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The calculus of constructions is a higher-order formalism for construc- 
tive proofs in natural deduction style. Every proof is a A-expression, typed 
with propositions of the underlying logic. By removing types we get a pure 
l-expression, expressing its associated algorithm. Computing this 
A-expression corresponds roughly to cut-elimination. It is our thesis that 
(as already advocated by Martin-L6f [36]) the Curry-Howard correspon- 
dence between propositions and types is a powerful paradigm for computer 
science. In the case of constructions, we obtain the notion of a very high- 
level functional programming language, with complex polymorphism well- 
suited for module specification [S]. The notion of type encompasses the 
usual notion of date type, but allows as well arbitrarily complex 
algorithmic specifications. We develop the basic theory of a calculus of 
constructions, and prove a strong normalization theorem showing that all 
computations terminate. Finally, we suggest various extensions to stronger 
calculi. 

1. THE ABSTRACT SYNTAX OF TERMS 

Our term structures are inspired by the Automath formalisms. A term is 
a A-expression, where variables are typed with types which are themselves 
terms of the same nature. Lambda-abstraction is written (Ax : N)M. The 
name x is of course completely irrelevant, and belongs only to the concrete 
syntax of the term. Abstractly, this binding operator is unary. Occurrences 
of x in the concrete syntax of term M will be replaced by de Bruijn’s 
indexes [4], i.e., integers denoting the reference depth of the occurrence. 
Thus the string (Ax : M)(ny : N)((x y)x) represents concretely the abstract 
term J.(M, I(N, (2 1) 1)). That is, the integer n denotes the variable bound 
at the n th binder upward in the term. As usual in combinatory logic we 
write (MN) for the application of term M to term N (for a survey of the 
A-calculus with this notation see [4, 11). 
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We have a second binding operator for representing products: [X : A] M, 
where A is a (type) term denoting the domain over which x ranges. 
The same convention holds for this operator. Thus, the string 
[X : A][,, : B](x y) represents concretely the abstract term [A][B](2 1). 

Our term algebra is completed by a constant *, which plays the role of 
the universe of all types. In Automath languages, * is written prop or type. 
There is no analogue (in this version) of the term z of Automath which 
represents the common type of both prop and type (see de Bruijn [6]). 
Here, in the spirit of the so-called “Curry-Howard isomorphism,” * must 
be thought of as the type of all types, and the type of all propositions. 
However, note that there is no circularity here: * is not of type *, although 
we shall see that this system is powerful enough to share many features 
with systems possessing a type of all types (but still with a normalisation 
property [ 163 ). 

Terms formed solely of products over * are distinguished and called con- 
texts. They are the types of logical propositions and proposition schemas, 
all other terms being called objects. We shall thus see that there are two 
kinds of types: the usual one (which are certain objects, and more precisely 
the objects of type *) and contexts, which are in a way “types of types,” 
and whose role is to support full polymorphism. 

Because of the binding operators, our term structures do not form a free 
algebra. We must ensure that in [x : AIM the variable x may occur in M, 
but not in A. To do this, we now define precisely the set /i” of terms legal 
in a context of depth n. 

DEFINITION. We define the set of terms as 

A=A,uA,, 

where /ii is the set of objects (or individual types) 

and A, is the set of contexls (or logical types) 

A, = u 4, 
fl>O 

where the Ai are the sets generated by the inductive rules 

* EA; universe 

[x:M]NEA: if MEA”, NE/~:+’ quantification 
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and /1: are the sets generated by the inductive rules 

kE/l; if 16kbn variables 

[x:M]NEAy if MEA”,NEA:+’ product 

(Ax : M)NE A; if ME A”, NE A:+’ abstraction 

(MN)E/~; if M,NEA; application 

and 

A”= A;,u A:. 

The closed terms are the terms in A’, legal in the empty context *. We 
shall usually view contexts as lists of terms, with quantification the list con- 
structor. A context r has an associated length IZJ defined by 

I[x:M]d(=l+Jd( 

Now if r~ A; and d E A: with n = ITj, we define the concatenation P, d as 
the context in A: defined as d if r= * and as [x : M] d’ if r= [x : M] Z-’ 
and A’= P; A. Finally, if re AZ and ME Afl with n = lrl, we use the 
notation r[x : M] for the closed context r; [x: M] *. Thus a closed con- 
text f of length n > 0 may be written as 

r= [.y .:rn][x,-, :r,-,I-+,:r,] 
with ri E Afl ‘. (The justification for this numbering is that in this context 
the de Bruijn index 1 refers to variable x, .) 

We shall generally use meta-variables r, A for contexts and A, B, M, N, 
P, Q for terms in general (i.e., objects and contexts). However, r, will 
denote the ith element of context r as defined above, and this may be an 
object or a context. 

Object terms will be serve to denote logical propositions, as well as 
individual and functional terms. The latter may be thought of as proofs of 
their types, according to the Curry-Howard isomorphism [26]. In par- 
ticular, we shall interpret (1x : M) N as a proof of [x : M] P when N is a 
proof of P under hypothesis M. Hence [x : M] N can be thought of as the 
universal quantification (Vx : M)N as in the polymorphic L-calculus 
[24,40-J. But it can also represent the product (n x : M)N. We adopt a 
uniform notation for the abstraction over what is usually viewed as 
“proofs” (corresponding to an introduction rule of natural deduction), and 
the abstraction over what is usually viewed as “terms” (corresponding to 
functional abstraction). In the same way, we adopt a uniform notation for 
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application, denoting both modus ponens and functional application. More 
explicitly, we consider that the A-notation, which was originally used for 
building terms of higher-order logic [lo], is also very well-suited as a 
notation for proofs, and our formalism tries to reflect this fact. Note that 
our class of terms is almost identical to the one considered in Martin-Lofs 
original theory of types [32], but our syntactic treatment is closer to that 
of the Automath languages, and particularly to Jutting’s [29]. 

