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Abstract

Modular SOS (MSOS) is a variant of conventional Structural Operational Seman-
tics (SOS). Using MSOS, the transition rules for each construct of a programming
language can be given definitively, once and for all, and do not need reformulation
when further constructs are added to the language. MSOS thus provides an ex-
ceptionally high degree of modularity in language descriptions, thereby removing a
shortcoming of the original SOS framework.

After sketching the background and reviewing the main features of SOS, this
paper explains the crucial differences between SOS and MSOS, and indicates how
MSOS descriptions are written. It discusses notions of semantic equivalence based on
MSOS, and the possibility of modularity in proofs of properties. It gives illustrative
examples of MSOS rules, directly comparable to examples of SOS given by Plotkin
in his original Aarhus notes.
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1 Introduction

Modular Structural Operational Semantics (MSOS) [23] is a variant of the
conventional Structural Operational Semantics (SOS) framework [31]. Using
MSOS, the transition rules for each construct of a programming language can
be given definitively, once and for all, and generally do not need reformulation
when further constructs are added to the described language.
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MSOS appears to solve the modularity problem for SOS as effectively as
monad transformers do for denotational semantics. Moreover, although the
foundations of MSOS involve concepts from Category Theory, MSOS descrip-
tions can be understood just as easily as ordinary SOS, and MSOS has been
class-tested successfully at Aarhus in undergraduate courses.

Previous papers have presented the foundations of MSOS [23,22], discussed
its pragmatic aspects [29], and demonstrated its usefulness in modular opera-
tional descriptions of action notation [25] and the core of Concurrent ML [27].
The present paper gives a comprehensive presentation of MSOS, incorporating
some notational improvements, and giving examples corresponding closely to
examples of SOS found in Plotkin’s notes.

1.1  Background

SOS [31] is a well-known framework that can be used for specifying the se-
mantics of concurrent systems [1,16] and programming languages [17]. It has
been widely taught, especially at the undergraduate level [12,30,31,38,42], and
it is generally found to be significantly more accessible than denotational se-
mantics.

However, conventional SOS descriptions of programming languages have quite
poor modularity. This is apparent already in the examples given by Plotkin in
his original Aarhus lecture notes on SOS [31]: for instance, the initial descrip-
tion of simple arithmetic expressions needs to be reformulated three times
when including variable identifiers and value identifiers in expressions (first
separately and then both together). The required reformulations are actually
quite routine, but that doesn’t lessen their undesirability.

Plotkin himself admitted that “As regards modularity we just hope that if we
get the other things in a reasonable shape, then current ideas for imposing
modularity on specifications will prove useful” (remarks at end of Ch. 2, op.
cit.). More than a decade later, however, “the other things” in SOS appeared
to be in a very reasonable shape — but there was no sign of any improvement
at all regarding modularity. When extending a pure functional language with
concurrency primitives and/or references, for instance, the SOS rules for all
the functional constructs had to be completely reformulated [5].

In denotational semantics, language descriptions originally suffered from sim-
ilar problems regarding poor modularity. These problems were largely solved
by Moggi’s introduction of monads and monad transformers [18] (although
Plotkin and Power have recently proposed to generate monads by algebraic
operations instead of constructing them by monad transformers [33,32,34]).
Action semantics [19,20] is an alternative approach to obtaining good modu-



larity in denotational descriptions, and the action notation used for expressing
action denotations includes combinators that correspond closely to monadic
composition. However, the reference definition of action notation [19] was for-
mulated in SOS, and has poor modularity; to define subsets and extensions of
action notation would have required extensive reformulation.

In 1997, Wansbrough and Hamer suggested to replace the SOS of action nota-
tion by a monadic semantics [40,41], primarily to improve its modularity. The
author was thus faced with a dilemma: either to abandon SOS and adopt the
proposed modular monadic semantics of action notation, or to try to improve
the modularity of SOS. Following the latter course, the basic ideas for MSOS
emerged while studying Plotkin’s notes and looking for a way to avoid the
various reformulations that are to be found there.

1.2  Owverview

Section 2 reviews the main features of SOS at some length, drawing attention
to various technical details concerning Plotkin’s notes and fixing notation.
Section 3 explains the fundamental differences between SOS and MSOS, and
illustrates how examples of SOS from Plotkin’s notes are formulated in MSOS.
Section 4 discusses notions of semantic equivalence, and the possibility of
modularity in proofs of properties based on MSOS. Section 5 relates MSOS to
some other frameworks. Section 6 concludes, mentioning some topics left for
future work.

Readers are assumed to be familiar with the basic notions of operational se-
mantics, and with the standard conceptual analysis of common constructs of
high-level programming languages. Although MSOS involves the notion of a
category, familiarity with Category Theory is not required. The notation used
here generally follows Plotkin’s notes regarding common features of SOS and
MSOS, to facilitate comparison, although this gives rise to some stylistic dif-
ferences from the notation used in previous (and probably also future) papers

on MSOS.

2 Conventional SOS

In the original SOS framework, as introduced in Plotkin’s notes, the oper-
ational semantics of a programming language is represented by a transition
system. The configurations (or states) of the transition system always involve
the syntax of programs and their parts (commands, declarations, expressions,
etc.); they may also involve computed values, and abstract representations of



other information, such as bindings and stored values. Transitions may be la-
belled. The transition relation between configurations is specified inductively,
by simple and conditional rules. Usually, conditional rules are structural, in
that when the conclusion of a rule is a transition for a compound syntactic
construct, the conditions involve transitions only for its components. Com-
putations, consisting of sequences of transitions, represent executions of pro-
grams.

Let’s now review these main features of SOS in more detail, drawing attention
to some relatively subtle technical points that are perhaps not so clear from
Plotkin’s notes, and which will be quite significant in connection with MSOS
in Section 3.

2.1 Syntaz

SOS descriptions of programming languages start from abstract syntax. Speci-
fications of abstract syntax introduce symbols for syntactic sets, meta-variables
ranging over those sets, and notation for constructor functions. Some of the
syntactic sets are usually regarded as basic, and left open or described only
informally. Meta-variables can be distinguished by primes and subscripts.

The notation for abstract syntax constructor functions is conventionally spec-
ified by context-free grammars, presented in a style reminiscent of BNF. The
terminal symbols used in the grammars are usually chosen to be suggestive
of the concrete syntax of the language being described, and the nonterminal
symbols can simply be the meta-variables.

Table 1 below specifies abstract syntax for various constructs taken from
Plotkin’s notes, following his style of notation rather closely. Such a speci-
fication determines a many-sorted algebraic signature, and the syntactic sets
together with the constructors form a free algebra generated by the basic sets.
The elements of the algebra can be regarded as trees. Sometimes binary con-
structors are specified to be commutative and /or associative, then the elements
are essentially equivalence classes of trees.

Well-formedness constraints on programs, such as declaration before use and
type-correctness, are usually ignored in abstract syntax. The full operational
semantics of a program can be regarded as a composition of its static semantics
(corresponding to compile-time checks of well-formedness) and it dynamic
semantics (corresponding to run-time computation). Both static and dynamic
semantics can be specified in SOS, based on the same abstract syntax; here,
we shall focus on dynamic semantics.



Table 1
Abstract syntax

Truth-values teT = {tt,ff}
Numbers neN = {0,1,2,...}
Identifiers x € Id = {x0,%X1,X2,...}

Binary ops. bop € Bop = {+,—,*,...}

Constants con € Con

con:=t|n

Expressions e € Exp

ex=con|x|eybop e |letdine

Commands ce Com
cu=nil|z:=e|cy;c1 | d;c|

if ethen cgelsec; | whileedo ¢

Declarations d € Dec

d:=constz=e|varxz:=e | dy;d; | dypind;

2.2 Computed Values

The SOS of most constructs of programming languages involves computa-
tions which, on termination, result in a value of some kind. For expressions,
the computed values might be truth-values or numbers. A command can be
regarded as computing a fixed, null value. It is natural also to regard a decla-
ration as computing an environment, representing the bindings made by the
declaration. Computed values, like all other entities in SOS, are supposed to
be finite.

It’s sometimes convenient to use the same elements both in abstract syntax
and as computed values. For instance, the elements of the basic “syntactic”
sets of truth-values and numbers in Example 1 may be the usual abstract
mathematical booleans and integers, not requiring any evaluation at all. In
the other direction, the empty command nil can be used also as the null value
computed by a command, and abstract syntax for types (not illustrated here)
could be used as the type-values computed by expressions in static semantics.
For declarations, however, the environments that they compute aren’t syn-
tactic by nature, so here the computed values are disjoint from the abstract
syntax. Table 2 below illustrates how sets of computed values are specified.
(The set of environments Env is defined in the next section.)

