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INTRODUCTION

The calculus of constructions is a higher-order formalism for construc-
tive proofs in natural deduction style. Every proof is a A-expression, typed
with propositions of the underlying logic. By removing types we get a pure
A-expression, expressing its associated algorithm. Computing this
A-expression corresponds roughly to cut-elimination. It is our thesis that
(as already advocated by Martin-Lof [36]) the Curry-Howard correspon-
dence between propositions and types is a powerful paradigm for computer
science. In the case of constructions, we obtain the notion of a very high-
level functional programming language, with complex polymorphism well-
suited for module specification [8]. The notion of type encompasses the
usual notion of date type, but allows as well arbitrarily complex
algorithmic specifications. We develop the basic theory of a calculus of
constructions, and prove a strong normalization theorem showing that all
computations terminate. Finally, we suggest various extensions to stronger
calculi.

1. THE ABSTRACT SYNTAX OF TERMS

Our term structures are inspired by the Automath formalisms. A term is
a A-expression, where variables are typed with types which are themselves
terms of the same nature. Lambda-abstraction is written (Ax : N)M. The
name x is of course completely irrelevant, and belongs only to the concrete
syntax of the term. Abstractly, this binding operator is unary. Occurrences
of x in the concrete syntax of term M will be replaced by de Bruijn’s
indexes [4], i.e., integers denoting the reference depth of the occurrence.
Thus the string (Ax : M)(1y : N){((x y)x) represents concretely the abstract
term A(M, A(N, (2 1)1)). That is, the integer n denotes the variable bound
at the nth binder upward in the term. As usual in combinatory logic we
write (M N) for the application of term M to term N (for a survey of the
A-calculus with this notation see [4, 1]).
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We have a second binding operator for representing products: [x: A1M,
where 4 is a (type) term denoting the domain over which x ranges.
The same convention holds for this operator. Thus, the string
[x:A][y: Bl(x y) represents concretely the abstract term [4][B](2 1).

Our term algebra is completed by a constant %, which plays the role of
the universe of all types. In Automath languages, = is written prop or type.
There is no analogue (in this version) of the term 7 of Automath which
represents the common type of both prop and type (see de Bruijn [6]).
Here, in the spirit of the so-called “Curry-Howard isomorphism,” * must
be thought of as the type of all types, and the type of all propositions.
However, note that there is no circularity here: * is not of type *, although
we shall see that this system is powerful enough to share many features
with systems possessing a type of all types (but still with a normalisation
property [16]).

Terms formed solely of products over » are distinguished and called con-
texts. They are the types of logical propositions and proposition schemas,
all other terms being called objects. We shall thus see that there are two
kinds of types: the usual one (which are certain objects, and more precisely
the objects of type *) and contexts, which are in a way “types of types,”
and whose role is to support full polymorphism.

Because of the binding operators, our term structures do not form a free
algebra. We must ensure that in [x : 4 ] M the variable x may occur in M,
but not in 4. To do this, we now define precisely the set 4" of terms legal
in a context of depth .

DEeFINITION. We define the set of terms as
A=A4,041,,

where A, is the set of objects (or individual types)

A,= ) 47

nz=0
and A, is the set of contexts (or logical types)

A4,= 1) 47,

nz0

where the A" are the sets generated by the inductive rules

xeA" universe

[x:M]NeA” if MeA", NeA'*!  quantification
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and A" are the sets generated by the inductive rules

keA! if 1<k<n variables
[x :M]Ne A" if MeA", NeA™*! product
(Ax:M)NeA” if MeA", NeAr+! abstraction
(M N)eAr if M,NeA” application
and
A" = A5 A"

The closed terms are the terms in A° legal in the empty context . We
shall usually view contexts as lists of terms, with quantification the list con-
structor. A context I has an associated length |I'| defined by

|*x]=0
I[x:M]4]=1+|4].

Now if '€ A7 and 4 € A2 with n=|I'}, we define the concatenation I; 4 as
the context in A” defined as A if "=« and as [x: M)A if '=[x:M]I"
and 4'=1";A. Finally, if 'e A9 and Me A" with n=|I'], we use the
notation I'[x : M] for the closed context I'; [x: M *. Thus a closed con-
text I” of length n>0 may be written as

= [xn:rn][xn—l:rn~l]“'[x1:r1]

with I", e A"~ *. (The justification for this numbering is that in this context
the de Bruijn index 1 refers to variable x,.)

We shall generally use meta-variables I, 4 for contexts and A, B, M, N,
P, Q for terms in general (ie., objects and contexts). However, I, will
denote the ith element of context F as defined above, and this may be an
object or a context.

Object terms will be serve to denote logical propositions, as well as
individual and functional terms. The latter may be thought of as proofs of
their types, according to the Curry-Howard isomorphism [26]. In par-
ticular, we shall interpret (Ax : M)N as a proof of [x: M]P when N is a
proof of P under hypothesis M. Hence [x: M]N can be thought of as the
universal quantification (Vx:M)N as in the polymorphic A-calculus
[24,40]. But it can also represent the product (I x: M)N. We adopt a
uniform notation for the abstraction over what is usually viewed as
“proofs” (corresponding to an introduction rule of natural deduction), and
the abstraction over what is usually viewed as “terms” (corresponding to
functional abstraction). In the same way, we adopt a uniform notation for
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application, denoting both modus ponens and functional application. More
explicitly, we consider that the A-notation, which was originally used for
building terms of higher-order logic [10], is also very well-suited as a
notation for proofs, and our formalism tries to reflect this fact. Note that
our class of terms is almost identical to the one considered in Martin-Lofs
original theory of types [32], but our syntactic treatment is closer to that
of the Automath languages, and particularly to Jutting’s [29].

