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1. Introduction

Recent work in theoretical computing science uses many different logical

systems. Perhaps most popular are the many variants of first- and higher-order

logic found in current generation theorem provers. But also popular are

equational logic, as used to study abstract data types, and Horn clause logic, as

used in “logic programming, ” for example, Prolog. More exotic logical

systems, such as temporal logic, second-order polymorphic lambda calculus,

dynamic logic, order-sorted logic, modal logic, continuous algebra, infinitary

logic, intuitionistic higher-order type theory, and intensional logic have been

proposed to handle problems such as concurrency, overloading, exceptions,

nontermination, program construction, and natural language. However, it seems

apparent that many general results used in the applications are actually com-

pletely independent of what underlying logic is chosen. In particular, if we are

correct that the essential purpose of a specification language is to say how to put

(small and hopefully standard) theories together to make new (and possibly very

large) specifications [15], then much of the syntax and semantics of specifica-

tion does not depend upon the logical system in which the theories are

expressed; similar considerations apply to implementing a specification, verify-

ing correctness, and programming-in-the-large. Also, because of the prolifera-

tion of logics of programming and of logic-based programming languages, plus

the great expense of implementing tools like theorem provers and compilers, it

is useful to know when sentences in one logic can be translated into sentences in

another logic in such a way that soundness is preserved. This will allow, for

example, using a theorem prover for one logic on (translations of) sentences

from another logic, or using a compiler for one logic-based language on

(translations of) programs from another. Institutions provide a foundation for

approaching these and many other problems in computing science.

One of the most essential elements of a logical system is its relationship of

satisfaction between its syntax (i. e,, its sentences) and its semantics (i, e., its

models); this relationship is sometimes called a model theory and classically

appear in the form of a Galois connection (as in Section 2.2 below). Whereas

traditional model theory assumes a fixed vocabulary, institutions allow us

to consider many different vocabularies at once. Informally, an institution con-

sists of

— a collection of signatures (which are vocabularies for use in constructing

sentences in a logical system) and signature morphisms, together with for

each signature 2,

—a collection of Z-sentences,
— a collection of ~-models, and

— a X-satisfaction relation, of S-sentences by X-models.

such that when you change signatures (by a signature morphism), satisfaction of

sentences by models changes consistently.

The first main result in this paper (Theorem 11) states that any institution

whose declarations of notation (as given by signatures) can be glued together

will also allow gluing together theories (which are collections of sentences) to

form larger specifications, using colimits. A second main result (Proposition

23) states that any institution extends to another whose sentences may be either

the old sentences, or else new data constraints that capture induction and are
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useful in defining abstract data types. Theorem 26 extends this to more general

kinds of constraint, including so-called hierarchy constraints, and Theorem 24

says that colimits extend from signatures of the original institution to theories

over the extended institution. Another result (Proposition 35) shows that a

suitable institution morphism permits a theorem prover for one institution to

be used on theories from another. Another main result (Theorem 39) shows that

many institution morphisms preserve structuring operations on theories. This

implies that constructions for programming-in-the-large are preserved by cer-

tain language translations. Again using the notion of institution morphism,

“duplex” institutions permit combining sentences from one institution with

constraints from another (Theorem 44); moreover, the duplex institution again

inherits colimits from the signature category of the base institution (Theorem

45). Finally, “multiplex” institutions permit whatever combination of sen-

tences and constraints one might desire, provided they are related by morphisms

to the same base institution (Section 4.3). Altogether, this gives a very rich and

flexible framework that can be used in program specification and logical

programming, as well as many other areas of computing science.
Institutions arose in our research on the specification language Clear [15]

under the rather general name of “language” [17]. The present paper adds

many new concepts, results, and examples, as well as an improved notation.

Barwise’s approach to abstract model theory [5] (see also [6]) resembles our

work in its intention to generalize basic results in model theory and in its use of

elementary category theory; but Barwise [5] is more concrete (e. g., its syntactic

structures are limited to the usual function, relation, and logical symbols) and is

focussed on classical results of logic.