The idea of distinguishing a set of computed values for each kind of syntactic
construct is prevalent in the monadic approach to denotational semantics [18],
and can be related to earlier work by Reynolds on a general approach to



Table 2
Sets of computed values

Expression values NUT
Command values {nil}
Declaration values Env

types for programs and their phrases [37]. Plotkin’s notes were not entirely
systematic regarding sets of computed values: commands were not regarded
as computing values at all, for instance.

2.3  Auxiliary Entities

Various auxiliary entities are needed in SOS, for use as computed values or as
other components of configurations. For our illustrative examples here, we’ll
need (natural) numbers, (boolean) truth-values, environments, and stores. The
numbers and truth-values were already introduced as basic sets in Table 1,
and we’ll follow Plotkin in using conventional mathematical notation for the
associated operations. Environments p € Env and stores o € Stores are finite
functions, where the set of finite functions from X to Y is written X —g, Y.
The range of environments is written DVal (for “denotable” values), and that
of stores SVal (for “storable” values). The set Loc of locations, representing
(independent) memory cells, is left open. 2

Table 3
Sets of auxiliary entities

Environments p € Env=1Id —g, DVal
Denotable values DVal=NUTU Loc

Stores o € Stores = Loc —g, SVal
Locations l € Loc (arbitrary)
Storable values SVal=NUT

Sets of finite functions with particular domains of definition can be introduced,
e.g., Envy for finite V' C Id and Stores;, for finite L. C Loc. Moreover, both
identifiers and locations can be associated with types of values, and atten-
tion restricted to type-preserving finite functions. In general, keeping track of
domains of definition and types requires a considerable amount of tedious in-
dexing, as illustrated from Sect. 2.5 onwards in Plotkin’s notes. Such indexing,
however, is not essential in SOS, and here, we’ll make do without it.

2 For pedagogical reasons, Plotkin’s notes initially don’t distinguish between iden-
tifiers and locations, using the set Var for both.



Application of a finite function f € X —g, Y to an arbitrary argument z € X
is written as usual, f(x), but note that the result of the application may
be undefined. Plotkin’s notes don’t formalize the treatment of undefinedness.
Astesiano [2] provides a coherent approach to dealing with undefinedness in
connection with SOS, but a more general framework for (first-order) logical
specifications supporting the use of partial functions has subsequently been
provided by the Common Algebraic Specification Language, CASL [3,7]. The
following paragraph summarizes the relevant features of CASL.

(Meta-)variables in terms are always interpreted as (defined) values, and the
logic is 2-valued: a formula either holds or it doesn’t, even when some terms in
it have undefined values. The result of a function application is undefined, and
the application of a predicate never holds, when the value of any argument is
undefined. Equations may be either existential (holding only when the values
of both sides are defined) or strong (holding also when the values of both
sides are undefined); the two kinds of equations are equivalent if one side is
simply a variable or a defined constant (which will always be the case in this
paper). The assertion def(t) merely insists on the definedness of the term ft.
The value of the partial constant undef (not provided by, but specifiable in
CAsL) is undefined. Finally, when ¢ is any formula and tg,¢; are terms, the
term to when ¢ else ty is equivalent to ty when ¢ holds, and to ¢; otherwise.

Adopting the above understanding of how undefinedness is treated, we can
specify the following notation for use in expressing finite functions:

Singleton: x +— y is the element of X —, Y determined by
(x — y)(2") = y when (x = ') else undef

forall z,2’ € X,y € Y.3
Overriding: f|g] is the element of X —g, Y determined by

flol(z) = g(z) when def(g(x)) else f(x)
forall f,ge X —q Y,z € X.
Disjoint union: f @ g is the element of X —g, Y determined by

(o g)(a) — | 1) when (de] (F(2)) A ~def (g(a)) else
g(x) when (def(g(x)) A —def (f(x)) else undef

forall flge X —5, Y, 2z € X.

Domain of definition: For any element f of X —g, Y, dom(f) is the set of
values x € X for which the application f(z) is defined.

3 In Plotkin’s notes, x + y is written {x = y}, or often just z = y.



For instance, for any o € Store,l € Loc, and v € SVal, o[l — v| expresses the
store which maps [ to v, and maps all other locations I’ to the result (when
defined) of the application o(l’).

2.4 Configurations for SOS

Configurations are states of transition systems, and computations consist of
sequences of transitions between configurations, starting from an initial con-
figuration, and terminating (if at all) in a final configuration.

An initial configuration for a computation of a part of a program consists of
the syntax of that part, generally accompanied by auxiliary components, A
final configuration generally has the same structure as an initial configuration,
but with a computed value in place of the original syntax. (As previously
mentioned, commands can be treated as computing a fixed null value.)

In the usual style of SOS, computations proceed gradually by small steps
through intermediate configurations where some parts of the syntactic compo-
nent have been replaced by their computed values. When the computed values
are already included in abstract syntax, as with the truth-values or numbers
computed by expressions or the null value nil computed by commands, the in-
termediate configurations that may arise are automatically included in the set
of possible initial configurations, as are the final configurations. In other cases,
such as for declarations, it’s necessary to generalize the sets of configurations.

Following Plotkin, we specify this generalization by extending the grammar
for abstract syntax with productions involving meta-variables ranging over
computed values. Let’s refer to the result of adding computed values in this
way to syntactic sets as value-added syntax. Not only are the computed values
thereby included in the corresponding syntactic sets, but also these sets are
closed up under the syntactic constructor functions. Essentially, the sets of
added computed values are treated in just the same way as the basic syntactic
sets.

A precise definition would involve details of signatures and freely-generated
algebras. An example should suffice: Table 4 below specifies value-added syn-
tax for declarations, extending the abstract syntax specified in Table 1. The
meta-variable p ranges over Env (see Table 3), and the effect of the production
is to embed Env in Dec.

Table 4
Value-added syntax

Declarations d:=p



The separation of the production d ::= p from the other productions for d
makes a clear distinction between the original abstract syntax and the value-
added syntax. Note however that the meta-variable d now ranges not only over
the original declarations, but also over environments, and arbitrary mixtures
of declarations and environments.

Once the required value-added syntax has been specified, the sets of config-
urations I' and final configurations 7' can be defined. I' always involves the
abstract syntax of the programming language, and 7" involves the sets of com-
puted values. In Plotkin’s notes, set comprehension is used to define I' and T,
as illustrated in Table 5 below.

Table 5

Configurations for SOS

I'= {<p7 €, U>} U {<p7 Gy U>} U {<pa d, 0>}
T ={(p,con,a)} U{{p,nil, o)} U{{p,p’,0)}

2.5 Transition Systems for SOS

In SOS, the operational semantics of a programming language is modelled by
a transition system (together with some notion of equivalence, see Section 4).
Plotkin defined several kinds of transition system, differing with regard to
whether the set of final configurations is distinguished, and whether transitions
are labelled. The most general kind is called a labelled terminal transition
system:

Definition 1 A labelled terminal transition system LTTS is a quadruple
(I', A, —,T) consisting of a set I' of configurations v, a set A of labels «,
a ternary relation — C T' x A x T' of labelled transitions ({vy,c,”) € —
is written v —— '), and a set T C T of terminal configurations, such that
v -2~ implies v € T.

A computation in an LTTS (from 7o) is a ﬁmte or infinite sequence of suc-
cessive transitions v; — vyip1 (Written Yo = y1 —2s ---), such that when the
sequence terminates with =, we have 7, € T.

The trace of an infinite computation vy —= 1 —» --- is the sequence
Q10 .. .; the trace of a finite computation vy — --- =% ~, is the sequence
a1 ...0,Yn-

An SOS specification of a programming language consists of definitions of the
sets I', A, and T, together with a set of rules specifying the transition relation
—. Optionally, for each syntactic set S, the relevant subsets of I', A, and T
can be identified.



2.6 Rules in SOS

In SOS, transition relations are specified inductively, by rules. A rule is formed

. oy 4 .
from assertions of transitions ¢ — ¢”, where the terms ¢, #,t” can contain
meta-variables.

A simple rule consists of a single assertion ¢ AT specifies that ~ o, ~"
holds for all triples (v, &/, ~") that result from evaluating the terms ¢, ¢, " with
the same interpretation of their common meta-variables. Note that application
of a partial function outside its domain of definition always leads to the value
of the enclosing term being undefined, and a transition relation cannot hold
on undefined arguments.

A conditional rule is written:

Cly...,Cpn

(1)

A simple rule can be regarded as a conditional rule with an empty list of
conditions. The conditions ¢4, ..., ¢, and the conclusion ¢ are each assertions
of transitions. The rule specifies that whenever all the conditions ¢; hold for a
particular interpretation of the meta-variables that occur in the rule, so does
the conclusion c.

Given a set of rules, a triple {7y, a’,4”) is in the specified transition relation
if and only if a finite upwardly-branching tree can be formed satisfying the
following conditions:

(1) all nodes are labelled by elements of I' x A x T,

(2) the root is labelled by (v, a/,~"), and

(3) for each n-ary node in the tree, there is a rule and an interpretation
of the meta-variables that occur in it, such that the label of the node is the
interpretation of ¢, and the labels of the branches are the interpretations
of ¢1,..., ¢y, taken in any order.