Formally we need a relocation operation, which replaces every free
variable k of a term M in A” by k + 1, obtaining a term M* in A"+,
Formally, M™* is defined as &,(M), where ¢ is defined recursively by

Ci{x)=x
Sllx: MIN)=[x:E(M)]E,, (N)
Ek)=k if k<iandk+ 1 otherwise
El(Ax : M)N) = (Ax : E(M))E, . 1(N)
CA(M N))= (£ M) AN)).

Before giving the type inference system, we need one more notation.
Assume that " is a context of length n: '=[I,][I",_,]---[I";] For any
variable k bound in I, ie., | <k <n, we define I'/k as add(k, I",) where we
define recursively the operation add by add(0,M)=M and
add(i+ 1, M)=(add(i, M))*. Basically, I'/k is I, “seen” in context I

A general comment on our notations: we use de Bruijn indexes for a
rigorous and complete presentation of our rules, and we prefer them to the
usual solution of Curry with renaming of bound variables. But we never
need them in the “concrete” syntax used in the presentation of the rules of
construction, so these can be read in the usual way. For simplicity of
notation, we shall still write Ax-N for (Ax: M)N if the type M of x is
determined from the context.

2. A FIrsT ATTEMPT AT A CONSTRUCTION CALCULUS

We are now ready to define the calculus. It is an inductive definition of
two relations. The first one, I"'+— A, is a binary relation between contexts.
The second one, I — M: P, is a ternary relation between a context and two
terms. We ensure that, when I is a context of length », if I'+— 4 we have
Ae A", and if I'— M : P, we have Me A" and Pe A",

Intuitively, I"+— 4 means that the context 4 is valid in the (valid) con-
text I, and I"— M : P means that, in the valid context I', M is a well-typed
term of type P. Here contexts are terms which are types, but are themselves
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nontypable. For instance, * is not of type , and actually, = has no type at
all. In the terminology of Martin-Lof, we have thus two kinds of
“judgements.” One is the judgement that a context is valid, and the other
that a term is the type of another term. In particular, "+ * says that the
context I is valid. We may think of '+ M : 4 as saying that in the con-
text I, M is a well-formed proposition schema over a list of parameters
declared by 4. Finally, we may think of I'+— M : P, where P is an object,
as saying that, in the context of hypothesis I, M is a well-formed proof of
proposition P. This terminology is consistent, since we shall see that if
I'— M : P, where P is a term, then I'— P:* We abbreviate s +— A as
—Adand x+—M:Pas—M:P

2.1. The Inference System of Constructions

Under this intuitive interpretation, all the following rules appear natural.
We first give the rules for construction of valid contexts:

— %

'—4a
Ix:4]—x

I'— M :x
Tx:M]+—x

Next we give rules for product formation:
INx:Mj—4
I'—[x:M]4

Ifx: M ]J—M,: =
F—[x: MM, *

Finally we give rules corresponding to the variables, abstraction, and
application:

ey 1< iabl
1T U<\ variable
Ix:M]—M,:P bstracti
T'— (Ax:M,)M,: [x:M,]P abstraction
I''—M:[x:P1QI'+—N:P L
application

I'— (M N):[N/x]Q

In the last rule [N/x]Q denotes the term obtained by substituting the
term N for the index 1 in the term Q. This operation may be formally
defined without difficulty [4].
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2.2. Discussion

Some remarks are called for, since the extreme conciseness of this for-
malism may be an obstacle for its understanding. What is the purpose of
such a system?

The main point is that these simple rules give us a complete presentation
of both the higher-order logic and the higher-order functional system of
Girard. This system provides a very concise notation for proofs in higher
logic presented in a natural deduction framework, while at the same time it
can also ve viewed as a description of a type-checker for a programming
language with a powerful class of types. Note that we have in this system a
uniform presentation for terms, proofs, and types.

It is important to note that this kind of system contains a *“built-in”
notion of realisability, since the notations for proofs are precisely the
J-terms. Since it is possible [31] to give a translation of Topos theory into
Church’s calculus, we obtain in this way a notion of realisability for Topos
theory. But our formalism is more general [16].

Syntactically, there are two kinds of types: the contexts and the terms of
type *, which we shall call propositions. The rules of type formation
express that these two classes are closed under product formation. One can
see the types which are terms of type * as the expression of the proposition-
as-type principle: in this formalism, we identify a proposition (terms of type
=), with its associated type of proofs. Here, it is useful to think about Mar-
tin-L6f’s system ([34]) with one universe: the term U, of Martin-L6f’s
system, which represents the type of all small types, is the analogue of our
*. But what is new here is that the set of all “small” types is closed by
products over all types. For instance, in Martin-Lofs system, [4 : Uy] 4 is
of type U, and not of type U,. Here, [4 : %] A4 is of type . Thus, although
our calculus appears to be close to that of Martin-Lof, we encompass the
nonpredicative calculus of the Principia [48] with the axiom of
reducibility, as well as the second-order calculus of Girard—Reynolds
[23, 40].

Let us make this point more precise. We adopt the following
abbreviations for the arrow: if x does not appear free in M then we write
M — N for [x: M]N. Also we use the abbreviation VA - B for [4 :*]B. It
is then straightforward to translate the system of Girard-Reynolds in our
notation. For example, the generic identity, written (Aa)-(ix:a)-x by
Reynolds, becomes here Ao - Ax - x. The type of this term, which is written
(da)(x —» a) by Reynolds, is here [«:*][x:a]a, or, with the previous
abbreviations, Va - o — a; that is, we infer — Ao Ax - x: [a % ][x 1 a]o.