Formally we need a relocation operation, which replaces every free 
variable k of a term A4 in A” by k + 1, obtaining a term M+ in /in+‘. 
Formally, M+ is defined as c,(M), where < is defined recursively by 

ti(Cx :  MIN)= Cx : ti(“)lti+l(N) 

5;(k) = k if k < i and k + 1 otherwise 

<I((~~ :  M)N)= tAx :  5iC”))5i+ llN) 

5,((M WI = (ti(M) <i(N). 

Before giving the type inference system, we need one more notation. 
Assume that r is a context of length n: r= [r,][r,_ 1] ... [r,]. For any 
variable k bound in I-, i.e., 1 < k d n, we define T/k as add(k, r,) where we 
define recursively the operation add by add(O, M) = M and 
add(i + 1, M) = (add(i, M)) +. Basically, r/k is r, “seen” in context r. 

A general comment on our notations: we use de Bruijn indexes for a 
rigorous and complete presentation of our rules, and we prefer them to the 
usual solution of Curry with renaming of bound variables. But we never 
need them in the “concrete” syntax used in the presentation of the rules of 
construction, so these can be read in the usual way. For simplicity of 
notation, we shall still write Ax. N for (ix : M)N if the type M of x is 
determined from the context. 

2. A FIRST ATTEMPT AT A CONSTRUCTION CALCULUS 

We are now ready to define the calculus. It is an inductive definition of 
two relations. The first one, rt- A, is a binary relation between contexts. 
The second one, r+ M: P, is a ternary relation between a context and two 
terms. We ensure that, when r is a context of length n, if Tr- A we have 
A~Az,andifr~--M:P, wehaveME/lfandPEA”. 

Intuitively, Tr- A means that the context A is valid in the (valid) con- 
text r, and r+ A4 : P means that, in the valid context r, M is a well-typed 
term of type P. Here contexts are terms which are types, but are themselves 
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nontypable. For instance, * is not of type *, and actually, * has no type at 
all. In the terminology of Martin-Lof, we have thus two kinds of 
“judgements.” One is the judgement that a context is valid, and the other 
that a term is the type of another term. In particular, f t- * says that the 
context I- is valid. We may think of f-t M : A as saying that in the con- 
text r, M is a well-formed proposition schema over a list of parameters 
declared by A. Finally, we may think of rt-- M : P, where P is an object, 
as saying that, in the context of hypothesis r, M is a well-formed proof of 
proposition P. This terminology is consistent, since we shall see that if 
rk M : P, where P is a term, then rb P : *. We abbreviate * 6 A as 
+Aand*+-iV:Pas+iV:P. 

2.1. The Inference System of Constructions 

Under this intuitive interpretation, all the following rules appear natural. 
We first give the rules for construction of valid contexts: 

t--* 

I-F-A 
r[x:A]+* 

Next we give rules for product formation: 

I-[x:M]t-A 
ft-[x:M]A 

f[x:M,]+MM,:* 
I-t-[x:M,]M,:*' 

Finally we give rules corresponding to the variables, abstraction, and 
application: 

variable 

f[x:M,]+M,:P 
rh(IZx:M,)M*:[X:M,]P 

I-I-M: [x:P]QI-+N:P 
I-+-(MN): [N/x]Q ’ 

abstraction 

application 

In the last rule [N/x]Q denotes the term obtained by substituting the 
term N for the index 1 in the term Q. This operation may be formally 
defined without difficulty [4]. 
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2.2. Discussion 

Some remarks are called for, since the extreme conciseness of this for- 
malism may be an obstacle for its understanding. What is the purpose of 
such a system? 

The main point is that these simple rules give us a complete presentation 
of both the higher-order logic and the higher-order functional system of 
Girard. This system provides a very concise notation for proofs in higher 
logic presented in a natural deduction framework, while at the same time it 
can also ve viewed as a description of a type-checker for a programming 
language with a powerful class of types. Note that we have in this system a 
uniform presentation for terms, proofs, and types. 

It is important to note that this kind of system contains a “built-in” 
notion of realisability, since the notations for proofs are precisely the 
A-terms. Since it is possible [31] to give a translation of Topos theory into 
Church’s calculus, we obtain in this way a notion of realisability for Topos 
theory. But our formalism is more general [16]. 

Syntactically, there are two kinds of types: the contexts and the terms of 
type *, which we shall call propositions. The rules of type formation 
express that these two classes are closed under product formation. One can 
see the types which are terms of type * as the expression of the proposition- 
as-type principle: in this formalism, we identify a proposition (terms of type 
*), with its associated type of proofs. Here, it is useful to think about Mar- 
tin-L& system ([34]) with one universe: the term U, of Martin-Lofs 
system, which represents the type of all small types, is the analogue of our 
*. But what is new here is that the set of all “small” types is closed by 
products over all types. For instance, in Martin-Lofs system, [A : Uo]A is 
of type CT, and not of type U,. Here, [A : *]A is of type *. Thus, although 
our calculus appears to be close to that of Martin-Lbf, we encompass the 
nonpredicative calculus of the Principia [48] with the axiom of 
reducibility, as well as the second-order calculus of Girard-Reynolds 
[23, 401. 

Let us make this point more precise. We adopt the following 
abbreviations for the arrow: if x does not appear free in M then we write 
A4 --t N for [x : M] N. Also we use the abbreviation VlA . B for [A : *] B. It 
is then straightforward to translate the system of Girard-Reynolds in our 
notation. For example, the generic identity, written (/la). (1x : a) .x by 
Reynolds, becomes here ,Icr. Ax. x. The type of this term, which is written 
(dcr)(cr -+a) by Reynolds, is here [CY : *][x : a]~, or, with the previous 
abbreviations, Vcc . a -+ a; that is, we infer t- La. Ax. x : [a : *] [x : a] a. 