Cl,..5Cn
C

The syntactic parts of the configuration terms ¢ in assertions ¢ g play a
particularly significant role in SOS. Let’s refer to them as the “controls” of the
transitions. A rule is called structural when the controls of its conditions all
specify components (i.e. subtrees) of the control of its conclusion. SOS doesn’t
require that rules are structural, but in practice, they often are.

Side-conditions can be added to both simple and conditional rules. They don’t
involve the transition relation: they are typically equations, set memberships,
or definedness assertions. Side-conditions are often written together with the
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ordinary conditions, rather than displayed separately, since they can easily be
distinguished from transition assertions. Negations of side-conditions can be
used freely.

The rules given in Table 6 below illustrate an SOS specification of a transition
relation for evaluation of arithmetic expressions in a purely functional lan-
guage. Assuming that identifiers are bound directly to constant values, stores
are redundant here, and hence omitted from the configurations. Convention-
ally, transitions (p,e) — (p,€’), where the environment p always remains
the same, are written p - e — ¢€'. (Plotkin suggested the use of relative
transition systems, and generally omitted environments when defining sets of
configurations.)

Table 6
SOS rules
pkey— e @)
pt ey bop e; — ef) bop ey
pber — € 3)
p b cong bop e — cong bop €
bop =+, n=ng+m (@)
pFmngbopn, —n
p(x) = con
(5)

pFx — con

Rules (2) and (3) enforce sequential evaluation of ¢y and e;. Interleaving of
the evaluations can be allowed simply by using ey instead of cong in (3).

A rule similar to (4) is needed for each element of Bop. The variables bop and
n are introduced to avoid the ambiguities that would arise if we were to specify
p F ng+mny — ng+ ny; such extra variables (and the side-conditions that
define them) aren’t needed when the elements of Bop are written differently
from the corresponding mathematical operations on N.

Notice that (5) gives rise to a transition only when p and z are such that
p(x) € Con, which can hold only when = € dom(p).

The transition relation specified by a set of rules is the least relation that
satisfies all the rules. It always exists — regardless of whether the rules are
structural or not. Structural induction can be used to prove properties of the
specified transition relation when all the specified rules are structural. It is
also possible to regard the rules themselves as a formal proof system, and
then to reason about the structure of derivations of transitions.

11



The use of rules to specify relations in SOS isn’t restricted to transition rela-
tions. In connection with static semantics, relations such as p - e : 7, asserting
that e has type 7 for a typing environment p, are specified in much the same
way. In dynamic semantics, auxiliary predicates such as cy/, asserting the
possibility of termination of commands ¢, can be specified together with the
transition relations. Thus the general case is that both conditions and conclu-
sions of rules can be assertions involving any of the relations being specified.

Rules can also be generalized to allow negations of assertions as conditions —
but then considerable care is needed to define what relation (if any) is specified
by a set of rules [1].

2.7 Styles of SOS

SOS allows different styles of operational semantics. The style used in Table 6
above, where each step of a computation for an expression corresponds to an
application of a single operation in some sub-expression, is called small-step
SOS. At the other extreme is big-step SOS (also known as natural semantics
[13]), which is illustrated in Table 7 below.

Table 7
Big-step SOS rules

pke—mng, pke — n

6

pFey+er — ng+n ()

p F con — con (7)
p(x) = con

(8)

pkFx— con

An assertion of the form p = e — n holds when e can compute the value
n in the environment p. It resembles the transition assertion p e — ¢
(abbreviating (p,e) — (p,€’) in the small-step style). However, a big-step
SOS is not usually interpreted as a transition system: p - e — n is simply a
ternary relation, and specified by rules just like any other relation. Evaluation
goes straight from configurations involving abstract syntax to configurations
involving computed values, so there is no need for value-added syntax in the
big-step style. Notice that rules like (7), arising due to the use of computed
values also in abstract syntax, are actually incompatible with the defining
property of the set of final configurations in an LTTS.

Both the small- and big-step styles can be used together in the same SOS:
big-step for expressions and small-step for commands, for example. Alterna-
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tively, the transitive closure of a small-step transition relation can be used to
reduce a (terminating) multi-step computation to a single step (as illustrated
throughout Plotkin’s notes).

In general, the small-step style tends to require a greater number of rules than
the big-step style, but this is outweighed by the fact that the small-step rules
also tend to be simpler (each rule usually has at most one condition, except in
connection with synchronization of transitions between concurrent processes).
The small-step style facilitates the description of interleaving. Furthermore,
it accurately reflects non-termination possibilities by infinite computations,
whereas a big-step SOS simply ignores non-termination possibilities. Note also
that big-step rules for loops and function applications are inherently non-
structural, so it isn’t possible to use structural induction for proving properties
of the big-step SOS of languages that include such constructs.

On the other hand, when the semantics to be modelled is without side-effects
and non-termination possibilities — being essentially just mathematical evalu-
ation — the big-step style seems preferable; this is generally the case for static
semantics, for instance, and for evaluation of literal constants in dynamic se-
mantics.

We’ll return to the issue of the small- and big-step styles at the end of Section 3.
It turns out that interleaving can (somewhat surprisingly) be specified in the
big-step style, whereas the small-step style has a definitive advantage regarding
the specification of the errors and exceptions.

2.8 Modularity in SOS

As mentioned in the Introduction, conventional SOS descriptions of program-
ming languages have poor modularity, and adding further constructs to the
described language may require a major reformulation of the rules for the
previous constructs.

For instance, consider the rules given in Table 6 above, specifying the evalu-
ation of pure arithmetic expressions. Suppose that we are to extend the de-
scribed language with commands, and to allow the inspection of stored values
in expressions. Clearly, the store must now be included in the configurations
for expression evaluation (as specified in Table 5) and the rules have to be
changed accordingly. The revised rules are shown in Table 8 below, together
with an extra rule (13) for inspecting stored values.

The specified rules require that expressions don’t have side-effects. One might
therefore abbreviate p - (e,0) — (€¢/,0) to p,o b e — ¢’. However, when
expressions are subsequently extended with constructs (such as function ap-

13



Table 8
SOS rules, reformulated

P + <€07U> — <610,J>

9
pt (eo bop e1, o) — (ef, bop e1,0) ©)
pl_ <€1,0'> - <€€[70-> (10)

p b (cong bop e1,0) — (cong bop €}, 0)
bop=+4, n=ng+ng (11)

pF (ng bop n1,0) — (n,o)
p(x) = con

12
P F (2,0) — {com o) (12
plx) =1, o(l)= con (13)

p bt (x,0) — (con,o)

plication) that allow side-effects, a reformulation to use assertions of the form
pF(e,0) — (€, 0’) becomes unavoidable.

Similar evidence of the poor modularity of conventional SOS can be found
throughout Plotkin’s notes. Furthermore, extending expressions with concur-
rency constructs (to allow spawning of processes, and synchronization with
expressions in other processes) would require the introduction of explicit la-
bels on transitions, necessitating further reformulation of the specified rules,
as illustrated by Berry et al. [5].

The need for occasional major reformulation of rules during the development
of an SOS might bother its authors, but it doesn’t affect the readers of the final
version, so it might not be deemed a significant drawback. However, there are
two further reasons for dissatisfaction with rules like those given in Table 8:

(1) The repetition of p and o is tedious, and a clumsy way of specifying that
environments are generally inherited by sub-expressions, whereas store
updates follow the flow of control.

(2) The rules are not definitive, and formulated differently when describing
the same construct occurring in different languages.

Regarding point (1), the Definition of Standard ML [17] introduces a “store
convention” to avoid the repetitious mention of ¢ in big-step MSOS rules: the
order in which the conditions of an abbreviated rule are written determines
how ¢’s should be inserted to generate the real rule. However, if it’s important
to be able to avoid the repetitions of ¢, this should be incorporated in the SOS
formalism, and not left to ad hoc conventions introduced in connection with
particular language descriptions.

14



As for point (2), it would clearly be beneficial for authors to be able to reuse
existing descriptions of common constructs when developing semantic descrip-
tions. Provided that such reuse were made apparent, readers would also ben-
efit, as they could see immediately that particular constructs have the same
semantics in different languages. Moreover, with definitive rules it should be
possible to prove properties (such as bisimulation equivalences) once-and-for-
all for a set of common constructs, instead of re-proving them for each new
language in which they occur.

The modular variant of SOS introduced in Section 3 eliminates both the above
causes of dissatisfaction with SOS descriptions, at minimal notational cost,
and without resorting to semi-formal conventions.