2.3. The Need for Conversion Rules

This formalism is entirely self-contained, since even its linguistic aspect
(the traditional notion of well-formed formulae) is axiomatised within it
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The A-abstraction is used in particular for forming propositional schemas,
which could in turn become arguments of such schemas for higher-order
reasoning. We need now to complement this basic formalism with rules
allowing for instantiation of these schemas, that is conversion rules.

Indeed, problems appear when one tries to translate the third-order (and
higher) aspect of Girard’s system. Note that these higher-order terms did
not appear in Reynolds’ system, but are present in the work of McCracken
[37]. For instance, if we try to internalize our abbreviation of the arrow as
a definition, we define — as the term A4 -AB-[x: A]B of type VA -VB - .
But this is not sufficient: if ¢ is of type ((—A4)B) and u of type A, then our
rules do not allow the application of 7 to u. What is lacking here is a rule of
type conversion: ({—A)B) is f-convertible to [x: 41 B, and so, one wants
to say that ¢, of type ((—A)B), is also of type [x: A]B.

We are thus going to extend our previous calculus with conversion rules.
In the terminology of Martin-L6f, we introduce another kind of judgement
M = N, whose intuitive meaning is that the terms M and N denote the
same object. There are many possibilities for doing this, and the one
presented here deals only with conversion rules at the level of types (and
not at all levels, as in [15]). This presentation has the advantage that the
proof of decidability of this inference system is easier.

3. THe CaLcuLus WITH CONVERSION RULES

We thus add to the previous calculus another kind of sequent, of the
form I'— M >~ N, where B is a context and M and N are terms. We try to
formalise the notion of “logical” conversion between types.

3.1. The Conversion Rules

DEFINITION. 2 is the smallest congruence over propositions and con-
texts containing fS-conversion, ie., the relation defined by the inductive
rules

I'—4

I'—A=4

I'—M:4

I'—M=>A4

I'— M=>=N

i—N=M
I''—M>=NI—N=xP

I'—M=P
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I''—P, =P, IMx:P,}j—M, =M,
I'—[x:P M, =[x:P,IM,
I'— P, =P, Ix:PJ—M =M, I[x:P]J—M,: 4,
I'e— (Ax: P)M, = (Ax: P,) M,
I'—(MN):A'—M=>=M,
I'— (M N)~(M, N)
I'—(MN):AT'—NX=N,
IF'— (MN)(MN,)
I'Nx:Pl—M:A'—N:P
I'—((Ax: PYM N)=[N/xIM’

(*)

the last rule being the most important (note that we restrict ourselves to
the reduction of “logical” redexes), and we finally add a rule of type con-
version:
F'—M:PI—PxQ
I''—M:Q '

With these rules of conversion, we obtain what may be called the
“restricted” system of constructions (by opposition to the system of [15],
where the conversion is allowed at all the levels). One advantage of this
system is the fact that the decidability of all “judgements” can be proved
independently of the normalisation theorem.

DerNITION.  The restricted calculus of constructions is the typed system
defined by the rules of the previous section and the previous rules of con-
version. The (full) calculus of constructions is the typed system defined by
the restricted calculus where the starred rules are replaced by the rules

I'—M:N
I'—M=M
I'—P =P, I'x:Pl—M =M,I'fx:P]—M,:N,
I'—(x:PO)M, =(Ax: P,)M,
I'—(MN).PI'— MM, '—N=N,
I'—(MN)=(M,N,)

I'x . Al—M:.:PI'—N:A4
IF'— ((Ax: AYM N)= [N/xIM’

where we allow f-reduction over arbitrary i-terms (and this is the system
presented in [15]).
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ExaMpPLE. We want to define the intersection of a class of classes on a
given type A,. A natural attempt is to take (where we omit types for
legibility)

inter=Ao-Ax-[P: 4y —» * (e P) = (P x)

so that (inter «) is of type A, — * whenever a is of type (A4, — *) — *.
Assume that o, is a given term of type (4, — *) = *, P is a given term of
type A, — *, and we have a proof p, of type («, P). We shall build a proof
of the inclusion of (inter a,) in Pg. Let x: A, and 4 : (inter a, x). We must
build with pg, x, h, Py, ¢y a term of type (P, x).

Intuitively, & which is of type (intera,x) is also of type
[P:A, - *](xg P)— (P x) (by “definition” of inter), so that the answer
must be the term (h P, p,). We have applied here a conversion rule. Let
subset be the term AP-1Q -[x: 4y] P(x) > Q(x) of type [P: 4, —» x][Q:
Ay, — *]*. We can infer that the term Ap, -Ax-Ah-(h Py po) is of type
(2o Py) = (subset(inter ag) Py). This example shows that the rules of type
conversion are absolutely needed as soon as one wants to develop
mathematical proofs (note that this example can be developed in the
restricted calculus as well as in the full calculus). The need for conversion
rules is equally emphasized in [35] and [43].

3.2. A Few Properties of This Calculus

In the following statements, the meta-variable E denotes an arbitrary
judgement (which may be of the form 4, M : P, or M = N). All these lem-
mas are valid for the restricted calculus as well as for the full calculus. First,
we need some lemmas which are provable by induction on derivations.

LEMMA 1. If I'— E, then I'— %, and more precisely, every derivation of
I'— E contains a subderivation of A x for all A a prefix of I.

LEMMA 2. If I'[x:P]JA4—E and I'—M:P, then I'ITM/x]4+—
[M/x]E.
LEMMA 3. If I'— M :Pand I'—M=N, then '— N :P.

Lemma 4. If I'—M: N, and N is an object, then I'—N : +, and if
I'—M: A, then I'— A.