2.3. The Need for Conversion Rules 

This formalism is entirely self-contained, since even its linguistic aspect 
(the traditional notion of well-formed formulae) is axiomatised within it. 
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The A-abstraction is used in particular for forming propositional schemas, 
which could in turn become arguments of such schemas for higher-order 
reasoning. We need now to complement this basic formalism with rules 
allowing for instantiation of these schemas, that is conversion rules. 

Indeed, problems appear when one tries to translate the third-order (and 
higher) aspect of Girard’s system. Note that these higher-order terms did 
not appear in Reynolds’ system, but are present in the work of McCracken 
[37]. For instance, if we try to internalize our abbreviation of the arrow as 
a definition, we define -+ as the term AA. LB. [Ix : A] B of type VA .VB. *. 
But this is not sufficient: if t is of type (( +A) B) and u of type A, then our 
rules do not allow the application of t to U. What is lacking here is a rule of 
type conversion: ((+A)B) is P-convertible to [x : A] B, and so, one wants 
to say that t, of type ((+A) B), is also of type [x : A] B. 

We are thus going to extend our previous calculus with conversion rules. 
In the terminology of Martin-Lof, we introduce another kind of judgement 
Mg N, whose intuitive meaning is that the terms A4 and N denote the 
same object. There are many possibilities for doing this, and the one 
presented here deals only with conversion rules at the level of types (and 
not at all levels, as in [ 151). This presentation has the advantage that the 
proof of decidability of this inference system is easier. 

3. THE CALCULUS WITH CONVERSION RULES 

We thus add to the previous calculus another kind of sequent, of the 
form I- + M z N, where B is a context and M and N are terms. We try to 
formalise the notion of “logical” conversion between types. 

3.1. The Conversion Rules 

DEFINITION. E is the smallest congruence over propositions and con- 
texts containing p-conversion, i.e., the relation defined by the inductive 
rules 

l-k--A 
rtArA 

rtM:A 

l-k---MEA 

r&MMrN 

(*I 
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r+P,rP,r[x:P,]l-MM,rM, 
rt[x:P,]M,r[x:P,]M, 

rt-PP,~PP,r[x:P,]~M,~~M,r[x:P,]cM,:d, 
rb(#lX:P1)M, E((/Zx:P,)M, (*I 

ft(MN):Af+MzA4, 
rh(MN)r(M,N) (*I 

rt-((MN):Af+NzN, 
rl-(MN)r(MN,) (*) 

r[x:P]+M:Ar+N:P 
r+((lx:P)MN)r[N/x]M' (*) 

the last rule being the most important (note that we restrict ourselves to 
the reduction of “logical” redexes), and we finally add a rule of type con- 
version: 

~I--A~MPP+PPQ 

With these rules of conversion, we obtain what may be called the 
“restricted” system of constructions (by opposition to the system of [ 151, 
where the conversion is allowed at all the levels). One advantage of this 
system is the fact that the decidability of all “judgements” can be proved 
independently of the normalisation theorem. 

DEFINITION. The restricred calculus of constructions is the typed system 
defined by the rules of the previous section and the previous rules of con- 
version. The (full) calculus of constructions is the typed system defined by 
the restricted calculus where the starred rules are replaced by the rules 

~I-P,~P~~[x:P,]+M,~M,~[x:P,]+M,:N, 
rl-(lx:P,)M, E(2x:P,)M* 

~+(MN):P~+M~M,~I-NzN, 
fl-((MN)z((M, N,) 

1-[x:A]+M:PftN:A 
I-I-((nx:A)MN)~[N/x]kf 

where we allow p-reduction over arbitrary A-terms (and this is the system 
presented in [ 151). 
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EXAMPLE. We want to define the intersection of a class of classes on a 
given type AO. A natural attempt is to take (where we omit types for 
legibility) 

inter=Acc./%x.[P:A,+ *](ccP)-+(Px) 

so that (inter a) is of type A, -+ * whenever c1 is of type (A, + *) -+ *. 
Assume that ol, is a given term of type (A0 + *) -+ *, PO is a given term of 
type A, + *, and we have a proofp, of type (a0 PO). We shall build a proof 
of the inclusion of (inter ao) in PO. Let x : A, and h : (inter CI~ x). We must 
build with pO, x, h, P,, ~1~ a term of type (PO x). 

Intuitively, h which is of type (inter a,, x) is also of type 
[P : A, + *](a, P) + (P x) (by “definition” of inter), so that the answer 
must be the term (h P, pO). We have applied here a conversion rule. Let 
subset be the term AP.LQ. [x : A,] P(x) -+ Q(x) of type [P: A, -+ *][Q: 
A, -+ *] *. We can infer that the term Ip,, E,x. Ah . (h P, pO) is of type 
(CI~ P,) -+ (subset(inter a,)P,). This example shows that the rules of type 
conversion are absolutely needed as soon as one wants to develop 
mathematical proofs (note that this example can be developed in the 
restricted calculus as well as in the full calculus). The need for conversion 
rules is equally emphasized in [35] and [43]. 

3.2. A Few Properties of This Calculus 

In the following statements, the meta-variable E denotes an arbitrary 
judgement (which may be of the form d, A4 : P, or Mr N). All these lem- 
mas are valid for the restricted calculus as well as for the full calculus. First, 
we need some lemmas which are provable by induction on derivations. 

LEMMA 1. If r +-- E, then r + *, and more precisely, every derivation of 
r+-- E contains a subderivation of A t- *for all A a prefix of l7 

LEMMA 2. If r[x : P] A + E and r I- M : P, then r[M/x] A t 

CM/xl E. 

LEMMA 3. Zf rt-M:Pandr+-MEN, then r+N:P. 

LEMMA 4. Zf r+ M : N, and N is an object, then r+ N : *, and if 
r+-M: A, then r+-A. 