2.9 Abrupt Termination

One further issue affecting modularity in SOS concerns the description of
constructs involving “abrupt termination” (errors, exceptions, breaks, goto’s).
Plotkin illustrated a straightforward way of dealing with dynamic errors: add
an extra error configuration, and “error rules” that allow error configurations
to propagate through each construct of the language. Plotkin’s error propaga-
tion rules were all conditional rules; Table 9 illustrates how to get almost the
same effect with only simple propagation rules, by treating error as a com-
puted value. (This alternative technique gives rise to some extra transitions
when computations lead to errors, but that needn’t bother us here.)

Table 9
SOS for dynamic errors
Expression values ...U{error}
Value-added syntax e:=...Uerror
Final configurations 7T = ...U{(p,error,o)}
bop=—, n=ng—ny (14)
p = (ng bop n1,0) — (n, o)
bop=—, ng<m (15)
p F (ng bop n1,0) — (error, o)
p F (error bop e, o) — (error,o) (16)
p F (congy bop error,o) — (error, o) (17)

Similar, but more complicated, error propagation rules would be needed in
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a corresponding big-step SOS. (The big-step Definition of Standard ML [17]
avoided them by introducing an “exception convention”, based on the order
in which the conditions of rules are written.)

Adding error propagation rules doesn’t require reformulation of the original
rules. However, the need to give extra rules for constructs which aren’t them-
selves directly concerned with errors can be seen as further evidence of poor

modularity in SOS. Moreover, the extra rules tend to roughly double the size
of an SOS.

In Section 3.7, we’ll illustrate a novel technique that eliminates the need for
error propagation rules altogether. The technique, however, is applicable only
in small-step SOS; this provides further motivation for avoiding the big-step
style — at least for constructs whose operational semantics might conceivably
involve abrupt termination.

3 Modular SOS

Modular SOS (MSOS) is a variant of SOS which dramatically improves mod-
ularity, at only very minor cost. Most of the features of SOS specifications, as
reviewed in Section 2, carry over to MSOS. The differences are that in MSOS:

e configurations are restricted to abstract syntax and computed values,
e the labels are now the arrows of a category, and
e adjacent labels in computations are required to be composable.

Surprisingly, this particular combination of the notions of LTS and category
doesn’t appear to have been previously exploited in connection with SOS.

3.1 Configurations

The specification of abstract syntax, computed values, auxiliary entities, and
value-added syntax is exactly the same in MSOS as in SOS (see Tables 1, 2,
3, and 4).

The set T" of configurations in MSOS is restricted to value-added syntax, and
the set T" of terminal configurations is restricted to computed values. Thus the
specification of these sets for MSOS in Table 10 below is actually superfluous,
and could be left implicit.
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Table 10
Configurations for MSOS

I'=FExp U Com U Dec
T=NUTU({nil} U Env

3.2 Generalized Transition Systems

In MSOS, as in SOS, the operational semantics of a programming language is
modelled by a transition system (together with some notion of equivalence, see
Section 4). The following kind of generalized transition system was introduced
in [23]:4

Definition 2 A generalized transition system GTS is a quadruple (I'; A, —,
T) where A is a category with arrows A, such that (I';) A, —,T) is a labelled
terminal transition system LTTS.

A computation in a GTS is a computation in the underlying LTTS such
that its trace is a path in the category A: whenever a transition labelled « is
followed immediately by a transition labelled o, the labels o, &/ are required to
be composable in A.

Notice that the transition system itself is not made into a category, since that
would require the transition relation to be reflexive and transitive, which is
inconsistent with the usual small-step style in MSOS.

Recall that a category consists of:

a set of objects O,

a set of arrows (also called morphisms) A,

functions source and target from A to O,

a partial function from A2 to A for composing arrows, and

a function from O to A giving an identity arrow for each object.

The functions above are required to satisfy some simple axioms, including
associativity of composition, and unit properties for identity arrows. We’ll
write compositions of arrows «q, as in diagrammatic order: aq ; as.

Proposition 3 For each GTS (I',) A, —,T), an LTTS (I'*, A*, —*,T*) can
be constructed such that for each computation of the GTS, there is a compu-
tation of the LTTS with the same trace, and vice versa.

A similar result is stated and proved in [22]. The construction is straightfor-
ward: each configuration of the LTTS is a pair consisting of a configuration of

4 Generalized transition systems were called “arrow-labelled” in [23].
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the LTTS and an object of the label category, and the transition relation is
defined accordingly.

PROOF. Let O be the set of objects of A, and A the set of arrows. Define
[*=Ix0,T* =T x O, and A* = A. The construction is completed by
letting (7, 0) —=* (v/,0') hold in the LTTS iff v - 4/ holds in the GTS,
source(a) = o, and target(a) = o'.

With each (finite or infinite) GTS computation v = v; =2 ... we associate
the LTTS computation (vy,0) —* (v,01) —2* ..., where 0 = source(a;)
and for ¢ > 1, o; = target(cy) = source(c;11). If the computation in the GTS
terminates with ~,, € T, we always have (v,,0,) € T*. The traces of the two
computations are clearly the same.

Conversely, suppose that (y,0) ==* (y1,01) == ... is any (finite or infinite)
computation in the defined LTTS. Then o = source(a;) and for i > 1, o; =
target(a;) = source(cyi1). Hence «; and oy, are composable for all i > 1.
Moreover, if the computation in the LTTS terminates with (v,,0,) € T*, we
always have 7, € T. Hence v =% v, 2 ... is a computation in the GTS,
and the traces of the two computations are the same. O

Note that the relationship between the GTS and the LTTS is stronger than
that of an ordinary bisimulation, since the definition of computations in the
GTS takes account of the composability of adjacent labels. For simplicity, we
have defined A®* = A, although this normally gives labels with some redun-
dancy. In Section 3.9 we’ll discuss how to obtain an SOS specification from an
MSOS specification, and see how to eliminate all redundancy in the labels.

It is equally straightforward to go from an LTTS (I') A, — T) to a corre-
sponding GTS (I', A, — T'), preserving computations: take A to be the free
monoid A* considered as a single-object category.

Proposition 4 For each LTTS (I';A,—,T), a GTS (I'# A% —# T#)
can be constructed such that for each computation of the LTTS, there is a
computation of the GTS with the same trace, and vice versa.

PROOF. Define I'” =T, T# = T, and let A* be the category given by the
free monoid A*. The construction is completed by letting v ——# 4/ hold in
the GTS iff & € A (considered as included in A*) and v = 4/ holds in the
LTTS. Since all arrows are composable in A#, the computation of the LTTS
is also a computation of the GTS, and has the same trace.
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The converse direction holds due to the restriction of the transitions of the
GTS to labels in A. O

As already mentioned, the configurations in MSOS are restricted to value-
added syntax. Auxiliary components of configurations in SOS, such as envi-
ronments and stores, are not allowed in MSOS. There is only one place left
for them to go: in the labels on transitions. The structure of the label cate-
gory reflects how the information represented by the auxiliary components is
supposed to “flow” when processed during computations.

3.3 Label Categories

Intuitively, a configuration in MSOS represents the part of the program which
remains to be executed (and records already-computed values that are still
needed), whereas the label on a transition represents all the information pro-
cessed by the program in that step. Part of the label corresponds to the state
of the processed information at the beginning of the transition, and part to
its state at the end of the transition. For labels on adjacent transitions in a
computation, the state at the end of the first transition must be identical to
the state at the beginning of the second transition. Taking the states of pro-
cessed information to be the objects of a category, labels obviously correspond
to arrows of the category.

Labels which are identity arrows play a special role in MSOS: they indicate
that transitions are inherently unobservable. Thus in contrast to SOS for pro-
cess algebra, where the silent label 7 is introduced ad hoc, MSOS provides a
natural, built-in notion of unobservable transition. In Section 4, we’ll exploit
this fact in the definition of weak bisimulations for MSOS.

Apart from determining the states before and after a transition, a label in
MSOS may also provide further information that corresponds directly to an
ordinary label in SOS, and allows it to be distinguished from other labels
between the same two states. There need be no correlation between this extra
information in the labels on adjacent transitions in MSOS (as in SOS).

Let’s see how all this works in some simple cases:

e Consider first labels that represent information which is processed like envi-
ronments p € Env. Such information can be inspected by a transition, but
not changed (since it is determined by the current context, and subsequent
transitions have the same context). Thus the labels should be composable
only when they are identical.
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This is reflected by taking A to be a discrete category, where there is a
single (identity) arrow for each object. The set of objects and the set of
arrows of A can both be identified with Env.

e Now for labels that represent information which is processed like stores
o € Store. Such information can be both inspected and changed by a tran-
sition. In principle, a single transition could change the values stored at all
locations, so for each pair of stores o and o', there should be a label rep-
resenting the change from o to o’. Two successive changes are composable
only if the store left by the first change is the same as store from which the
second change starts.