Thus, the only types are propositions and contexts, and the type of a
valid term is a valid term. Finally, we may show that types are unique, up
to conversion:

LEMMA 5. If '— M :N,and '— M : N,, then '— N, =N,.
All the proofs are straightforward and given in full in [15].
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DeFiNniTION.  Let I be a context such that {'+— %, then a I-proposition,
or I-type, is a term M such that I'— M : x. A [-context is a context 4

such that I"— 4. Finally, a I'-proof, or I'-functional, is a term M such that
there exists a I-type P such that I'— M : P.

For the restricted calculus, we can state directly:
PROPOSITION.  The relation I'+— E between contexts and judgements is
decidable in the restricted calculus of constructions.

The proof in all detail is rather long, but the main idea is simple, and its
development straightforward. One defined first the notion of reduction =
associated to our notion of conversion as

I'—M>NI—NeP
I'—M=P
I'x:Pl—Me=N
I'—[x:P]Me[x:P]N
IMx:Pl—Me=NI[x:P]—M:4
I'— (Ax: P)M = (ix: P)N
Ix:Pl—M:xI'—Pr>Q
I'—[x:P1Me[x: Q1M
Ix:Pl—M:4T'—P=Q
I'—(Ax:PYM=(ix: )M
INx:Pl—ATl—Pe=Q
I'—[x:Pld=>[x:0]4
I''—(MN) AI'— MM,
I''— (M N)e (M, N)
I'—(MN):AI'— NN,
I'—(MN)e=(MN,)
I'Nx:Pl—M:4'—N:P
I'—((Ax : P)M N)o [N/x]M’

Then the usual argument of normalisation for the (simply) typed

A-calculus applies, with the notion of complexity of a term defined as
follows.

DerFINITION.  The logical rank §(M) of a term M is defined by the induc-
tive rules
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1. 8(M)=0, if M is an object
2. o(*x)=1
3. M[x:M]IN=max(6(M)+1,6(I)).

LEMMA 6. If I'— M =N, then 6{M)=05(N).

This lemma shows that all the types of a constructed object have the
same rank, and it allows the definition:

DEFINITION.  Let I'—((Ax: P)M N):4 be a constructed (logical)
redex. We define the complexity of the redex, as the rank &(P). The
complexity of a construction I'— M : N is then defined as the multiset of
complexities of all its logical redexes.

Note then that this complexity decreases by innermost reduction, hence
the existence of a normal form, and the decidability of the conversion
relation. The normalisation property of = entails the decidability of
I'—FE.

THEOREM. Given I” and M, it is decidable whether or not there exists a
term N such that I'v— M : N. Furthermore, if the answer is positive, we can
compute effectively such an N.

The proof is an induction on the sum of the length of M and the length
of I, as in [32].

The reduction rules above correspond to the notion of instantiation for
predicate variables (see [47] for a more tranditional presentation). Strong
normalisation also holds, and this is also provable analogously to the
simply typed A-calculus (for example, see [44]).

For the full calculus, the decidability property still holds, but its proof is
harder, since we need the normalisation property for all constructed terms
(since arbitrary proofs can appear in the types, see [15]).

4. STRIPPING

We shall now show how to extract from a given proof (ie., a given
functional) its associated pure (nontyped) A-term which represents in some
way its computational contents. Al this is a generalisation of the
realisability concept [30], but we use A-terms instead of Gddel’s codes for
recursive functions. This can be done for the full calculus as well as for the
restricted calculus.

First we develop the syntactic theory of ordinary J-calculus in a way
which is consistent with our notations.
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4.1. Untyped A-Calculus

We define the set 1" of A-expressions generated by »n free variables by the
inductive rules

kei” if 1<k<n variables
Ix-Nel" if Neirt! abstraction
(M N)ea” if M,Nei" application

As before, the name x associated with the abstraction operation is a pure
dummy which is not part of the abstract structure.

4.2. The Context Contraction Map

Let I"+— x be a well-formed context. We shall distinguish in 7" the quan-
tifications over contexts from the quantifications over objects, since only
the latter will be considered free variables of stripped formulas. The quan-
tifications over contexts are used solely at compile-time, for polymorphism
type-checking.

DeriNITION.  The number of parameters, or arity, o and the canonical
injection j: o — |I'} of a context I" are determined by the inductive rules
(confusing »n with {1, .., n})

a, =0, j,=1d,.
If '=A[x:M], then if M is a context, we take
ap=0,  jik)=jsk}+1,
and if M is an object, we take
apr=a,+1, jA)=1, jrk+1)=j,k)+1
4.3. Untyping

DeFINITION. If I'— M : N, and N is an object, we define the stripped
algorithm v(M)e A*" by induction on M:

1. If M=k, we take v (M) = j;'(k).

2. T M=(M,M,), we know that I'— M, : P, and '— M, : P,. If
P, is an object, we take v (M)=(v{M,)v{M,)), and if P, is a context,
we take v (M)=vAM,) (we simply forget all type information, which is
now viewed as a comment in the algorithm).

3. If M=(ix:P)N, we know that 4— N:Q, with 4=I[x:P],
and Q an object. Now if P is an object, we take v (M) = Ax.v,(N), and if
P is a context we take v (M) =v (N)
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We shall usually write v(M) instead of v {M) when the context I is
clear.

This A-term v(M) may be though of as the computationai contents of the
proof M. The intuitive meaning of the previous translation rules is then
that the propositions are comments of programs, and that those programs
behave in a uniform way with respect to these comments.

5. AN INTERPRETATION OF CONSTRUCTIONS

We first need some notations: let .# be the set of all closed A-terms, built
on a special constant named €.