Thus, the only types are propositions and contexts, and the type of a 
valid term is a valid term. Finally, we may show that types are unique, up 
to conversion: 

LEMMA 5. Zf T+M: N, and T+M: N,, then r+-N, zNN,. 

All the proofs are straightforward and given in full in [15]. 
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DEFINITION. Let r be a context such that r+ *, then a r-proposition, 
or r-type, is a term A4 such that r+-- M : *. A f-context is a context d 
such that rt- d. Finally, a I’-prooj; or r-functional, is a term M such that 
there exists a r-type P such that r+ M : P. 

For the restricted calculus, we can state directly: 

PROPOSITION. The relation r+-- E between contexts and judgements is 
decidable in the restricted calculus of constructions. 

The proof in all detail is rather long, but the main idea is simple, and its 
development straightforward. One defined first the notion of reduction D 
associated to our notion of conversion as 

TtMbNrt-N~r> 

r+MMP 

r[x:P]+Mr>N 
I’+[x:P]Mc> [x:P]N 

Z-[x:P]+MBNN[x:P]+M:A 

f+ (lx : P)Mo (2x : P)N 

f[x:P]+M::frP~r> 
rt-[x:P]Mr>[x:Q]M 

r[x:P]kM:AZ-tPmQ 

f+- (ix : P)Mr> (lx : Q)M 

f[x:P]+AfrP~r> 

I-F-- [x : P] A D [x : Q] A 

I-I-(MN):Al-+-MM, 

Tt(MN)r>(M, N) 

F+(MN):AZ-+NNN~ 

f+(MN)r>(MN,) 

I-[x:P]t-M:Ad+N:P 

r~-((k:P)MN)r> [N/x]M’ 

Then the usual argument of normalisation for the (simply) typed 
A-calculus applies, with the notion of complexity of a term defined as 
follows. 

DEFINITION. The logical rank 6(M) of a term M is defined by the induc- 
tive rules 
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1. 6(M) = 0, if M is an object 

2. 6(*)=1 

3. b([x: M]f)=max(G(M)+ 1,6(r)). 

LEMMA 6. I’, rt--MzN, then 6(M)=6(N). 

This lemma shows that all the types of a constructed object have the 
same rank, and it allows the definition: 

DEFINITION. Let I-I-- ((Ax : P)M N) : A be a constructed (logical) 
redex. We define the complexity of the redex, as the rank S(P). The 
complexity of a construction I-+- A4 : N is then defined as the multiset of 
complexities of all its logical redexes. 

Note then that this complexity decreases by innermost reduction, hence 
the existence of a normal form, and the decidability of the conversion 
relation. The normalisation property of D entails the decidability of 
I-+E. 

THEOREM. Given r and M, it is decidable whether or not there exists a 
term N such that TI--- M : N. Furthermore, if the answer is positive, we can 
compute effective& such an N. 

The proof is an induction on the sum of the length of M and the length 
of r, as in [32]. 

The reduction rules above correspond to the notion of instantiation for 
predicate variables (see [47] for a more tranditional presentation). Strong 
normalisation also holds, and this is also provable analogously to the 
simply typed ,I-calculus (for example, see [44]). 

For the full calculus, the decidability property still holds, but its proof is 
harder, since we need the normalisation property for all constructed terms 
(since arbitrary proofs can appear in the types, see [ 151). 

4. STRIPPING 

We shall now show how to extract from a given proof (i.e., a given 
functional) its associated pure (nontyped) A-term which represents in some 
way its computational contents. All this is a generalisation of the 
realisability concept [30], but we use A-terms instead of Godel’s codes for 
recursive functions. This can be done for the full calculus as well as for the 
restricted calculus. 

First we develop the syntactic theory of ordinary I-calculus in a way 
which is consistent with our notations. 
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4.1. Untyped L-Calculus 

We define the set A” of l-expressions generated by n free variables by the 
inductive rules 

k E 1” if l<k<n variables 

Ix.NEA” if NE,~“+’ abstraction 

(MN)El” if M,NEL”. application 

As before, the name x associated with the abstraction operation is a pure 
dummy which is not part of the abstract structure. 

4.2. The Context Contraction Map 

Let Tt- * be a well-formed context. We shall distinguish in r the quan- 
tifications over contexts from the quantifications over objects, since only 
the latter will be considered free variables of stripped formulas. The quan- 
tifications over contexts are used solely at compile-time, for polymorphism 
type-checking. 

DEFINITION. The number of parameters, or arity, cly and the canonical 
injection j,: cly + 1 f 1 of a context r are determined by the inductive rules 
(confusing n with { 1, . . . . n}) 

M, =o, j, =IdO. 

If r= d[x : M], then if M is a context, we take 

@,=cCA, j,(k) =j,(k) + 1, 

and if M is an object, we take 

ar=aA + 1, j,(l)= 1, j,(k + 1) = j,(k) + 1. 

4.3. Untyping 

DEFINITION. If r+ M : N, and N is an object, we define the stripped 
algorithm vy( M) E 2”’ by induction on M: 

1. If M = k, we take v,(M) = j;‘(k). 

2. IfM=(M,M,),weknowthatr+M,:P,andr+MM,:P,.If 
P, is an object, we take v,(M) = (v,(M,) vr(M2)), and if P, is a context, 
we take v,(M) = vJM,) (we simply forget all type information, which is 
now viewed as a comment in the algorithm). 

3. If M = (Ax : P)N, we know that A I-N : Q, with A = r[x : P], 
and Q an object. Now if P is an object, we take v,(M) = 1x. vA(N), and if 
P is a context we take v,(M) = vA(N). 
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We shall usually write v(M) instead of v,(M) when the context f is 
clear. 

This l-term v(M) may be though of as the computational contents of the 
proof M. The intuitive meaning of the previous translation rules is then 
that the propositions are comments of programs, and that those programs 
behave in a uniform way with respect to these comments. 

