:

[Xl 1 “’ 1 X,1-M + XL’ [“. 1 Xi-1 1 Xi+1 1 ‘.‘l-M (choice).

Concurrent abstractions do not add power to the original calculus, since we
can also define Cxr (. . . I x,1 -M as a choice among all possible permutations

xi, . . . x,M. For instance, using an infix notation for internal choice:

cx) VI -M dGf x-y-44 $ y-x-M.

Concurrent abstraction allows us to define combinators in a very compact
way. For instance, the choice operator can be redefined by @ = Cx 1 yl -x,
which is a parallel variant of the usual cancellator K.

244 G. Berry, G. Boudol

Parallel or
We can also define a “parallel or”, which is a parallel variant of the usual

“left-sequential or” (cf. [91). Let us see this point in some detail. It is
known (see [61) that K = x-y-x and F = x-y-y can be regarded as the
truth values, respectively true and false. Then one can define a combinator
for disjunction, namely V = x-y- (xK)y. This combinator is such that
VKX reduces to K and VFX reduces to X. However, VXK (that is “X
or true”) cannot be in general reduced to K without evaluating X. For
instance if R denotes the nonterminating term AA (where A = x- (xx) is
the duplicator) then the evaluation of VRK does not terminate. This is why
V is “left-sequential”. Moreover from Berry’s sequentiality theorem [7,6],
one can show that there is no A-definable combinator representing parallel
disjunction, that is no combinator 0 such that both OKX and OXK reduce
to K without evaluating X and OFF reduces to F. This combinator does
exist in the y-calculus and is represented by

0 = Cx I yl- (xK)y.

It is a parallel variant of the left-sequential disjunction, or equivalently a
choice between left-sequential disjunction V and right-sequential disjunction
y-x-(xK)y, see [121.

Explicit substitutions
The reader may have noted that we use ordinary substitution in our

presentation of the y-calculus, namely in the reaction rule. Then our set
of rules does not really specify a machine: an abstract machine should
not involve such a complex mechanism. We can remedy this deficiency
using explicit substitutions, like in [1,191. The idea is to bind a formal
substitution (T to a term M, building a new term denoted M[a] in [11.
Here we represent a substitution by a solution r~ made out of molecules of
the form [N/x], and drop the substitution brackets, simply using molecules
of the form:

where the U,‘s are molecules of the same shape (we omit the formal defini-
tion). The basic law concerning substitutions extracts the value of a variable
from the given environment. The formulation of this law uses the airlock
mechanism:

x{[U/x] ac7D + u etch) .

We can also add a “garbage collection” law:

xQ[U/y]aoD- xg ifyfx (gc).

The chemical abstract machine 245

The previous four laws of the y-cham are modified as follows:

(MI N)fl = Mm, Na (solution)

(M)a 5 QMa) (membrane)

(Wb + Wa (hatching)

(x-M)a, N+p + Ml [Np/x] a aD (p-reaction).

One can note that the new solution rule makes a full copy of the environment.
Formally this should be allowed only for “molecular” substitutions. This
means that we should use a syntax for substitutions, and apply reversible
transformation rules allowing us to transform 0 [U, /xl 1, . . . , [U, lx,] f) into
([VI /XI] 1 . . . 1 [U,/x, I). The details are omitted.

To evaluate a y-term M we now start with a solution consisting of a single
molecule Nj D, where N is obtained from M by a-conversion, distinguishing
the nested abstractions. For instance x-x-x has to be converted into y-x-x.

6.3. Semantics

It seems fair to say that we have not yet established that “parallel disjunc-
tion is y-definable”. This is a semantic statement, so we would have first to
define an equivalence relation = on y-terms such that

OFF 2i F,

In [9] it was proposed to adapt the notion of observational bisimulation z
of CCS [25,31] to serve as the semantic equivalence. We could define this
notion here, with the idea that x- is an input guard and M+ an output
action, but this does not seem to be a good choice. For instance we would
have OKQ $ K since OIXJ can be reduced to QKK, a term without any
communication capability which is certainly different from K.