DEermNITION.  We say that a subset A of .# is saturated if, and only if,
1. €A,

2. if by, .., b, are strongly normalisable, then (25, ---b,) € A4,

3. ae A implies a strongly normalisable,

4. if b is strongly normalisable, then

([b/x]ab,---b)eAd=(Ax-abb,---b,)eA.

Now, let % be the set of all saturated subsets of .#.

DerNITION. If Ae% and Fe.f - %, then the dependent product
[T(A, F) of A and Fis the set {te.# | Vxe A(r x) € F(x)}.

Intuitively, the elements of .# are the programs and the elements of %
the types. In the previous definition, F is a dependent type.
We may then check that % has the following closure properties:

LEMMA 7. % is closed under intersection of nonempty families and under
dependent product.

The introduction of the special constant @ is needed in the proof of these
properties. What follows is a realisability interpretation [30], which is very
close to the one defined by Tait [45].

5.1. The Functionality of a Term

DEeriNITION.  We define the functionality (M) of a term M as follows. If
M is an object, we take ¢(M)= 4. For contexts, we take ¢(*)=%, and
@([x: P1I'(=@(P)— @(I'), the set of all functions from ¢(P) to o(I).

This definition holds for the restricted calculus. In the full calculus, we
would define o([x: P]1I') as ¢(P)— o(I), if P is a context, and if P is an

643/76/2-3-2
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object, as the set of all functions f from .# to ¢(I') such that f(¢)= f(u) if ¢
and u are S-convertible.

The following lemma is true for both the restricted calculus and the full
calculus:

Lemma 8. If I'— M =N then ¢o(M)= ¢(N).

DerNITION.  If I'—* is any valid context, I'=[x,:4,]---[x,:4,],
then the environment associated to I’ is the product ()=

@(A,)x - xp(4,)
5.2. Interpretation of Objects

Let I'+— M : N be a derived sequent. We shall interpret it as a function
pAM):9(I') = o(N).

There are two cases, according to whether N is a context or not.

When N is not a context, let us consider the pure A-term v (M). It has o
free variables, and may thus be interpreted as a function v, {(M): #* — £,
which simple substitutes its actual arguments to the corresponding free
variables. Furthermore, to the previously defined type forgetting operation
Jjr corresponds the projection n,:@(I") > #*. We then define p (M) as
vi{M)om .

When N is a context, we define p (M) by induction on the derivation of
the sequent I"— M : N as follows.

o product formation: I'— [x : M, 1M, : » results from I'[x: M ]+
M, :x. Let A=TI[x: M,]. We have two subcases according to whether M
is an object or not:

subcase 1: M, is an object (and we have I'— M, :#); then by
induction we can compute f=p(M,) and g=p,(M,). We then have f"
o> and g:@(I')x % > % and we define p,([x:M,1M,) as the
function from @(I") mapping a to [T (f(a), g(a)).
subcase 2: M| is a context; then by induction we can compute f =
p4(M>), so that f: @(I') x (M) — %. We then define p,([x: M,]1M,) as
the function from @(/") mapping a to () {f(a, x) | xe p(M,)}.
e variable: We have I'—[. I'/l with I<|I|. Then, p{M) is simply
the projection mapping (x,,, ..., X;) to x,.
» abstraction: I'— (Ax: M )M, : [x: M,]P results from I'[x:M,]
— M, : P by abstraction. By induction, we can compute f = p ,(M,) (where
A4=1IT[x:M,]), which is a function from @(I") x (M,) to ¢(P). We then
define p,{(Ax:M,)M,) as the application from @(I") to ¢(M,)— ¢(P)
mapping a to the function mapping x to f(a, x).
» application: I'— (M N) : [N/x]Q results from I'— M : [x:P]Q
and I'~— N:P. By induction, we have defined p(M): @(I') = (o(P)—
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o(Q)) and pAN):0(l)— ¢(P). We then define p((M N)) as the
application from @(I') to ¢(Q) mapping x to p A M)(x, p AN, x)).

We do not take the conversion rules into account, and this is justified by
Lemma 8.

ExaMpLE. The sequent — [A4:*][x:A4]A4:— 1is interpreted as
{te g |VAeUVxeA(tx)e A} and the sequent +r—AiA4-Ax-x
[A:x]}[x:A]A is interpreted as the untyped A-term Ax - x.

LEMMA 9. Let M and N be objects such that I''— M =~N. We have
prAM)=prN)

This lemma holds for the restricted calculus. Similarly, in the fuil
calculus, if I't— M= N, either M and N are both proofs, in which case
pr(M) and p{N) are two f-convertible A-terms, or else M and N are both
propositions (or proposition schemas), in which case p (M) =p (N).

5.3. Interpretation of Contexts

To each context I'+— *, we shall associate an inclusion D(I") s @(I") by
induction on the formation of I'+— *:

¢ case 1:+—=x, we take D(MN=9(I)=1.

s case 2. I'[x: M]+—=*, we have '— M : x, and so by the previous
part, we have already defined p (M). By induction, we have already an
inclusion D(Is (). We take D(I'[x:M])={(a x)|aeD() A
xepAM)a)}.

* case 3. I'[x:4]+—%* we have by induction an inclusion
D(I'Ys o(I'), and we take D(I'[x:4])={(a,x)|ae D(I') A xep(4)}=
D(I') x ¢(4).

ExaMPLE. [A:x][x:A4]+— * is interpreted as {(4, x)e U xF | xeA}.

5.4. Consistency

We can now state the principal theorem, whose proof is a
straightforward (but somewhat tedious) structural induction and which
holds in the restricted calculus and in the full calculus.