5. AN INTERPRETATION OF CONSTRUCTIONS 

We first need some notations: let 9 be the set of all closed i-terms, built 
on a special constant named Sz. 

DEFINITION. We say that a subset A of Y is saturated if, and only if, 

1. QEA, 

2. if b , , . . . . b,, are strongly normalisable, then (Qb, . . . b,) E A, 

3. a E A implies a strongly normalisable, 

4. if b is strongly normalisable, then 

([b/xl ab, .-.b,)EA=(Lx.abb, . ..b.,)cA. 

Now, let “2/ be the set of all saturated subsets of 4. 

DEFINITION. If A E%! and FEY -+ &, then the dependent product 
n(A,F)ofAandFistheset (tEYlVxEA(tx)EF(x)). 

Intuitively, the elements of 9 are the programs and the elements of %! 
the types. In the previous definition, F is a dependent type. 

We may then check that 02 has the following closure properties: 

LEMMA 7. 42 is closed under intersection of nonempty families and under 
dependent product. 

The introduction of the special constant Q is needed in the proof of these 
properties. What follows is a realisability interpretation [30], which is very 
close to the one defined by Tait [45]. 

5.1. The Functionality of a Term 

DEFINITION. We define the functionality q(M) of a term M as follows. If 
M is an object, we take q(M) = 9. For contexts, we take cp( * ) = %, and 
cp( [x : P]r( = q(P) + q(T), the set of all functions from q(P) to q(T). 

This definition holds for the restricted calculus. In the full calculus, we 
would define cp( [x : P] f) as q(P) + q(T), if P is a context, and if P is an 

643/76/Z-3-2 
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object, as the set of all functionsffrom 9 to cp(T) such that f(t) = f(u) if t 
and u are /I-convertible. 

The following lemma is true for both the restricted calculus and the full 
calculus: 

Lemma 8. IfTcMrN then cp(M)=cp(N). 

DEFINITION. If r+ * is any valid context, r= [x, : A,] ... [xi : A,], 
then the environment associated to f is the product cp(T) = 
cp(A,)x ..’ XdA,). 

5.2. Interpretation of Objects 

Let r+ A4 : N be a derived sequent. We shall interpret it as a function 
PAW : cp(U -+ cp(W 

There are two cases, according to whether N is a context or not. 
When N is not a context, let us consider the pure A-term v,(M). It has cly 

free variables, and may thus be interpreted as a function v,(M): Pr + 9, 
which simple substitutes its actual arguments to the corresponding free 
variables. Furthermore, to the previously defined type forgetting operation 
j, corresponds the projection n,:cp(T) +Yr. We then define p,(M) as 
VAW o xl-. 

When N is a context, we define p,(M) by induction on the derivation of 
the sequent r+ M : N as follows. 

l product formation: Tt- [x : M,]Mz : * results from r[x : M,] t- 
M2 : *. Let A = r[x : M,]. We have two subcases according to whether M, 
is an object or not: 

subcase 1: M, is an object (and we have r+ M, : *); then by 
induction we can compute f =p,(M,) and g=p,(M,). We then have f: 
cp(T) + % and g : cp(T) x4; -4% and we define P,-([x : M,]M,) as the 
function from cp(r) mapping a to n (f(a), g(a)). 

subcase 2: M, is a context; then by induction we can compute f = 
p,(M,), so that f: cp(T) x cp(M,) + 4?‘. We then define pr([x : M,]M,) as 
the function from cp(T) mapping a to n {f(a, x) I XE cp(M,)}. 

l variable: We have r + 1: r/l with Id Irl. Then, p,(M) is simply 
the projection mapping (x,, . . . . xi) to xI. 

l abstraction: r+ (Ax : M,)M, : [x : M,]P results from r[x : M,] 
+ M, : P by abstraction. By induction, we can compute f = pd(MZ) (where 
A = r[x : M,]), which is a function from cp(T) x ~(44,) to q(P). We then 
define p,((lx : M,)M,) as the application from cp(T) to cp(M,) + q(P) 
mapping u to the function mapping x to f(a, x). 

l application: I-+ (A4 N) : [N/x] Q results from T+‘M : [x : P] Q 
and r+ N : P. By induction, we have defined p,(M): q(T) -+ (q(P) + 
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(p(Q)) and p,(N) : q(T)-+ q(P). We then define p,((MN)) as the 
application from cp(f) to (p(Q) mapping x to p,(M)(x, p,(N, x)). 

We do not take the conversion rules into account, and this is justified by 
Lemma 8. 

EXAMPLE. The sequent + [A : *] [X : A] A : I- is interpreted as 
(fey 1 vAEwxEA(tx)EA} and the sequent b AA . ix . .Y : 
[A : *][x : A] A is interpreted as the untyped A-term Ix .x. 

LEMMA 9. Let M and N be objects such that I-+- Mr N. We have 
P,(M) = PAN). 

This lemma holds for the restricted calculus. Similarly, in the full 
calculus, if r+-- M z N, either M and N are both proofs, in which case 
p,(M) and p,(N) are two /?-convertible l-terms, or else M and N are both 
propositions (or proposition schemas), in which case p,(M) = p,(N). 

5.3. Interpretation of Contests 

To each context f F *, we shall associate an inclusion D(T) G cp(T) by 
induction on the formation of r + * : 

l cause 1: E-*, we take D(T)=cp(f)= 1. 
. case 2: f [x : M] t- *, we have TI- M : *, and so by the previous 

part, we have already defined p,(M). By induction, we have already an 
inclusion D(r)~cp(f). We take D(T[x: M])= {(a,x) (aED A 
x E pAW(a 

case 3: r[.x : A] t- *, we have by induction an inclusion 
D(r;~,qr(T), and we take D(T[x:A])= {(a,~) 1 aED A x~cp(A)} = 
D(r) x cp(A ). 

EXAMPLE. [A:*][x:A]I-eisinterpretedas ((A,x)E~@xY~xEA}). 