Section 2 below gives the basic definitions and results for institutions and

theories. Section 3 discusses constraints, while Section 4 considers the use of

two or more institutions. Appendix Al briefly reviews universal algebra,

emphasizing the results needed to show that equational logic is indeed an

institution, while Appendix A2 considers the (many-sorted) first order, first

order with equality, Horn clause, and conditional equational institutions. Some

readers may wish to read these appendixes in parallel with Section 2.

1.1. METHODOLOGY AND LOGICAL SYSTEMS. Systematic program design re-

quires a careful specification of the problem to be solved. But experience in

software engineering shows that there are major difficulties in producing

consistent, rigorous specifications that adequately reflect users’ requirements

for complex systems. We suggest that these difficulties can be ameliorated by

making specifications as modular as possible, so that they are built from small,

understandable pieces, many of which may be used repeatedly (e. g., those

defining concepts like “ordering,” “list,” or “file”). Modern work in pro-

gramming methodology supports the view that abstraction, and in particular

data abstraction, is a useful way to obtain such modularity, and that parametri-

zed (also called generic) specifications can lead to further improvements.

One way to apply these ideas is through a specification language that supports

putting together parameterized abstractions. Whereas a specification written

directly in a logical system is an unstructured, and possibly unmanageably

large, collection of sentences, a suitable specification language can make it

much easier to write and to read specifications, especially for large systems.

Specification languages that support modularity in one way or another include
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Clear [15, 17, 18], OBJ [32, 33, 48, 56], Z [1, 61, 96], Act One [25], Act Two

[29], ASL [89, 105], and Extended ML [87]. We also suggest that modularity

may be useful in proving theorems about specifications, for example, in proving

that a given program actually meets its specification. Moreover, exactly the

same structuring mechanisms can be used to achieve the exactly same advan-

tages in programming languages that are rigorously based upon some formal

system of logic; we shall call such languages logical programming languages.
Finally, the same techniques of modularization can be applied to conventional

imperative programming languages such as Ada, by using a system like LIL

[39, 104] .

In order for a specification written in a given language to have a precise

meaning, it is necessary for that language to have a precise semantics. (This

may seem obvious, but the fact is that many specification languages lack such a

semantics. ) Part of that semantics will be an underlying logical system, which

must have certain properties to be useful for this task. These include suitable

notions of model and sentence, and a satisfaction relationship between sentences

and models that is invariant under change of notation. For applications to

programming, we want to define models by programs.

Signature morphisms play a basic role in structuring specifications. Let us

assume for concreteness of exposition that the signatures have sorts and

operators, and then consider some specific structuring mechanisms. First, we

may build a more complex specification by adding new sorts and operators to

an existing signature; then, the inclusion of the original signature into the

extended signature is an ‘ ‘enrichment” signature morphism. Second, we may

wish to use such an enrichment not just on one specification, but on a whole

class of specifications. This leads to parametrized specifications. For instantia-

tion, the parameter sorts and operators are bound to particular sorts and

operators by a “binding” signature morphism. Third, a large specification may

have name clashes: two subspecifications may happen to use the same sort or

operator names. These can be eliminated by signature morphisms that define

renamings. Enrichment, binding, and renaming raise no deep logical problems,

but are still important for modular structure. Using institutions, we can define

such features without making a commitment to any particular logical system.

Moreover, the task of giving a semantics for the language is also simplified. We

feel that these considerations justify an attempt to deal with logical systems in a

general way, free of the entanglements of any particular syntax and semantics.
A specification language is not a programming language. Thus, the denota-

tion of an Algol text is one or more function, but the denotation of a

specification text is a theory, that is, a collection of sentences about pro-

grams. Of course, a theory also has a denotation, which is the collection of all

models that satisfy the sentences in the theory, and this should be taken as the

ultimate denotation of a specification text. Programmers construct such models

using programming languages. For a (pure) logical programming language, the

specification is also a program, so in this case there is no need to verify that

these two agree.

Despite this distinction, it may be useful to view a specification language like

Clear [15, 17, 18] as a functional language with types. Its values are specifica-

tions, its functions are specification constructing operations, and its types

denote classes of specifications. Because theories are used for specifications and
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theory morphisms for bindings, we have the following correspondence:

value

function

binding

application of a function to a value

type

values of type T

theory

theory morphism

theory morphism

pushout of theory morphisms

theory

theories with a morphism from T

Clear was designed to work with any institution. To provide initiality for

abstract data types, we can further elaborate values to be “theories with duplex

constraints, ” as discussed in Section 4.2. This elaboration makes sense for any

institution, and the elaborated theories also form an institution.