As a matter of fact, observational bisimulation has often been criticized
for being too discriminating, and weaker “extensional” equivalences have
been proposed (for a survey, see [141 and [20]). For instance Darondeau
in [131 argued that “a semantics which stems from more sophisticated
observers [than programs] is not really extensional”. In other words, the
semantics of processes should be derived from their observation by means
of program contexts C [1. These program contexts may be regarded as tests
over processes, and there is a natural way to define an associated testing
equivalence (cf. [161): two process are equivalent if they pass the same
tests. This is the kind of semantical equality we propose for our y-calculus.

246 G. Berry, G. Boudol

However, we shall not follow [131 and [161 for what concerns the result
of experiments. To report the success of a test we shall use, as in [2], the
simplest operational information, namely convergence, that is existence of a
normal form: the agent M passes the test C [] if C [M] converges.

Convergence testing
Formally, an agent M is said to converge, in notation MJ,t, if and only if

there exists an inert solution S such that

Then the definition of the testing preorder (on closed terms) is exactly the
one of Morris’ preorder (cf. [6, exercise 16.5.5 1, and [2]), i.e.

MEN 8* VC.C[M]V_+C[N]JJ.

As usual the associated equivalence P is given by

MEN sf MEN&N_cM.

Let us see an example, showing that testing allows to distinguish divergent
terms in the y-calculus (unlike in the lazy il-calculus). We still use MN to
abbreviate application, that is (M 1 N+). As we saw, the typically divergent
A-term is fi = M where A is the duplicator x- (xx). It might be observed
that P = (A 1 A+) is also a divergent term, since it can only be evaluated
into a. Similarly, we can define a “triplicator” Y = x- ((xx)x), and it is
easy to see that Q = (Y 1 T+) is again a divergent term. Now there is a test
separating P and Q, namely

C = (([.I I z-(F)+) 1 Q+)

(recall that F = x-y-y, hence FM A I = y-y). It is not difficult to see
that C [P] diverges, whereas C [Q] -r, I, therefore P $ Q.

We shall not investigate here the properties of the testing preorder. A first
step would be to prove a generalisation of the well-known “context lemma”
(cf. [121)) showing that observers of the form

(..‘([.I I Rl)... I Rk)

are enough to test the agents, that is

MEN H Vk VR ,,..., Rk.

Such a result would allow us to give a simple proof of the desired properties
of the parallel or combinator.

The chemical abstract machine 241

7. Conclusion

Unlike some other models, the r and cham models are operational in
character and handle (true) concurrency as the primitive built-in notion.
What the cham model adds to r is the structure of molecules as terms and
the notion of a subsolution.

The implementation of TCCS, CCS, and mobile processes yield a simple
operational semantics of these calculi, describing the execution mechanism.
Inference rules are replaced by standard rewrite rules. The difference between
internal and external transitions is made obvious and so are the well-known
difficulties with sums considered as programming primitives. More powerful
“universal” process calculi such as MEIJE [8] can be handled as well. Mobile
processes can be very simply implemented. The concurrent A-calculus fully
exploits the ability of going back and forth between terms and solutions. It
can be viewed as a direct extension of the lazy L-calculus of [2 1.

Of course, this is still a preliminary work. Other concurrent computation
applications should be modelled; we think in particular of process handling
in operating systems. The theory of machine execution and observation
should also be fully developed. The respective powers of devices such as
membranes and name servers should be investigated.

Acknowledgement

We are indebted to Ilaria Castellani, Philippe Darondeau, Matthew Hen-
nessy, Robin Milner and Serge Yoccoz for helpful discussions about this
work and previous versions of the paper.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien and J.-J. Levy, Explicit substitutions, in: Proc. 17th
ACM Ann. Symp. on Principles of Programming Languages (1990) 3 l-46.

[2] S. Abramsky, The lazy ,I-calculus, in: D. Turner, ed., Research Topics in Functional
Programming (Addison-Wesley, Reading, MA, 1989) 65-l 16.

[3] A. Arnold, Semantique des processus communicants, RAIRO Inform. Thdor. Appl. 15(2)
(1981) 103-139.

[4] J.-P. Banbtre, A. Coutant and D. Le Metayer, A parallel machine for multiset
transformation and its programming style, Future Generation Comput. Systems 4 (1988)
133-144.