This is reflected by taking A to be a preorder category, where the set of
objects is Store and the set of arrows is Store?, with the arrow (o, ¢’) going
from o to o’. Composition eliminates intermediate stores. Identity arrows
are of the form (o, o).

e Finally, consider labels that represent information which is processed like
observable actions or signals a € Act, together with a silent action 7. Al-
though such information can be produced by a transition, it cannot be
inspected by subsequent transitions. In principle, the action produced by
one transition does not restrict the action produced by the next transition,
so labels should always be composable.

This is reflected by taking A to be a 1-object category, where the set of
arrows is Act*, the free monoid of sequences generated by Act. The identity
arrow is the empty sequence, representing 7, and composition of arrows is se-
quence concatenation. Single actions are represented by sequences of length
one; longer sequences correspond to indivisible multi-action sequences.

It should be stressed that the above considerations concern only sequences of
transitions. They do not affect the rules used to specify individual transitions.
For instance, the environment used in a condition may well be different from
that used in the conclusion (as will be illustrated below).

The three kinds of information processing considered above correspond to how
environments, stores, and actions are usually treated in SOS. It appears that
further kinds of information processing are not needed in practice (and even
if they were, it is likely that they could be represented by appropriate choices
of further basic label categories). What we do need, however, is to be able to
combine them.

Since there are no general constraints relating environments, stores, and ac-
tions, it is appropriate to use a product of the three categories. The objects of
the product category can be identified with pairs (p, o) € Env x Store (drop-
ping the fixed component that corresponds to the single object of the monoid
category). The arrows, in contrast, correspond to quadruples (p,o,0’,t) €
Env x S x S x Act* (where both o and ¢’ come from the preorder category).
Identity arrows and composition of arrows in the product category are deter-
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mined by the component categories.

Since labels in MSOS usually have several components, we’ll write transitions
v -4 asy —a— 9/, eg.,v —(p,0,0 t)— 7. Taking the above product
category as the label category, the transition v —(p, 0,0’ ,t)— + in MSOS
corresponds exactly to the transition written p F (y,0) —— (v/,¢’) in SOS
(provided that ¢ is either the empty sequence or a single-action sequence).

More generally, we may take any number of instances of the three basic label
categories defined above. For example, we could have separate environments
for types and for ordinary values — or an extra store whose locations are used
merely as unique identifiers for processes or channels.

It’s possible to formalize the incremental construction of label categories as
products using functors called label transformers [23]. However, bearing in
mind the initial aim of SOS regarding the use of “simple mathematics” [31],
the following somewhat more syntactic approach seems preferable.

3.4 Label Components

Let RO, RW, and WO be disjoint sets of indices, and I = RO U RW U WO.
In our examples, we’ll use the meta-variables p, o, and € as indices, taking
RO = {p}, RW = {c}, and WO = {e}, but in general, each set of indices may
have any number of elements. Indices in RO are for “read-only” components,
those in RW are for “read-write” components, and those in WO for “write-
only” components.

Definition 5 For eachi € I let a set S; be given, such that wheneveri € WO,
S; is a monoid. Each S; determines a component category A;, as follows:

e ifi € RO, then A; is the discrete category with S; as its set of objects and
also as its set of (identity) arrows;

e if1 € RW, then A; is the preorder category with S; as its set of objects, and
S? as its set of arrows;

e ifi € WO, then A,; is the category with a single object, and with the monoid
S; as its set of arrows.

The label category defined by the sets S; is their (indexed) product I;crA,;.

Extending one of the subsets of I with a fresh index ¢ for some given set
S; corresponds to applying a functor (called a fundamental label transformer
in [23]) that adds a new component to the product category A. Moving an
index between the subsets of I can also be useful: moving it from RO to RW
causes a discrete component category to be replaced by a preorder category,
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and moving it from WO to RW causes a monoid component category to be
replaced by a preorder category (other moves are not needed).

The crucial point, however, is not so much how to construct label categories
where the labels have particular components, but rather to provide a clear
notation for referring to (and possibly replacing) some components of a label
without any mention at all of what other components that label might or might
not have. The original notation (with set and get operations) proposed for
this purpose [23] was somewhat clumsy, and required explicit mention of label
transformers. The notation introduced below allows labels in MSOS rules to be
specified much more concisely and perspicuously, and the systematic treatment
of primed and unprimed indices allows the construction of the label category
to be left completely implicit.

The idea is to use an unprimed index i to refer to a component that can
be “read” at the start of a transition, and a primed index i’ to refer to a
component that can be “written” at the end of a transition. For instance, a.p
and «.o refer to the current environment and store, and «.o’ refers to the
updated store. Notice that the arrow component «, is the pair (a.o, a.0”).

Definition 6 Let a be an arrow of the product category Il;c;A;, and i € I.
The notation o.i and o.i’ is defined in terms of the arrow component «; as
follows:

e ifi € RO, define a.i to be o (i’ is undefined);
e ifi € RW and o; = (s1, $2), define i to be s1, and i’ to be sy,

o ifi € WO, define a.i’ to be ov; (i is undefined).

The label category A for an MSOS is specified by declaring the indices (such
as p,o0,0') used for referring to components, together with a corresponding
set for each component. The structure of labels corresponds to that of records
in Standard ML, so to specify our label components, let us adopt a notation
similar to that used there for record types, as illustrated in Example 11 below.
The ellision ‘... " indicates that further components of labels may be specified
elsewhere. When the same index is declared both primed an unprimed, the
same set has to be associated with it both times. Moreover, the sets associated
with indices that are used only primed should always be monoids.

Table 11
Label components

A={p: Env,o0,0" : Store,...}
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Table 12

MSOS rules
ep —X— ¢ (18)
ep bop e1 —X— ¢f bop e
er —X— €] (19)
cong bop e; —X— cong bop €}
bop=+, n=ng+n (20)
ng bop ny —U— n
U.p(z) = con (21)

z —U— con

We adopt also Standard ML notation for individual label patterns in rules.
For example:

e {p=po, ...} specifies labels « such that a.p = py;

o {0=0¢,0'=0y,...} specifies labels « such that .0 = 0y and .0’ = o7;

e {0,...} abbreviates {o=0, ...}, allowing the meta-variable o to refer directly
to the o-component of the label.

The explicit ‘..." in the above notation for labels is obligatory, and ensures that
unmentioned components of labels are never excluded. Different occurrences
of *...” in the same rule stand for the same set of unmentioned components;
the symbol ‘..." may be regarded formally as a meta-variable ranging over
parts of labels.® The order in which components of labels are written is, of
course, insignificant. (Note that Plotkin used a similar notation in his notes
for expressing finite functions such as environments and stores.)

3.5 Rules

Rules in MSOS are written exactly the same way as in SOS. The meta-
variables X and U have a fixed usage in MSOS: X ranges over arbitrary
labels in A, whereas U is restricted to labels that are identity arrows, which
are used to label “unobservable” transitions. We may abbreviate v —U— +/
to v — +' when we don’t need to refer to U elsewhere.

Table 12 shows how the rules from Example 6 (which were reformulated in
Example 8 when adding stores) are specified in MSOS.

® The notation {p=po| X}, analogous to Prolog’s notation for list patterns, would
be more flexible than ‘... , but might be misread as set comprehension.
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Table 13
MSOS rules for declarations

d —X— d
letdine —X— letd ine (22)
€ _{p:pl[po]v}_) e (23)
let ppine —{p=p1,...}— letppine’
let pg in con — con (24)
e —X— ¢
25
constzr=e¢ —X— constx=¢ (25)
const z = con — (x +— con) (26)
dy —X— d
2
do;dy —X— djy;dy (27)
di —{p=pilpo],...}— di
7 (28)
posdi —{p=p1,...}— po;d
po; p1 — polp1] (29)

In (18) and (19), the use of the same label variable X in both the condition
and the conclusion of the rule ensures that transitions for the subexpression
have the same environment, initial store, and final store as the corresponding
transitions for the enclosing expression — and similarly for any further com-
ponents that labels might have. All this comes automatically, without any
explicit mention of environments or stores in the rules.

In (20) and (21), the use of the variable U instead of X restricts labels to
identity arrows. This is just what is needed to prevent side-effects, such as
store changes or observable actions, in what are supposed to be unobservable
transitions. The conclusion of (20) could be abbreviated to ng bop ny — n,
since U isn’t needed in the conditions of the rule, in contrast to (21).

The formulation of the rules specified in Table 12 is independent of whether
or not labels have stores as components. In fact (18)—(20) are independent of
all label components, and only (21) requires labels to have a p-component.

Table 13 gives MSOS rules for let-expressions and for three kinds of declara-
tions; the corresponding SOS rules are given in the appendix.

The main rules of interest are (23) and (28). They illustrate how the p-
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component of a label can be adjusted to reflect its extension with a computed
environment py, which represents the bindings due to local declarations. The
p-component of the label on the transition in the conclusion has value py,
whereas that of the label on the transition in the condition is py[po] (recall the
notation for overriding introduced in Section 2.3). The unmentioned compo-
nents of the two labels are required to be equal, but otherwise unconstrained.