1.2. RELATED lVORK AND APPLICATIONS. Although this paper is a direct

descendent of the first paper on institutions [44], delays in publication have led

to the situation that the literature on institutions and their applications is now so

large that it would be awkward to undertake more than the following brief

survey of some representative papers and results.

We begin with some of our own work. The institution concept was introduced

in [17] to help define the semantics of Clear [15]. Thus, Clear can be used to

build large specifications from small, reusable theories over any logical system.

Clear’s approach to modularity is called parametrized programming [38].
Parametrized programming is implemented in 0111 [32, 33, 48, 56] which can

be considered an implementation of Clear for the institution of order sorted

equational logic [53], and it has also been used in designing the logical

programming languages Eqlog [51] and FOOPS [52], the latter of which is

object-oriented. Parametrized programming can even be applied to a conven-

tional imperative programming language like Ada, where it provides module

interconnection capabilities far beyond those in the language itselfi see LIL [39,

104]. Each of these language designs relies on the machinery in this paper,

especially Theorems 11 and 24, but instantiated with different institutions.

In [47], we developed so-called “charters” and “parchments” as easier

ways to generate institutions, exploiting the fact that the syntax of a logical

system forms an initial algebra. In particular, the difficulty of checking the

satisfaction condition (in Definition 1 below) is avoided, because this condition

is automatically y satisfied. A quite different formalization of the intuitive notion

of logical system, axiomatizing the category of theories as well as that of

signatures, is given in [46].
Other researchers have produced much interesting work. Mayoh [76] pro-

posed generalizing institutions so that satisfaction is no longer just Boolean-

valued, and pointed out that this generalization would have applications to

database systems, where the answer to a given query (considered as a sentence)

for a given model might be some complex proposition, or set of values, rather

than jus~ true or jlalse. This generalization is somewhat further developed in

[47], IVIayOh [76] also s~ggestec! some application to the twmantim of program-

ming and natural languages.
Two other specification languages based on institutions are ASL [89] and

Extended ML [87], both due to Sannella and Tarlecki. Extended ML is
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integrated with the widely used functional programming language ML [59]. A

number of topics in theoretical computing science have been abstracted to the

level of institutions, including observational equivalence by Tarlecki and

Sarmella [88] and data representations (usually called implementations in the

abstract data-type literature) by Beierle and Voss [7. 87]. Tarlecki has also

studied free constructions in institutions [98. 99], and moreover has shown that

certain model theoretic results generalize to institutions, including equivalence

of the Craig Interpolation and the Robinson Consistency Theorem, under

certain assumptions [97]. Probably much more could be done along these lines.

Lowry has applied institutions to problem reformulation [72], and Mosses has

used institutions in his elegant development of unified algebra [80] for the

denotational semantics of programming languages. The machinery of the pres-

ent paper has also influenced work that does not use institutions directly. In

particular, our abstract notion of constraint (Section 3) has influenced many

authors in the context of algebraic specification, that is, for the equational

institution, for example, [24], [28], and [81]. The second volume of Ehrig and

Mahr’s book [27] contains an extensive discussion of constraints for the

algebraic case, and also some results in an institutional context.

Several authors have felt the need for a formalization of logical systems that

is based on deduction rather than satisfaction. Fiadeiro and Sernadas [30]

introduce “~-institutions, ” based on a consequence relation like that of Tarski’s

deductive systems [10 1]. and show that the main results of the present paper

also hold in that setting; Fiadeiro and Sernadas [30] also discuss some

applications to conceptual modeling and knowledge representation, as do

Fiadeiro et al. [31] and Sernadas and Sernadas [93], the latter also mentioning

some interesting applications to database theory. Meseguer [78] provides a

general approach to logical systems which includes axiomatizations of the

notions of entailme~t system (building on Scott’s axiomatization of deduction

[91]) and proof calculus, as well as institution. This avoids commitment to any

particular style of proof theory, and in particular can handle effective (i. e.,

computable) proof calculi. Meseguer [78] also provides general notions of

morphism for each level, as well as a theory of categorical logics, including

some important basic results, such as a very general structure-semantics adjoint-
ness; our approach to categorical logic (in which proofs are morphisms, as

advocated by Lambek and (Phil) Scott [66]) is given in Section 2.5.1. Meseguer

also axiomatizes the notion of logical programming language in a way that uses

most of the concepts in his paper.