THEOREM. If I'— M : P, and I'— P : %, then for all x in D(I'), the pure
A-term p (M, x) is an element of the saturated set p (P, x).

ExamMPLE. We have [A:*]{x:4]+—x:A4; then, with I'=[4:%]
[x:A], we have D(I")={(A4,x)eUx.F |xeA} and [A:+]J[x:A]+—
x:A is interpreted as f: ¥ x.# — . mapping (A4, x) to x. Similarly
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[A:+][x:A]+— A:x is interpreted as g : ¥ x # — % mapping (4, x) to
A. We see that f(4, x)e g(4, x) if (4, x)e D(I').

COROLLARY 1. If — M : N and N is an object, then p(M) is a strongly
normalisable pure A-term (where p is an abbreviation for p ).

It is sufficient to note that p(M) is an element of p(N), by the previous
theorem, and p(N) belongs to % by construction. By the definition of %,
we see that p(M) is strongly normalisable.

DERINITION. A proposition +— P :  is inhabited if, and only if, there is a
term M such that — M : P.

COROLLARY 2. The calculus of constructions is consistent, in the sense
that there exists a proposition which is not inhabited.

The intuitive meaning of this statement is that the calculus does not
prove all its well-formed propositions. Indeed, consider the term
N=[A:x]A. We have — N : #, and the special constant 2 appears in all
the terms of p(N), which is the set consisting of all strongly normalisable
terms normalising to  or to a term of the form (25, ---5,). But if
— M : N then Q does not appear in the term p(M), hence the corollary.

The realisability interpretation we have presented is syntactic in nature.
However, it is consistent with the set-theoretical intuition of interpreting
M : P as Me P. Still, the functional spaces M — N are not interpreted as
the full function space, but only as sets of definable algorithms, closed
under the operations corresponding to the syntactic operators. We know
from Reynolds’ work that a complete set-theoretic semantics cannot exist
[41].

Other interpretations of the calculus are possible. For instance, the
Boolean interpretation, where each proposition is mapped to 0 or 1= {0},
and the proofs are mapped to 0, is simpler and suffices for proving the con-
sistency. In some sense, this is the “proof-irrelevance” interpretation of
classical logic.

It is also possible to interpret the calculus in domains such as Pw, where
cach object (proposition or proof) is mapped to an element of Pew, in such
a way that propositions become closure [37]. However, such models also
provide an interpretation for logically inconsistent systems (with Type:
Type) [7, 2]. Thus, such interpretations fail to capture the essential feature
of the calculus.

5.5. Extracting Programs from Proofs

Every proof construction 4 — M : P corresponds to an algorithm v ,(M).
Intuitively, this algorithm obeys proposition P considered as its
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specification, under the hypothesis on its a, inputs described by 4. This
algorithm, a pure i-expression in A1*, always terminates for well-typed
values of its inputs. This is the main limitation of our calculus as far as its
programming language character goes. However, almost all partial recur-
sive functions are definable in the calculus. For instance, all total recursive
functions which are provably total in higher-order arithmetic are definable,
as shown in Girard [23]. They correspond to the stripped proofs of the
proposition nat —nat, for the appropriate type nat=VA(4—>A)—>
(A—>A).

As another example, we may consider the partial recursive function
defined as

f(n)=1ifn=0or | then O else if even(n) then f(n/2)else f(3n+1).

This function is easily definable in our calculus, as a proof of
[# :nat}(D n)— nat, with the domain D defined as the proper smallest
predicate preserving termination of f; that is (D n) is

[P:nat— «](PO)—> (P1)~ ([u:nat](Pu)— (P2u))
= ([u:nat](P3u+2)—(P2u+1))—>(Pn).

Note that here nothing tells us that f is total on nonnegative integers. If
someday a proof of that fact is known, we shall get f as an algorithm in
nat — nat by feeding it this proof as the (D n) argument. This example is
especially simple, since the domain argument is redundant for the com-
putation. For more complicated examples, the domain argument may be
needed, since its proof may describe the recursion structure.

Of course the above discussion on recursion extends to inductive
definitions on any data type. Note that nonpredicativity is needed here for
the definition of such inductive predicates. By contrast, Constable and
Mendler [14] must extend the basic PRL system with recursive types.

We may thus consider our calculus as a general formalism in which to
develop programs consistently with their specifications. Our logic is
strongh enough to articulate arbitrarily complex algorithmic specifications,
as well as the more mundane standard date types found in usual program-
ming languages [18].

6. VARIATIONS ON THE BaAsic CALCULUS

6.1. A System with Normal Types

It is important to clearly distinguish between the presentation of the con-
struction calculus for a metamathematical study and its presentation for an
implementation and the development of proofs and programs in this
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calculus. The presentation we have chosen here is the best suited for the
proofs of the mathematical properties of the calculus of constructions. But
once we have these properties, it is possible to derive other presentations of
the system. For example, since we have the normalisation property [ 157, it
is possible to present the full calculus in the following way, where 4" (M)
denotes the normal form of the term M:

— %
I'— 4
Ix: N(A)]—=
I'—M:«
ITx: A (M)]—=
ITx:M]+—4
e [x:M]4
Iix: M ]J—M,:
F—[x:M]-M,:*
—x
Ir'—1:1yl
I'ix :M,J—M,:P
I'—(Ax:M)M,:[x:M]P
'—M:[x:P]QI'—N:P
F'— (MN): /([N/x]10Q)

<\ variable

abstraction

application

This presentation, by putting systematically types in normal form, avoids
the conversion rules and thus seems a bit simpler (and it is one used
in [19]). But this system does not seem to be well-suited to a
metamathematical study.