The formulation of the rules specified in Table 13 is independent of whether or
not labels have stores as components. In fact the rules for elaborating constant
declarations to environments are even independent of the presence of the p-
component.

Table 14
MSOS rules for commands

co —X— ¢

co;ar —X— ¢gia (30)
nil;c; — ¢ (31)
T (32)
¢ —{p=pilpo],...}— ¢ (33)
poic —{p=p1,...}— po;c
po;nil — nil (34)
. ¢ Xo (35)
ifethencyelsec; —X— if ¢ thencgelsec;
if tt then cgelsec; — ¢g (36)
if ff then cgelsec; — ¢ (37)
while edo ¢ — if ethen c; while e do celse nil (38)

Table 14 gives MSOS rules for command sequences, local declarations, and
the familiar if- and while-commands; SOS rules for all these constructs can be
found in the appendix.

Plotkin treated nil as a command taking one step to execute, whereas here we
have treated it as a computed value (and hence as a final configuration). The
examples given in the appendix show that it would be quite straightforward
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to reformulate the examples in Plotkin’s notes to follow the style illustrated
in Table 14; but how about the other way, can we match Plotkin’s treatment
of commands in MSOS?

To do this, we would need to remove nil from the set of computed values, and
introduce a new value, say null, for commands to compute:

I'=Fxp U Com U Dec
T=NUTU {null} U Env

It isn’t necessary to include null in value-added syntax for commands, since
the rules will never require the insertion of this value in place of a command.
Thus the meta-variable ¢ doesn’t range over null.

The corresponding rules for nil and command sequencing would then be as
follows (similar changes would be needed in the rules for all constructs that
involve commands):

nil — null (39)
o —X— ¢

co;c1 —X— ;0 (40)

co —X— null (41)

cop;c1 —X—

As can be seen, the rules given in Table 14 are a bit simpler than the ones
that follow Plotkin’s style. However, the latter generally give rise to fewer
unobservable transitions (at least when atomic commands other than nil are
introduced), so they can be considered more “economical” in that sense. In
any case, the MSOS framework allows both styles, leaving the choice to the
specifier. (This admittedly undermines the idea of having a single “definitive”
MSOS for all constructs; more on this issue in Section 3.8.)

Some further differences from Plotkin’s notes occur in connection with if- and
while-commands, where he used the (reflexive and) transitive closure —* of
the small-step transition relation for expressions to get the effect of the big-
step style. Here, however, we’ll not illustrate how one could reformulate the
MSOS rules given in Table 14 to match his rules more closely in that respect,
since we have reasons to reserve the big-step style for constructs which are
essentially mathematical, without possibilities of side-effects, divergence, or
abrupt termination — and this is not the case for expressions, in general.
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Table 15
MSOS rules for variables

Up(x)=1, U.o(l)=con

42
x —U— con (42)
e —X— ¢
4
ri=e —X— x:=¢ (43)
U={p,o,0,...}, plx)=I (44)
x:=con —{p,o=00,0'=0¢[l—con],...}— nil
e —X— ¢
4
varrz:=e —X— varx:=e¢ ( 5)
U={o,0,...}, |¢&dom(o) (46)

var z:= con —{o=0¢,0 =0¢[l—con],...}— (x 1)

Table 15 gives MSOS rules for variable dereferencing, assignment, and dec-
laration; again, the corresponding SOS rules can be found in the appendix.
Notice that (42) gives a transition only when the p- and o-components of U
are such that U.p(x) € Loc, and the value stored at the location [ given by
U.p(x) is in the set Con. Similarly, (44) and (46) give transitions only when
the value con is in the set of storable values SVal.

3.6 Styles

MSOS, like SOS, allows both the small- and big-step styles. Table 16 shows
how the rules from Table 6 would look in the big-step style:

Table 16
Modular natural semantics rules

ep —X1— ng, e —Xo— m

47
eot+er —(X1;X2)— no+mn (47)
con — con (48)
U.p(z) = con (49)

z —U— con

Label composition X7;X5 is often used explicitly in the big-step style of MSOS,
so as to combine the labels for sub-computations. This has the pleasant side-
effect of showing the intended order of the sub-computations. Moreover, the
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Table 17
Modular static semantics rules

ey — T, el — T

ep =e; — bool (50)
n — int, ¢t — bool (51)
Ua(x)=rT1 (52)

z U= 71

use of label composition in MSOS entirely subsumes the “store convention”
that was adopted in the Definition of Standard ML [17]: when labels have
o- and o’-components, the composability of X; and X, ensures that the o'-
component of X; must be the same as the o-component of Xj.

It appears to be possible to provide further ways of composing labels (al-
though MSOS doesn’t provide any notational support for this at present).
For instance, suppose that the labels of a big-step MSOS are arbitrary (fi-
nite) sequences of the usual labels. A label category can be defined by taking
composition to be sequence concatenation. This label category can then be
enriched with a relation corresponding to arbitrary “shuffling” of sequences.
By replacing X ; X5 in the rule above by a label required to be a shuffle of X;
and X5, we get a big-step MSOS rule for arbitrary interleaving. The labels on
big-step computations of entire programs should then be restricted to com-
posable sequences of the usual labels, reflecting that no further interleaving is
possible.

The possibility of specifying interleaving in a big-step MSOS is a technical
curiosity, but of little practical relevance for applications of MSOS, which
generally stick to the small-step style. One important case where the big-
step style definitely seems to be preferable is for specifying static semantics,
including type-checking. Typically, a conventional SOS for static semantics
involves environments, but neither stores nor labels on transitions. Thus in a
corresponding MSOS, all labels would be identity arrows U. Since U; and Us
are composable iff U; = U,, there is no need to use label composition explicitly
in big-step rules for static semantics. In fact, recalling that we allow v — +/
as an abbreviation for v —U— ' when there’s no need to refer to U directly
in a rule, we can simply omit the labels altogether in most rules.

Table 17 gives a simple illustration of MSOS rules for type-checking, assum-
ing that the a-component of a label provides a typing environment mapping
variables to their types. (In practice, it might be preferable to write e — 7

as e : 7, perhaps inserting the label U as a superscript on the colon when it’s
needed.)

28



Table 18
MSOS of dynamic errors

Abstract syntax

p ::=programc
Configurations

e :=stuck

' = ...U{stuck}
Labels

A= { A{err}’, ..}

bop=—, no<ni, U={=(),...}

53
no bop n1 —{e'=err,...}— stuck (53)
¢ —{edm &, & =() 54)
programc —{¢',...}— programc
c —{,...}—= d, &#() (55)
programc —{¢’,...}— nil
program nil — nil (56)

3.7  Abrupt Termination

Finally, let us consider the MSOS of constructs that may terminate “abruptly”,
due to errors, exceptions, breaks, or goto’s. The standard style for specifying
dynamic errors in conventional SOS, as illustrated in Section 2.9, is to add
“error rules” that allow error configurations to propagate through each con-
struct. Such propagation rules are quite tedious, especially in big-step SOS; for
the Definition of Standard ML, an “exception convention” was introduced so
that all the corresponding exception propagation rules could be left implicit.

In connection with MSOS, a modular and elegant technique for specifying both
abrupt termination and its handling has been discovered (B. Klin, personal
communication, October 2001). The basic idea is to make abrupt termination
observable in the labels on transitions that give rise to it. The closest enclosing
handler for the abrupt termination can then monitor each transition of its
body, and terminate it immediately when the label indicates that (the right
kind of) abrupt termination is possible. (Such monitoring is reminiscent of
synchronization between concurrent processes, although here, the handler is
synchronizing with its own sub-construct.)

Let’s illustrate the new technique in connection with the simple dynamic errors
from Plotkin’s notes. We assume that in abstract syntax, complete programs
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are now distinguished from commands; other forms of abrupt termination
would involve further syntactic constructs, such as exception handlers.

We introduce a fresh “write-only” label component &’ : {err}’, where err’ is
the two-element monoid {err, ()}, the unit being ().® We also introduce an
extra configuration, written stuck (although it is never inspected in the rules,
and it doesn’t matter whether there are any transitions from it or not) and
include it in the value-added syntax of expressions.

The rules are given in Table 18. When ng < nq, rule (53) gives rise to a tran-
sition where the e-component of the label is set to the value err. Rule (54)
checks that the e-component of the label is (), indicating that no error has
occurred, so the execution of the program continues. Rule (55), in contrast, no-
tices immediately when the e-component of the label is different from (), and
discards the command configuration ¢ so as to terminate the entire program.

No further rules are needed for propagating errors through other constructs:
the e-component of the label is always propagated — along with any other un-
mentioned components — by the normal MSOS rules for compound constructs.
Moreover, rules that give rise to normal transitions for atomic constructs nec-
essarily specify labels whose unmentioned components are identity arrows, so
in particular, their e-components are automatically the unit ().