Logical frameworks [4, 58] are another formalism for defining Iogics at the

same level of generality as institutions. Harper et al. [60] define a logical
SYSt@ZW as a family of consequence relations indexed by signatures, obtaining a

notion equivalent to that of Fiadeiro and Sernadas, but applied to logical

frameworks. Poign6 [83] studies foundations, where the set of sentences

associated with a signature becomes a category indexed by sets of variables: this

gives a double indexing, over the constants in the signature and over variables.

The extra complexity may or may not be worthwhile.

1.3. PREREQUISITES. Although relatively little category theory is needed for

most of this paper, we have not resisted the temptation to add some more arcane

remarks for those who may be interested. We must assume the reader is already

acquainted with the notions of category. functor and natural transformation.
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Occasional remarks use adjoint functors. There are several introductions to

these ideas, including [2, 19, 57], and for the mathematically more sophisti-

cated [67]. Familiarity with the initial algebra approach to abstract data types is

helpful, but probably not necessary: see [54] or [26]. Colimits are briefly

explained in Section 2.4. A general motivation for the use of category theory in

computing science is given in [40].

By way of notation, categories are boldface, I C I denotes the class of objects

of C, f; g denotes the composition of morphisms f and g in diagrammatic

order, 1~ denotes the identity at an object A, = denotes isomorphism. and

~“p denotes the opposite category of C (see [67], 11.2). The notation that we

use for general algebra is developed in Section A 1, while Section A2 develops

first-order logic.

2. Institutions

An institution consists of a category of signatures such that associated with each

signature are sentences, models, and a relationship of satisfaction that, in a

certain sense, is invariant under change of signature. Two familiar examples of

this setup are equational logic (also called general, or universal algebra) and

first-order logic (or mode/ theory). In equational logic, a signature X declares

the function symbols that are available, Z-sentences are equations using these

function symbols, and X-models are Z-algebras. In first-order logic, signatures

in addition give relation symbols, sentences are the usual first-order sentences,

and models are the usual first-order structures. In both cases, satisfaction is the

familiar relation. Appendixes Al and A2 discuss the many-sorted variants of

these two examples in some detail.

2.1. 13EFINITION AND EXAMPLES. The essence of the institution notion is that

a change of signature (by a signature morphism) induces “consistent” changes

in sentences and models, in a sense made precise by the “Satisfaction Condi-

tion” in Definition 1 below. This goes a step beyond Tarski’s classic “semantic

definition of truth” [102], and also generalizes Barwise’s “translation axiom”

[5]. The wide range of consequences, and the fact that even for equational

logic, the satisfaction condition is not entirely trivial, suggest that this step has

some substance. Moreover, it is a basic and familiar fact that the truth of a

sentence (in logic) is independent of the symbols chosen to represent its

functions and relations. This can be summed up in the slogan

Truth is invariant under change of notation.

It is also fundamental that sentences translate in the same direction as the

change of notation, whereas models translate in the opposite direction. Because

reversing the direction of morphisms gives a contravariant functor, the defini-

tion below uses Cat “p, the opposite of the category of categories.

Definition 1. An institution Y consists of

(1) a category Sign, whose objects are called signatures,
(2) a functor Sen: Sign -+ Set. giving for each signature a set whose elements

are called sentences over that signature,
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(3) a functor 1 Mod: Sign + Cat ‘p giving for each signature 2 a category

whose objects are called Z-models, and whose arrows are called Z-(model)

rnorphisms, and

(4) a relation RX ~ \ Mod(x) I x Serz(X) for each Z 6 I Sign 1, called X-
satisfaction,

such that for each morphism @: Z ~ Z’ in Sign, the Satisfaction Condition

m’ PX Sen(@)(e) iff Mod !=X e

holds for each m’ e I Mod( X’) I and each e e Sen(2). We write O(e) or even

@e for Sen(@)(e), and 0( i~j or dm’ for Mod(j)( m’); also we drop the
signature subscripts on the satisfaction relation when it is