5.4. C0nsistenc.v 

We can now state the principal theorem, whose proof is a 
straightforward (but somewhat tedious) structural induction and which 
holds in the restricted calculus and in the full calculus. 

THEOREM. If r + M : P, and r I- P : *, then for all x in D(f), the pure 
A-term p,-( M, x) is an element of rhe saturated set pr( P, x). 

EXAMPLE. We have [A:*][x:A]+x:A; then, with r=[A:*] 
[x:A], we have D(T)={(A,x)E~xX~XEA} and [A:*][x:A]T+ 
x : A is interpreted as f: 32 x 3 + 9 mapping (A, x) to x. Similarly 
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[A:*][x:A]+-A:* is interpreted as g:%!xY+% mapping (A,x) to 
A. We see that f(A, x) E g(A, x) if (A, x) E D(Z). 

COROLLARY 1. Zf I- M : N and N is an object, then p(M) is a strongly 
normalisable pure A-term (where p is an abbreviation for p,). 

It is sufficient to note that p(M) is an element of p(N), by the previous 
theorem, and p(N) belongs to % by construction. By the definition of %, 
we see that p(M) is strongly normalisable. 

DEFINITION. A proposition t-P : * is inhabited if, and only if, there is a 
term M such that t- A4 : P. 

COROLLARY 2. The calculus of constructions is consistent, in the sense 
that there exists a proposition which is not inhabited. 

The intuitive meaning of this statement is that the calculus does not 
prove all its well-formed propositions. Indeed, consider the term 
N = [A : *]A. We have I-N : *, and the special constant D appears in all 
the terms of p(N), which is the set consisting of all strongly normalisable 
terms normalising to 52 or to a term of the form (Q 6, ... b,,). But if 
+ M : N then Q does not appear in the term p(M), hence the corollary. 

The realisability interpretation we have presented is syntactic in nature. 
However, it is consistent with the set-theoretical intuition of interpreting 
M : P as ME P. Still, the functional spaces M + N are not interpreted as 
the full function space, but only as sets of definable algorithms, closed 
under the operations corresponding to the syntactic operators. We know 
from Reynolds’ work that a complete set-theoretic semantics cannot exist 
c41 I. 

Other interpretations of the calculus are possible. For instance, the 
Boolean interpretation, where each proposition is mapped to 0 or 1 = {0}, 
and the proofs are mapped to 0, is simpler and suffices for proving the con- 
sistency. In some sense, this is the “proof-irrelevance” interpretation of 
classical logic. 

It is also possible to interpret the calculus in domains such as Pw, where 
each object (proposition or proof) is mapped to an element of PO, in such 
a way that propositions become closure [37]. However, such models also 
provide an interpretation for logically inconsistent systems (with Type: 
Type) [7, 21. Thus, such interpretations fail to capture the essential feature 
of the calculus. 

5.5. Extracting Programs from Proofs 

Every proof construction A I- A4 : P corresponds to an algorithm vd(M). 
Intuitively, this algorithm obeys proposition P considered as its 
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specification, under the hypothesis on its ad inputs described by A. This 
algorithm, a pure A-expression in I”“, always terminates for well-typed 
values of its inputs. This is the main limitation of our calculus as far as its 
programming language character goes. However, almost all partial recur- 
sive functions are definable in the calculus. For instance, all total recursive 
functions which are provably total in higher-order arithmetic are definable, 
as shown in Girard [23]. They correspond to the stripped proofs of the 
proposition nat -+ nat, for the appropriate type nat = V,4(A -+ A) + 
(A+A). 

As another example, we may consider the partial recursive function 
defined as 

f(tl)=ifn=Oor 1 thenOelseifeven(n) then f(n/2)&e f(3n+l). 

This function is easily definable in our calculus, as a proof of 
[n : nat](D n) --) nat, with the domain D defined as the proper smallest 
predicate preserving termination off; that is (D n) is 

[P:nat+ *](PO)+(Pl)-,([u:nat](Pu)-+(P224)) 

-+([u:nat](P3u+2)+(P2u+l))+(Pn). 

Note that here nothing tells us that f is total on nonnegative integers. If 
someday a proof of that fact is known, we shall get f as an algorithm in 
nat -+ nat by feeding it this proof as the (D n) argument. This example is 
especially simple, since the domain argument is redundant for the com- 
putation. For more complicated examples, the domain argument may be 
needed, since its proof may describe the recursion structure. 

Of course the above discussion on recursion extends to inductive 
definitions on any data type. Note that nonpredicativity is needed here for 
the definition of such inductive predicates. By contrast, Constable and 
Mendler [14] must extend the basic PRL system with recursive types. 

We may thus consider our calculus as a general formalism in which to 
develop programs consistently with their specifications. Our logic is 
strongh enough to articulate arbitrarily complex algorithmic specifications, 
as well as the more mundane standard date types found in usual program- 
ming languages [ 183. 

6. VARIATIONS ON THE BASIC CALCULUS 

6.1. A System with Normal Types 

It is important to clearly distinguish between the presentation of the con- 
struction calculus for a metamathematical study and its presentation for an 
implementation and the development of proofs and programs in this 
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calculus. The presentation we have chosen here is the best suited for the 
proofs of the mathematical properties of the calculus of constructions. But 
once we have these properties, it is possible to derive other presentations of 
the system. For example, since we have the normalisation property [ 151, it 
is possible to present the full calculus in the following way, where N(M) 
denotes the normal form of the term M: 

I-F-A 
r[x:J'"(A)]r+* 

l-E--M:* 
r[x : ..Jv(M)] b * 

r[x:M]cA 
. ..[x.M]A 

r[x:M,]l-MM,:* 
rk-[x:M,].M,:* 

r[x:M,]+M,:P 
rt- (AX: kf,pf2 : LX: ~4~1~ 
r+kf:[x:P]Qr+zv:P 

rk-(km)9([N/x]Q) . 

variable 

abstraction 

application 

This presentation, by putting systematically types in normal form, avoids 
the conversion rules and thus seems a bit simpler (and it is one used 
in [ 191). But this system does not seem to be well-suited to a 
metamathematical study. 