[51 J.-P. Banitre and D. Le Metayer, The Gamma model and its discipline of programming,
Science Comput. Programming 15 (1990) 55-77.

[6] H. Barendregt, The Lambda-Calculus, Its Syntax and Semantics, Studies in Logic, Vol.
103 (North-Holland, Amsterdam, 198 1).

[7] G. Berry, Sequentialitt de l’evaluation formelle des I-expressions, in: B. Robinet, ed.,
Program Transformations 3rd Internat. CON. on Programming (Dunod, Paris, 1978)
67-80.

248 G. Berry, G. Boudol

[B] G. Boudol, Notes on algebraic calculi of processes, in: K.P. Apt, ed., Logic and Models
ofconcurrent Systems, NATO AS1 Series F13 (1985) 261-303.

[9] G. Boudol, Towards a lambda-calculus for concurrent and communicating systems, in:
TAPSOFT 1989, Lecture Notes in Computer Science, Vol. 351 (Springer, Berlin, 1989)
149-161.

[lo] N. Carriero, and D. Gelerntner, Linda in context, Comm. ACM 32(4) (1989) 444-458.
[111 M. Chandy and J. Misra, Parallel Program Design, a Foundation (Addison-Wesley,

Reading, MA, 1988).
[121 P.-L. Curien, Categorical Combinators, Sequential Algorithms, and Functional

Programming, Research Notes in Theoretical Computer Science (Pitman, London; Wiley,
New York; 1986).

[131 P. Darondeau, About fair asynchrony, Theoret. Comput. Sci. 37 (1985) 305-336.
[141 R. De Nicola, Extensional equivalences for transition systems, Acta Inform. 24 (1987)

21 l-237.
[151 R. De Nicola and M. Hennessy, CCS without T’S, in: TAPSOFT ‘87, Lecture Notes in

Computer Science, Vol. 249 (Springer, Berlin, 1987) 138-152.
[161 R. De Nicola, and M. Hennessy, Testing equivalences for processes, Theoret. Comput.

Sci. 34 (1984) 83-133.
[171 R. De Simone, Higher-level synchronising devices in Meije-SCCS, Theoret. Comput. Sci.

37 (1985) 245-267.
[181 P. Degano, R. De Nicola and U. Montanari, A distributed operational semantics for CCS

based on condition/events systems, Acta Inform. 26 (1988) 59-9 1.
[191 T. Hardin and J.-J. Levy, A confluent calculus of substitutions, in: France-Japan Artificial

Intelligence and Computer Science Symposium (Izu, 1989).
[20] M. Hennessy, Observing processes, in: J.W. de Bakker, W.P. de Roever and G. Rozenberg,

eds., Linear time, branching time and partial orders in logics and models for concurrency,
Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1989) 173-200.

[2 1] C.A.R. Hoare, Communicating sequential processes (Prentice-Hall, Englewood Cliffs, NJ,
1985).

[22] G. Kahn, The semantics of a simple language for parallel processing, in: ZFZP Congress
1974 (1974) 993-998.

[23] P. Landin, The mechanical evaluation of expressions, Comput. J. 6 (1964) 308-320.
[24] J. Meseguer, Rewriting as a unified model for concurrency, SRI International Technical

Report, 1990.
[25] R. Milner, Communication and concurrency, International Series in Computer Science

(Prentice-Hall, Englewood Cliffs, NJ, 1989).
[26] R. Milner, Functions as processes, ZCALP ‘90, Lecture Notes in Computer Science,

Vol. 443 (Springer, Berlin, 1990) 167-180.
[27] R. Milner, Program semantics and mechanized proofs, Mathematical Center Tracts,

Vol. 82 (Mathematical Centre, Amsterdam, 1976) 3-44.
[28] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, LFCS, Edinburgh

University, ECS-LFCS-89-85, 1989.
[29] G. Plotkin, A structural approach to operational semantics, University of Aarhus, Report

DAIMI FN-19, 1981.
[30] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer

Science (Springer, Berlin, 1985).
[3 1] B. Thomsen, A calculus of higher-order communicating systems, in: Proc. 16th ACM

Ann. Symp. on Principles of Programming Languages (1989) 143-154.