These conventions are used in the following condensed

tion Condition,

not confusing.

form of the Satisfac-

The following picture may help in visualizing these relationships:

Sen

<

Set

Sign /=

Mod cat (1P

Appendix A of this paper shows that a number of logical systems satisfy

Definition 1, including (the many sorted versions of) equational logic, first-order

logic, Horn-clause logic, Horn-clause logic with equality, and first-order logic

with equality. We note that it can be nontrivial to establish the Satisfaction

Condition.

For some purposes, Definition 1 can be simplified by replacing Mod: Sign +

Cat “p by a functor Mod: Sign + Set “p, where Mod(S) is the collection of all

S-models; the two versions of the definition are thus related by the equation

&fod(X) = I Mod( X) I Indeed, this was our original version [17]. Some

reasons for changing it are: First, it is more consistent with the categorical point

of view to consider morphisms of models along with models; and second, we

want every liberal institution to be an institution, rather than just to determine

one (liberal institutions are discussed later in this paper). Section 2.5 gives a

more categorical definition of institutions that replaces the perhaps ad hoc

1Here, and at other places in this paper, some readers may have questions about set-theoretic

foundations, because Cat clearly needs to include ‘‘ large” categories, In fact, we stay well away from

anything genuinely problematical, and nearly any foundation that has been proposed for category

theory will do. in particular, the “hierarchy of universes” discussed e.g., by MacLane [67], in Sec-
tion I 6
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looking family of satisfaction relations by a functor into a category of “twisted

relations. ” This more categorical formulation suggests some further generaliza-

tions of the institution concept, including one which models deductions as

morphisms among sentences.

2.2. THEORIES AND THEORY MORPHISMS. If, as suggested in the introduction,

a specification provides a mathematical theory of the intended behavior of a

program, and if a t/zeory consists of all the sentences that are true of that

behavior, then it will be important to define and develop the basic properties of

theories over an arbitrary institution. A theory consists of a signature X and a

“closed” collection of E-sentences, as in first-order logic. Because these

theories usually contain an infinity of sentences, one concern is to define them

by a finite subset. This notion differs from the “algebraic theories” of Lawvere

[69], which are independent of choice of signature, and it simplifies the “signed

theories” of [15].

Definition 2. Let Y be a fixed but arbitrary institution. Then

(1) A E-presentation is a pair (2, E), where E is a signature and E is a

collection of Z-sentences.

(2) A Z-model m satisfies a presentation (Z, E) if it satisfies each sentence in

E; write m = E in this case.

(3) Given a collection E of Z-sentences, let E* be the collection of all

Z-models that satisfy each sentence in E.
(4) Given a collection &f of Z-models, let M* be the collection of all

Z-sentences that are satisfied by each model in &f; also, let A4* denote

(Z, M*), called the theory of M.

(5) The closure of a collection E of Z-sentences is E**, denoted E“.
(6) A collection E of E-sentences is closed iff E = E“.
(7) A Z-theory is a presentation (2, E) such that E is closed.

(8) The X-theory presented by a presentation (~, ~) is (Z, E“).
(9) A ~-sentence e is semantically entailed by a collection E of Z-sentences,

written E = e, iff e e E“.

Our definition of closure is based on satisfaction rather than deduction. Of

course, some institutions have a natural complete set of inference rules, for

example, the many-sorted equational institution; but others do not, and we

prefer the added generality.

We can also consider closed collections of models; following the terminology

of the equational institution, these might be called varieties. It is often

convenient to regard E* as the full subcategory of Mod(Z) with objects the

models that satisfy E. The closure of a collection A4 of models is iM* *,

denoted iVl”, and a full subcategory of models is called closed iff its objects are

exactly all the models of some collection of sentences.

Notice that there is a forgetful functor Sign: Th -+ Sign sending (X, E) to Z,
and sending @ as a theory morphism to 4 as a signature morphism.