6.2. Confusing Abstraction with Product h la Automath 

The calculus has three levels and two binding operators. At the level of 
contexts, only the product binding is allowed. At the level of proofs, the 
only binding is the A-abstraction. The two bindings may appear together 
only at the level of propositions, but in a special order: a sequence of 
abstractions followed by a sequence of quantifications. Thus we could 
confuse the two bindings, replacing 

by 

(Ax ,:P,)...(Axk:P/J[xk+, :P,+,]..‘[x,:P,]P 

[x,:P,]...[x,:P,].[x,+,:P,+,]...[x,:P,]P, 
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where . separates the abstractions from the quantifications. Finally, it may 
be useful to confuse the propostional schema [x : A] . P with its universal 
closure . [x : A] P by using an ambiguous notation without . . This has 
some notational advantages, and the implementation described in [ 181 
used this facility. This allows in particular the denotation by one term of 
several concepts: a propositional schema with free variables and its univer- 
sal closures. This can be seen as a facility for overloading the meaning of 
the types in the calculus. We refer to the Automath literature for this 
question, especially [Zl], where such facility is called “type-inclusion.” 

7. TOWARDS A REASONABLE USER INTERFACE 

7.1. Introducing Constants 

The first step toward providing a usable system consists in defining 
combinators which abbreviate definitions. These constants are given, in a 
context r, with a definition which is an object term M, and a unique name. 
We check before entering the constant in the theory that f + M : A 
(propositional constant) or rt- M : N (proof constant). Later on the type- 
checker retrieves the type of each constant by looking it up in the theory 
tables. This permits the saving of space (by sharing commonly used 
constructions) and time (by not re-checking similar constructions). These 
constant definitions can be internalized in the language by the “let” 
construct, where let x = M, in M, abbreviates ((ix : P)M, M,) (where P is 
the type of M,). We can thus get “local” constants at any context depth. 

No extension of the theory is required to explain the calculus with 
constants. The only problem is to implement an absolute naming scheme, 
orthogonal to de Bruijn’s indexes considered so far, while preserving a 
notion of static scope. This problem is the logical analogue of the problem 
of linking separately compiled modules in a programming language. We do 
not comment further on this issue, but we remark that from a practical 
point of view this facility is crucial, since it would be impossible to effec- 
tively realize any significant proof without constants. Adding constants is 
here the analogue of going from single-line Automath to full Automath 
books. 

7.2. Synthesis of Implicit Arguments 

The next step in providing the user with a realistic system in which to 
develop proofs is to reduce his burden of polymorphic instantiation. Many 
propositional arguments are redundant, since they may be inferred 
automatically as sub-components of types of further arguments. Thus a cer- 
tain amount of type synthesis is possible without any nondeterministic 
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search. Let us give a trivial example. In the following discussion, we shall 
confuse abstractions with products. 

If one wants to define composition (i.e., the cut rule of propositional 
logic) in the basic calculus, we must define the constant: 

This is very cumbersome, and if one assumes that Comp is always used 
with all arguments up to g there is a lot of redundancy, since the actual 
arguments corresponding to A, B, and C are necessary parts of the types of 
the actual arguments corresponding to f and g. The crucial observation is 
that certain parts of the terms will always have residuals in every reduction 
of every substitution instance of the term. This determines in the normal 
forms of types rigid skeletons in which one may access sub-components by 
pattern-matching. For instance, in A + B, i.e., [u : A] B, we can use the 
whole term as a pattern in the free variables A and B. This method relies 
on the variant explained above of keeping types in normal form. 

The notion of rigid skeleton was defined in [27] in the context of a 
unification algorithm for typed I-calculus. Let us recall this notion. Let 

M=[u,:P,]~~‘[u,:P,,](xN, . ..?I.) 

be a term in normal form (in this discussion, A-abstractions are treated in 
the same way as products). Let V be a set of variables. We call rigid 
occurrence of A4 relatively to V any member of the following set of 
positions in M. First, we take the rigid occurrences in Pi relative to 
vu {u,, . ..) 24-,}, for i= 1, . . . . n. Then, if p = 0, the occurrence is of the 
head variable x, and if p > 0, and when x E W = Vu { ur, . . . . u,, ), the rigid 
occurrences in ZV, are relative to W, for j = 1, . . . . p. Now let z be any 
variable. We say that M determines z iff -7 appears in M at a rigid 
occurrence relative to 0. 

We are now able to explain how to declare combinators of the calculus 
given with an arity of explicit arguments, whose types determine 
automatically implicit arguments which will be automatically synthesized. 
In our example above, we would write 

where the curly brackets indicate the implicit arguments. Now the com- 
binator Comp may be invoked with only its explicit actual arguments, like 
in Comp(F, G). In the general situation, a declaration of a combinator with 
arguments ui : Pi will be legal iff for every implicit i there exists an 
argument j> i such that P, determines ui. It is not mandatory that j be 
itself explicit, since the synthesis of implicit arguments may be iterated 
(from right to left). 
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Remark. It is possible to generalize this method, by computing 
recursively whether some functional arguments determines some of its 
parameters. For instance, consider 

The occurrence of x in (P x) is not rigid. However, if the actual first 
argument P, of a given application (C P, x0 h,) is of the form [u : AIM 
such that M has a rigid occurrence of U, then x0 may be synthesized from 
the type of h ,,; i.e., rigidity may be inherited. However, it is not yet clear 
how to specify such iterated synthesis in a clearly understandable way, 
since the notation of implicit argument is not bound to the definition of 
combinator C anymore, but rather varies dynamically with every use of C. 
A possibly useful restriction would be to impose in the definition of C that 
certain arguments ought to determine certain of their own parameters, 
using a syntax such as 

C[P: (z&4} *] ‘Ix: A}[h : (Px)] +- ..‘. 