The MSOS description of exception-handling (and similar constructs involv-
ing abrupt termination) is equally straightforward. If the smallest enclosing
handler matches the raised exception — which is used as the e-component of
the label instead of err — the handler replaces its body by the appropriate
code, and reflects that the computation is now proceeding normally again by
setting the e-component of the label on the transition to (). If the handler
doesn’t match the exception, or if there is no exception, the transition has the
same label as that for the body of the handler [29]. The description of ‘finally’
construct (as found in Java) is only slightly more complicated: in the case that
the body raised an exception, one has to append a statement to re-raise the
same exception at the (normal) end of the handling code.

The above technique was developed in connection with MSOS, but it could
also be used in a conventional small-step SOS of a programming language, as
illustrated in the appendix. The only problem is that it would usually require
reformulation of all the usual rules for constructs: to add labels on transitions,
or ensure propagation of new components of existing labels. With MSOS, in
contrast, the rules for compound constructs always propagate unmentioned
observable components of labels, and adding an extra component to labels
doesn’t require the reformulation of any rules at all.

6 The free monoid {err}* could be used instead of {err}’, but the extra elements
aren’t of any use here.
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It seems unlikely that an analogous technique could be provided for use in
big-step MSOS. Thus the small-step style has a distinct advantage for the
specification of constructs which might involve abrupt termination.

3.8 Modularity

As shown in Table 8, allowing the inspection of stored values in expressions
requires reformulation of the conventional SOS rules given in Table 6. The
corresponding MSOS rules were given in Table 12; these are definitive, and
never ’ need reformulating. All that may be needed when adding new con-
structs to a language described in MSOS is to extend the label components.
For example, we might have started with p : Env as the only component, then
added o : Store, and finally o’ : Store as well. (The exact comparison between
SOS and MSOS is here slightly obscured by the fact that, for simplicity, we
are using the same label category in MSOS for the transitions of all syntactic

constructs.)

As we observed in Section 3.5 when comparing our MSOS rules for commands
to those in Plotkin’s notes, MSOS still has some degrees of freedom, such as
whether or not to use computed values directly in abstract syntax, as well as
the more fundamental choice between the small- and big-step styles. Even the
label category components can be varied, e.g., by using the preorder category
for an “imperative” treatment of environments. Further variations may be
required in connection with non-standard operational semantic models, for
instance introducing locations for actions in process algebra.

Thus we cannot expect that MSOS will lead to canonical specifications of
operational semantics. Nevertheless, MSOS specifications in the general style
illustrated here do exhibit considerable modularity, and can indeed be easily
extended, as well as reused in descriptions of many different programming
languages. Further evidence of the high degree of modularity that can be
obtained using MSOS is provided by the descriptions of action notation [25,28],
the core of Concurrent ML [27], and various constructs from Standard ML
covered in lecture courses at Aarhus.

3.9 Relationship Between MSOS and SOS Rules

Suppose that we have fixed a set of configurations I', a label category A, and
a set of final configurations T'. A set of MSOS rules then defines the transition

7 Tt is however an open problem to give an MSOS for continuation-handling con-
structs such as call/cc.
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relation — of a GTS. By Proposition 3, an LTTS (I'*, A*, —*,T*) can be
constructed from the GTS such that for each computation of the G'TS, there
is a computation of the LTTS with the same trace, and vice versa.

A corresponding construction can be applied to the MSOS specification, map-
ping it to a SOS specification which defines (essentially) the same LTTS as
the one constructed from the G'TS specified by the MSOS. Let’s consider the
construction of each part of the SOS specification in turn:

The specifications of abstract syntax, computed values, auxiliary entities,
and value-added syntax in the SOS are exactly the same as in the MSOS.
The SOS specification of the sets of configurations I'* and 7" is determined
by the MSOS specifications of I', T', and A: I'* =T"'x S} x --- x 5, and
T* =T x5 x---x S,, where the sets S; are those associated with indices
of read-only and read-write label components.

The SOS specification of the set of labels A® is determined by the MSOS
specification of A: A®* = 5] x -+ x ], where the sets S} are the monoids
associated with indices of write-only components. Notice that the LTTS
construction in Proposition 3 corresponds to taking A®* = A; here, we omit
components of A®* which are already included in the configurations I'*; since
they are redundant.

An SOS rule is constructed systematically from each MSOS rule, as follows:

First, all occurrences of the meta-variables X and U in the MSOS rule
are eliminated in favour of meta-variables corresponding to their specified
components (occurrences of U give rise to double uses of the same meta-
variable for read-write components, and to constants denoting the units of
the monoids for write-only components). Moreover, occurrences of ‘... in
record patterns are replaced by any missing fields that were specified as
components of A. Uses of X.i and U.i are replaced by the selected compo-
nents.

Then each transition t —{i;=ty,---,i,=t,}— t' in the MSOS rule is
converted to an SOS transition of the form ... F (t,...) = (t/,...), where
the precise locations of the terms ¢; in the SOS notation are determined by
the kind and ordering of the indices ¢;: read-only components go to the left
of the ‘+’, the unprimed and primed versions of read-write components go
to the left, resp. right of the ‘—’, and the write-only components go above
the ‘—".

Finally, any remaining uses of record patterns in side-conditions are re-
placed by conjunctions of side-conditions not involving record patterns.

The appendix shows the result of applying the above construction to the
collected illustrative examples of MSOS given throughout this chapter (some
further transformations were applied to substitute for variables defined by
side-conditions).
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A formal presentation of the construction of SOS rules from MSOS rules, and
a proof of its correctness, are left to future work.

4 Equivalence in MSOS

The development of MSOS has so far been focussed on establishing appro-
priate foundations for modular specifications of programming languages, and
on developing an appropriate meta-notation for writing such specifications.
The study of equivalences based on MSOS is still at an early stage. Although
the standard definitions carry straight over from SOS to MSOS, and allow
proofs of general algebraic properties, it is questionable whether the resulting
equivalences are large enough to allow reasoning about the MSOS of specific
programs.

4.1 Strong Bisimulation

An MSOS defines a generalized transition system GTS = (I', A, —,T) with
an underlying labelled terminal transition system LTTS = (I',A,—,T),
where A is the set of arrows of the label category A. Adjacent labels in com-
putations are required to be composable in A. Let us first recall the usual
notion of strong bisimulation for ordinary labelled transition systems [15],
adjusted to take account of terminal configurations in LTTS:

Definition 7 Let LTTS = (I';)A,—,T) be a labelled terminal transition
system. R C T' x T is a strong bisimulation iff (y1,7v2) € R implies, for all
a € A,

o whenever v —— v} then for some 7y, 2 — ¥4 and (v}, 75) € R;
o whenever v, —— b then for some v}, v1 — 7, and (v},74) € R; and
o whenever vy €T or v € T then v1 = 2.

Y1, 72 are strongly bisimilar, written vy ~ 72, iff (y1,72) € R for some strong
bisimulation R.

The above definition of strong bisimulation carries over unchanged from LTTS
to GTS, and the usual proof techniques are available. Since the configurations
v of the GTS defined by an MSOS are purely syntax and computed values,
we obtain bisimulation and bisimilarity relations on programs (and parts of
programs) without need to quantify explicitly over auxiliary entities such as
environments and stores. In fact an MSOS for a programming language re-
sembles an SOS for a process algebra, the main difference being in the nature
of the labels.
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This straightforward definition of strong bisimulation for GTS is insensitive to
whether adjacent labels in computations are composable or not, since for each
pair of configurations, we consider all possible labels on their next transitions,
without regard to the labels on the transitions that led to those configura-
tions. For general algebraic properties (e.g. commutativity, associativity) such
insensitivity clearly doesn’t matter: one has to prove that syntactically-distinct
programs do in fact have the same possibilities for the flow of control between
their unknown parts, regardless of the information which is processed by those
parts.

Suppose, however, that we are to prove equivalence of programs involving
specific bindings of identifiers to values, or specific assignments of values to
variables, where the combination of the syntactic configuration and the auxil-
iary information carried by the labels can determine the future flow of control.
In this case, the relevant point is that the labels on transitions reveal all com-
ponents of the information being processed: two programs can only be in a
bisimulation when they start from the same environment, and make exactly
matching changes to the store at each transition. The fact that stores are in-
cluded in labels ensures that bisimilar programs always have the same store
at each transition.

The original definition of strong bisimulation for MSOS [23] was based on the
reduction from GTS to LTTS, and involved binary relations between pairs
consisting of GTS configurations and objects of the label category. It now
appears that it was unnecessarily complicated.

A full treatment should take account of the fact that environments in practice
often have syntactic components, for instance closures representing functions
with static scopes for bindings. Since environments occur as components of
labels in MSOS; it’s too restrictive to insist on labels being ¢dentical in con-
nection with bisimulation: their syntactic components should be allowed be in
the bisimulation relation themselves. The same goes for the computed values,
which may also have syntactic components. Thus a higher-order bisimulation
is needed, similar to that defined for use with higher-order process algebra
where processes can be passed as values. (There has as yet been no experience
of using higher-order bisimulation to prove properties of languages specified
in MSOS, so we omit the definition here.)