6.2. Confusing Abstraction with Product a la Automath

The calculus has three levels and two binding operators. At the level of
contexts, only the product binding is allowed. At the level of proofs, the
only binding is the A-abstraction. The two bindings may appear together
only at the level of propositions, but in a special order: a sequence of
abstractions followed by a sequence of quantifications. Thus we could
confuse the two bindings, replacing

(Axy: Py) - (Axp s Pl oy :P{c+1]"'[xn:Pn]P
by
[xi: P ] [ i Ped-Dxuy i i Piyy ] [x,: P,1P,
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where - separates the abstractions from the quantifications. Finally, it may
be useful to confuse the propostional schema [x: 4] - P with its universal
closure -[x:A4]P by using an ambiguous notation without - This has
some notational advantages, and the implementation described in [18]
used this facility. This allows in particular the denotation by one term of
several concepts: a propositional schema with free variables and its univer-
sal closures. This can be seen as a facility for overloading the meaning of
the types in the calculus. We refer to the Automath literature for this
question, especially [21], where such facility is called “type-inclusion.”

7. TOwARDS A REASONABLE USER INTERFACE

7.1. Introducing Constants

The first step toward providing a usable system consists in defining
combinators which abbreviate definitions. These constants are given, in a
context I, with a definition which is an object term M, and a unique name.
We check before entering the constant in the theory that I'— M : 4
(propositional constant) or I'— M : N (proof constant). Later on the type-
checker retrieves the type of each constant by looking it up in the theory
tables. This permits the saving of space (by sharing commonly used
constructions) and time (by not re-checking similar constructions). These
constant definitions can be internalized in the language by the “let”
construct, where let x= M in M, abbreviates ((ix : P)M, M,) (where P is
the type of M ). We can thus get “local” constants at any context depth.

No extension of the theory is required to explain the calculus with
constants. The only problem is to implement an absolute naming scheme,
orthogonal to de Bruijn’s indexes considered so far, while preserving a
notion of static scope. This problem is the logical analogue of the problem
of linking separately compiled modules in a programming language. We do
not comment further on this issue, but we remark that from a practical
point of view this facility is crucial, since it would be impossible to effec-
tively realize any significant proof without constants. Adding constants is
here the analogue of going from single-line Automath to full Automath
books.

7.2. Synthesis of Implicit Arguments

The next step in providing the user with a realistic system in which to
develop proofs is to reduce his burden of polymorphic instantiation. Many
propositional arguments are redundant, since they may be inferred
automatically as sub-components of types of further arguments. Thus a cer-
tain amount of type synthesis is possible without any nondeterministic
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search. Let us give a trivial example. In the following discussion, we shall
confuse abstractions with products.

If one wants to define composition (i.e., the cut rule of propositional
logic) in the basic calculus, we must define the constant:

Comp « [A:+][B:+][C:*][f: 4> B][g: B~ C][x:4](g(fx)).

This is very cumbersome, and if one assumes that Comp is always used
with all arguments up to g there is a lot of redundancy, since the actual
arguments corresponding to 4, B, and C are necessary parts of the types of
the actual arguments corresponding to f and g. The crucial observation is
that certain parts of the terms will always have residuals in every reduction
of every substitution instance of the term. This determines in the normal
forms of types rigid skeletons in which one may access sub-components by
pattern-matching. For instance, in A — B, ie.,, [u:A]B, we can use the
whole term as a pattern in the free variables 4 and B. This method relies
on the variant explained above of keeping types in normal form.

The notion of rigid skeleton was defined in [27] in the context of a
unification algorithm for typed A-calculus. Let us recall this notion. Let

M=[u :P] - [u,:P,JxN, ---N,)

be a term in normal form (in this discussion, A-abstractions are treated in
the same way as products). Let V be a set of variables. We call rigid
occurrence of M relatively to V' any member of the following set of
positions in M. First, we take the rigid occurrences in P, relative to
Voul{ug,.,u;_}, for i=1,..,n Then, if p=0, the occurrence is of the
head variable x, and if p>0, and when xe W=V u {u, .., u,}, the rigid
occurrences in N, are relative to W, for j=1, .., p. Now let z be any
variable. We say that M determines z iff z appears in M at a rigid
occurrence relative to 7.

We are now able to explain how to declare combinators of the calculus
given with an arity of explicit arguments, whose types determine
automatically implicit arguments which will be automatically synthesized.
In our example above, we would write

Comp{d :x [ {B:»}{C:x}[[:A>T][g: 1= C]« [x:A4](g(fX)),

where the curly brackets indicate the implicit arguments. Now the com-
binator Comp may be invoked with only its explicit actual arguments, like
in Comp(F, G). In the general situation, a declaration of a combinator with
arguments u,: P; will be legal iff for every implicit / there exists an
argument j>i such that P, determines ;. It is not mandatory that j be
itself explicit, since the synthesis of implicit arguments may be iterated
(from right to left).
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Remark. 1t is possible to generalize this method, by computing
recursively whether some functional arguments determines some of its
parameters. For instance, consider

Ce—[P:A—- «][x:A][h:(Px)]---.

The occurrence of x in (P x) is not rigid. However, if the actual first
argument P, of a given application (C P, xg hy) is of the form [u: A]TM
such that M has a rigid occurrence of u, then x, may be synthesized from
the type of hy; i.e., rigidity may be inherited. However, it is not yet clear
how to specify such iterated synthesis in a clearly understandable way,
since the notation of implicit argument is not bound to the definition of
combinator C anymore, but rather varies dynamically with every use of C.
A possibly useful restriction would be to impose in the definition of C that
certain arguments ought to determine certain of their own parameters,
using a syntax such as

CIP:{u:A}*){x:A}[h:(Px)] e ---.