This is in a way a natural extension of restrictions of A-calculus 
expressibility at the proposition level, such as Church’s use of Ill-calculus. 

Note that the synthesis of implicit arguments corresponds exactly to the 
mathematical practice. For instance, in category theory, one writes Id,, 
but f~ g is not annotated with objects, since the arrows f and g determine 
the proper composition from their domains and co-domains. 

Finally, we stress that a certain sophistication in concrete syntax, i.e., in 
the way new notations may be associated to concepts by the user in the 
course of the development of a theory, is crucial if one wants to mechanize 
mathematical concepts beyond the attempts of Frege, the Principia, and 
even Automath. We hope that modern computer technology will help, and 
dynamically extendable parsers and complex window managers seem to be 
necessary components of user interfaces to programming and proving 
environments [ 131. Let us just mention one proposal [19] for concrete 
syntax definition of combinators given with arities, which fits nicely with 
the above algorithm for synthesis of implicit arguments. 

1.3. Concrete Syntax 

Since we now accept combinators with arities, we might as well endow 
them with concrete syntax. A straightforward device for declaring arbitrary 
mixflix notation is to allow the declaration of combinators by patterns: 

pattern t term, 

where pattern is an arbitrary sequence of concrete strings, implicit 
argument declarations (x : M), and explicit argument declarations 
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[x : M]. Standard methods such as precedence declarations may com- 
plement this basic mechanism to resolve ambiguities. For instance, we 
would now allow the declaration 

and be able to write in the usual manner Fo G. Examples of development of 
mathematical notions along those lines are presented in [19]. 

More ambitiously, we may imagine incorporating progressively theorem- 
proving capabilities to what is initially an interactive proof-checker. We 
may synthesize whole constructions by systematic search of possible com- 
binations of given sets of combinators. Such tacticals may be programmed 
in the meta-language of the system, in the tradition of LCF [25] or Pearl 
[ 131. This will offer a powerful help to the mathematician, who will be able 
to concentrate on the global proof strategy, i.e., on the proper ordering of 
lemmas, without losing time over the combinatory headaches of the 
technical proofs. 

8. POSSIBLE EXTENSTIONS 

The first extension is to add operators with special rules of conversion 
and reduction. For instance, we can add pairing, disjoint sums, integers, 
and booleans as primitives. As an example, let us add the special constants 
int : *, with 0 : int, S : int -+ int, and 

ret : [P : int + *](P 0) + ([u : int](P U) + (P(S a))) -+ [n : int](P n), 

with the conversion rules 

rt-P:int+*f+a:(PO)r~f:[u:int](Pu)+(P(Su)) 
rt-(recPafO)Z: 

P+P:int-+ *r+a:(PO)r+f: [u:int](Pu)+(P(Su))f+n:int 

rt(recPaf (Sn))g(f n(recPaf n)) 

The normalisation proof of [24] still extends to this calculus. It is even 
possible to add a fixpoint operator (only to the restricted calculus if one 
still wants the normalisation property for the type-checking). This calculus 
appears then as a direct generalisation of high-level functional languages, 
such as Ponder [22]. 

Another possible extension is suggested by the connection with the 
calculus of Martin-Lof. We have seen that our * can be thought of as the 
first universe U, of Martin-Lof, but with the property that [A : U,]A, for 
example, is still of type U,. It is then natural of try to extend the calculus 
of constructions with a universe hierarchy U,, such that * is of type U, , 
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which appears to be the type of all contexts, U, is of type Uz, . . . . This is 
possible, but with great care if one wants to preserve the normalisation 
property. In particular, it results from [24] that the normalisation property 
is lost for the natural attempt of adding the rules: 

l-t-* 
qx: u,-j+* 

l-t---A 

f+A:U, 

r[.x:M,]+M~:U, 
f + [x : M,] M, : u,’ 

Another possibility is to add the rule rt- * : *, for every valid context f. 
Girard [24] shows that this calculus does not have normalisation property 
(see also [ 161). However, it may be useful to consider this calculus as a 
type system for programming languages (see [7]), but the CurryyHoward 
paradigm seems to be lost forever then, since all propositions become 
provable. 

A satisfactory rule for extended product is obtained by replacing the 
third rule above by 

rtM,:U,T[x:M,]~-M?:U, 
z-+[s:M,]M,: u, ’ 

and similarly for higher universes. We then add the corresponding conver- 
sion rules (see [ 161 for a complete presentation). 

Let us say that an object is predicative if it is defined by a quantification 
over a type which does not contain this object. In this sense, the calculus of 
construction allows the formation of nonpredicative notions. For instance, 
the polymorphic identity is not predicative since it can be instantiated over 
its own type. 

There is a tension between a purely logical language based on the 
Curry-Howard correspondence, and the power of expression of set theory. 
It is legitimate to use impredicative quantification inside the logical 
language, but if we want to complement it with a set-theoretic hierarchy, 
this latter part must be strictly stratified. 

CONCLUSION 

We have proposed a calculus of constructions and shown how to use it 
to derive pure strongly normalisable J.-term. This calculus blends together 
earlier proposals of de Bruijn [6], Martin-LGf [32], and Girard [24]. Its 
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syntax is closest to that of the Automath languages. In some sense, this 
calculus is the “universal functional system,” in the spirit of “Curry’s 
program” [43]. A prototype implementation of the calculus has been 
implemented at INRIA. Numerous examples of mathematical proofs 
expressed in the calculus of constructions, and machine-checked on our 
implementation, are given in [ 191. We hope that this calculus will be useful 
for future developments of programming evironments, where programs will 
be developed consistently with logical propositions expressing in one 
unified formalism data types, correctness assertions, and inter-module 
specifications. 
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