4.2 Weak Bisimulation

An MSOS for a programming language involves many unobservable transi-
tions, for instance arising due to applying arithmetic operations to the values
of sub-expressions. Sometimes, one can avoid unobservable transitions by tak-
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ing account of the case when a component construct is making a transition to a
final state, as in the SOS rules for command sequencing in Plotkin’s notes, but
it’s not clear that the extra bother of doing that is worthwhile. For a general
notion of equivalence, it’s desirable to allow (finite sequences of ) unobservable
transitions to be ignored.

In studies of process algebra, many variations on the theme of weak bisimula-
tion have been defined, based on the assumption that unobservable transitions
are always being labelled with a special silent action, conventionally written 7.
In MSOS, we generally have a large set of labels for unobservable transitions:
all the identity arrows of the label category A, so we do not need to add 7
to our labels. Moreover, definitions of weak bisimulation don’t depend on 7
being a constant (we could regard it formally as a meta-variable ranging over
the set of identity arrows).

Thus the standard definition of weak bisimulation [15] is formulated for MSOS
as follows (branching and other varieties of bisimulation would be defined
analogously):

Definition 8 Let (I', A, —,T) be a generalized transition system, and A the
set of arrows of the category A. R C T'x T is a weak bisimulation iff (y1,72) €
R implies, for all a € A,

o whenever vy == | then for some 7}, v . v5 and {~],7v5) € R;

o whenever v, == 74 then for some v}, 1 == 7, and (v}, € R; and
o whenever y; € T or v, € T then v = ¥s.

where:

« . vy (e
= s defined as the composition —* — —*,
== is defined as —* when « is an identity arrow, otherwise as ==,

— 15 the union of o, for all identity arrows o, and

*

—* is the reflexive transitive closure of —.

(914

Related Work

The modular approach to SOS presented here, MSOS, was inspired by the
Moggi’s monad transformers [18], and in particular by Liang and Hudak’s
practical development of a modular monadic semantics framework [14]. As
mentioned in the Introduction, the search for modularity in SOS was stimu-
lated by Wansbrough and Hamer’s [41] modular monadic semantics of much
of the action notation used in action semantics, the original SOS definition of
which [19] lacks modularity. MSOS attempts to transfer the practical benefits

35



of monad transformers from denotational to operational semantics. However,
this has been achieved only for simple monad transformers concerned with
incorporating new components of the processed information, since the flow of
control in MSOS is generally expressed by the patterns of transitions in the
rules (as in conventional SOS) and is not affected by the components of labels.
The illustrated technique for the modular treatment of abrupt termination in
MSOS was discovered by Klin, and doesn’t appear to be closely related to the
monad transformer for exceptions.

The basic ideas of MSOS were first explored by the author in [21]. The tech-
nique of incorporating all semantic information in labels has previously been
proposed as a general principle for SOS also by Degano and Priami [8], and
exploited by them to obtain parametricity in the framework of Enhanced Op-
erational Semantics. However, they did not abstract from the structure of
labels (which is a crucial step for obtaining full modularity and extensibility),
nor did they consider partial composition of labels. The Tile Model framework
of Gadducci and Montanari [11] provides categorical structure on labels, but
is otherwise not closely related to MSOS.

There has been extensive work on various formats of small-step SOS (see
[10] for references), but the conservativity results obtained there concern ex-
tensions with new syntax and rules, rather than changes to labels. An SOS
format with terms as labels has been proposed by Bernstein [4], but modu-
larity was not considered. The work of Turi and Plotkin [39] on the fusion of
denotational and operational semantics doesn’t appear to address modularity
either.

A non-structural but quite succinct approach to operational semantics is to
give an (unlabelled) reduction semantics for applications of evaluation con-
texts C[t], following Felleisen et al. [9,43]. The use of evaluation contexts
appears to provide some inherent modularity, but obtaining full modular-
ity may involve the introduction of many artificial internal steps [6]. Reppy’s
evaluation-context semantics for ML concurrency primitives [35,36] has better
modularity than the SOS given in [5] — see [27] for a detailed comparison of it
with an MSOS for the same language. See also [24] for a more general survey
of frameworks for logical specification of operational semantics.

6 Conclusion

In this paper, we have reviewed the conventional SOS framework, and defined
MSOS as a variant of SOS where configurations are restricted to abstract syn-
tax and computed values, the labels are the arrows of a category, and adjacent
labels in computations are required to be composable. We have provided a sim-
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ple and modular way of defining label categories, based on the indices used
to refer to the components of labels. And we have introduced an efficient no-
tation for referring to and replacing particular components of labels without
mentioning other components.

Apart from the illustrative examples given in Section 3, which are comparable
with examples in Plotkin’s notes (and systematically related to the SOS exam-
ples given in the appendix below) we have shown how abrupt termination can
be described in a completely modular way. However, a modular description of
continuation-passing constructs such as call/cc has not been found. Finally,
we have reviewed the definition of strong bisimulation for MSOS, but left open
the issue of how to select an appropriate definition of weak bisimulation.

A TIllustrative Examples of (Non-Modular) SOS

This appendix shows how the MSOS rules given in Section 3.5 can be for-
mulated in SOS. See Section 3.9 for discussion of how to obtain SOS rules
systematically from MSOS rules, so as to obtain (essentially) the same com-
putations.

The style of the rules given here differs in several respects from that of the
rules given in Plotkin’s notes. In particular, our rules are consistently small-
step, let commands compute nil, and exploit the novel treatment of errors
explained in Section 3.7.

Abstract Syntax: See Table 1, extended by:

Programs p::=programc

Computed Values: See Table 2.
Auxiliary Entities: See Table 3.

Value-Added Syntax:

Expressions  e::=stuck
Declarations d::=p

Configurations:

I'=(Ezp U Com U Dec U Prog) x Env x Store
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T=(NUT U {nil} U Env) x Env x Store
Labels:

ee A={(),err} (& is abbreviated to —)

Expression Rules

Pt (eo,0) < (ch, o)

Al
pF (e bop e1,0) —— (e} bop e1,0") (A1)
pk(e1,0) = (e},0") (A.2)
p F (cong bop e1,0) —— (cong bop €, 0") '
bop=4+, n=ng+n
A.
pE (ng bop n1,0) — (n,o) (A.3)
bop =—, ng<ng (A1)
pF (ng bop n1,0) <5 (stuck, o) '
p(x) = con
A5
pr(z,0) — (con, o) (45)
p(x) =1, o(l)=con
A.
oF (5,0) — {com,0) (4.6)
pF (letdine,o) — (letd ine,o’) '
plool - (e.0) - (¢ o' (A3
pF (let ppine, o) —— (let pyine’, o’ '
p F (let poin con, o) — (con, o) (A.9)
Command Rules
+ ) — /7 !
pt{coicr,0) — (cgsc1,07)
pt (nil;cy,0) — (c1,0) (A.11)
- (d, o) = (d,0’
P (,O’>—>< 7U> (A12)

pr(dic,0) = (d0,0')
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p[po] + <C, U> — <C/,U,>

A.13
pt{poic,a0) = (poic,0’) (4.13)
pF {po;nil,o) — (nil, o) (A.14)
p |_ <e7 U> L <€/,O-/> (A 15)
pF (if ethencgelse ci,0) —— (if ¢ thencg else c1, o) '
p F (if tt thencgelsecy, o) — (cp,0) (A.16)
p F (if ff then g elsecy,0) — (c1,0) (A.17)
pF (whileedoc, o) — (if e then ¢; while e do celse nil, o) (A.18)
P + <670 — <6/7OJ> (A 19)
pF(r:=e,0) = (xz:=¢€,0) '
ple) =
A2
pF (x:=con,o) — (nil, o[l — con]) (4.20)
Declaration Rules
- € rot
p <6, J> T) <6 i > (AQl)
p b (constx=e,0) — (constz=¢',0")
p F (const x = con,c) — ((x +— con),o) (A.22)
- € ro
pFle,0) — €0) (A.23)
pbk(varz:=e o) — (varxz:=¢',0’)
| ¢ dom(o)
A.24
p b (varz:=con,o) — ((x +—1),0[l — con]) ( )
- € r
p <d0,0’> T} < 07J> (A25)
pt{dosdi, o) — (dy;di, ')
- (d = (d, o’
p[po] < 17U>€—> < 170> (A26)
pF{posdi,o) — {po;dy,0’)
pF{poip1,0) — (polp1], o) (A.27)
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Program Rules

ptleo) — (¢, 0)

A2
p F (programd, o) — (programc,o’) (A.28)
l— err /
p <C’ 0> - <€f‘7" 0> - (A29)
p F (programc,o) — (nil, ¢’)
p F (programnil, o) — (nil, o) (A.30)
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