This is in a way a natural extension of restrictions of A-calculus
expressibility at the proposition level, such as Church’s use of Al-calculus.

Note that the synthesis of implicit arguments corresponds exactly to the
mathematical practice. For instance, in category theory, one writes Id ,,
but fo g is not annotated with objects, since the arrows f and g determine
the proper composition from their domains and co-domains.

Finally, we stress that a certain sophistication in concrete syntax, i.e., in
the way new notations may be associated to concepts by the user in the
course of the development of a theory, is crucial if one wants to mechanize
mathematical concepts beyond the attempts of Frege, the Principia, and
even Automath. We hope that modern computer technology will help, and
dynamically extendable parsers and complex window managers seem to be
necessary components of user interfaces to programming and proving
environments [13]. Let us just mention one proposal [19] for concrete
syntax definition of combinators given with arities, which fits nicely with
the above algorithm for synthesis of implicit arguments.

7.3. Concrete Syntax

Since we now accept combinators with arities, we might as well endow
them with concrete syntax. A straightforward device for declaring arbitrary
mixflix notation is to allow the declaration of combinators by patterns:

pattern « term,

where pattern is an arbitrary sequence of concrete strings, implicit
argument declarations {x:M}, and explicit argument declarations
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[x:M]. Standard methods such as precedence declarations may com-
plement this basic mechanism to resolve ambiguities. For instance, we
would now allow the declaration

{Ax}{Bw}{Cox}[f:A>T]o[g: I'> C] e [x: A1(g(fX)),

and be able to write in the usual manner Fo G. Examples of development of
mathematical notions along those lines are presented in [19].

More ambitiously, we may imagine incorporating progressively theorem-
proving capabilities to what is initially an interactive proof-checker. We
may synthesize whole constructions by systematic search of possible com-
binations of given sets of combinators. Such tacticals may be programmed
in the meta-language of the system, in the tradition of LCF [25] or Pearl
[13]. This will offer a powerful help to the mathematician, who will be able
to concentrate on the global proof strategy, i.c., on the proper ordering of
lemmas, without losing time over the combinatory headaches of the
technical proofs.

8. POSSIBLE EXTENSTIONS

The first extension is to add operators with special rules of conversion
and reduction. For instance, we can add pairing, disjoint sums, integers,
and booleans as primitives. As an example, let us add the special constants
int : *, with 0 :int, S :int - int, and

rec:[P:int - «J(PO) - ([u:int](P u) > (P(Su)))— [n:int](Pn),

with the conversion rules
I'—P:int> «['—a:(PO)—f:[u:int](Pu)- (P(Su))
I'—(recPaf0)=a
FM—Piint>*«l—a:(PO)F—f:[u:int](Pu)—> (P(Su)) '—n:int
I'—(rec Pa f(Sn))=(f n(rec Pa f n)) ’

The normalisation proof of [24] still extends to this calculus. It is even
possible to add a fixpoint operator (only to the restricted calculus if one
still wants the normalisation property for the type-checking). This calculus
appears then as a direct generalisation of high-level functional languages,
such as Ponder [22].

Another possible extension is suggested by the connection with the
calculus of Martin-Lof. We have seen that our * can be thought of as the
first universe U, of Martin-1.6f, but with the property that [4 : U] 4, for
example, is still of type U,. It is then natural of try to extend the calculus
of constructions with a universe hierarchy U,, ... such that * is of type U,,
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which appears to be the type of all contexts, U, is of type U,, ... This is
possible, but with great care if one wants to preserve the normalisation
property. In particular, it results from [24] that the normalisation property
is lost for the natural attempt of adding the rules:

I—x

INx:U]+—=
I'— 4
I'—A4:U,
I'fx:M]—M,:U,
F—[x:M]IM,: U,

Another possibility is to add the rule I'+ x : *, for every valid context I
Girard [24] shows that this calculus does not have normalisation property
(see also [16]). However, it may be useful to consider this calculus as a
type system for programming languages (see [7]), but the Curry-Howard
paradigm seems to be lost forever then, since all propositions become
provable.

A satisfactory rule for extended product is obtained by replacing the
third rule above by

I'e— M U I'lx M ]—M,:U,
'—[x: MM, : U, ’

and similarly for higher universes. We then add the corresponding conver-
sion rules (see [16] for a complete presentation).

Let us say that an object is predicative if it is defined by a quantification
over a type which does not contain this object. In this sense, the calculus of
construction allows the formation of nonpredicative notions. For instance,
the polymorphic identity is not predicative since it can be instantiated over
its own type.

There is a tension between a purely logical language based on the
Curry-Howard correspondence, and the power of expression of set theory.
It is legitimate to use impredicative quantification inside the logical
language, but if we want to complement it with a set-theoretic hierarchy,
this latter part must be strictly stratified.

CONCLUSION

We have proposed a calculus of constructions and shown how to use it
to derive pure strongly normalisable A-term. This calculus blends together
earlier proposals of de Bruijn [6], Martin-L6f [32], and Girard [24]. Its
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syntax is closest to that of the Automath languages. In some sense, this
calculus is the “universal functional system,” in the spirit of “Curry’s
program” [43]. A prototype implementation of the calculus has been
implemented at INRIA. Numerous examples of mathematical proofs
expressed in the calculus of constructions, and machine-checked on our
implementation, are given in [19]. We hope that this calculus will be useful
for future developments of programming evironments, where programs will
be developed consistently with logical propositions expressing in one
unified formalism data types, correctness assertions, and inter-module
specifications.
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