PROPOSITION 3. The two functions denoted * in Definition 2 form what
is known as a Galois connection (see, e. g., [21]), in that they satisfy
the following properties, for any collections E, E’ or Z-sentences and
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collections M. M’ of Z-models:

(1) E ~ E’ implies E* L E*.
(2) M G M’ implies M’* G M*.
(3) E s E**.
(4) M ~ M**.

These imply the following properties:

J. A. GOGUEN AND R. M. BURSTALL

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

~~ = E***

M+ . A/f*i%

There is a dual (i. e., inclusion reversing) isomorphism between the
closed collections of sentences and the closed collections of models;
this isomorphism takes unions to intersections and intersections to
unions.

There are also dual identities to (8)-(12) for collections of models.

PROOF. The first two assertions are straightforward. We now prove the

third, assuming that E ~ Sen( Z ): Because

E*= {nZl(b’ec E)mt= e].

then

E** = {e’ l(VmeE*)m ~ e’]

= {e’l(vm)m~E*- m ~e’}

= {e’l(vm)[(vec E)m Eel * m =e’}.

But if e’ is in E, and if m E e for all e E E, then certainly m i= e’; thus the

above set contains { e’ I e’ GE} = E. The proof of the fourth assertion is

similar, and the next eight assertions are familiar from lattice theory (e. g. [9]);

in fact, (8) – ( 12) follow easily from (7). ❑

The following identity is useful, for example, in Theorem 39 below:

PROPOSITION 4, Given a signature morphism ~: 2 ~ X’ such that
$: Mod( X’) + Mod(2) is subjective on objects2 and a E-presentation E,
then 4(cPE)* ==E*.

PROOF. Let m e lMod(X) / . Then, m eE* iff m = E, and m e ~(@E)* iff

[(~ m’ c (@E)*)m = @m~ iff [(qm’)m’ t= @E & nz = ~m’] iff [(3 m’)m ~ E
& m = ~rnq lff [m t= E & (~m?m = @mq iff m E E (because @ is subjec-

tive). ❑

Definition 5. If T and T’ are theories, say (Z, E) and (E’, E’), then a

theory morphism from T to T’ is a signature morphism @: X ~ 2’ such that

z It does not matter what happens to the morphisms: m effect, this result concerns the notion of
institution in which Mod takes values In Set”p.
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O(e) e E for each e GE; we write +: T ~ T’. The category of theories has

theories as objects, and theory morphisms as morphisms, with composition and

identities defined as for signature morphisms; we denote it Th. (It is easy to see

that this is a category.) The following will frequently use capital letters to

denote theory morphisms, for example, ~: T ~ T’.

For equational logic, there is another category with theories as objects, but

with derivors, which map operators in 2 to derived operators in X, that is, to

Y-terms, as morphisms [45]; in fact, this kind of morphism agrees with the

usual morphism notion for Lawvere theories [69].

For a theory T with signature Z, let Nlod( T) and also T* denote the full

subcategory of Mod(Z) of all E-models that satisfy all the sentences in T.

Definition 6. Given a theory morphism $: T ~ T’, the forgetful functor
@*: T’* ~ T* sends a T’-model m’ to the T-model 4( m’), and sends a

T’-model morphism f: m’ ~ n’ to 4*( f) = Mod(@)(f): @(m’) ~ @(n’). This

functor is also denoted Mod(@).

To ensure that this definition makes sense, we should check that if a given

Z’-model m’ satisfies T’, then O*( m’) satisfies T. Let e be any sentence in T.
Because @ is a theory morphism, O(e) is a sentence of T’ and therefore

m’ E O(e). The Satisfaction Condition now gives O( m’) = e, as desired. We

also need that the morphism O*(f) lies in T*, but this follows because T* is a

full subcategory of Mod(X), and the source and target objects of O*(f) lie

in T*.

2.3. THE CLOSURE AND PRESENTATION LEMMAS. Given a signature morphism

@: X ~ 2’, a collection E of X-sentences, and a collection i’vl’ of Z’-models,

let us write @(E) for { @(e) I e =-E} and ~(kf’) for { ~(m’) \ m’ e W}. Given a

collection M of X-models, let us also write @-1(M) for {m’ I @(m’) e M}.
Using this notation, we can write the Satisfaction Condition more compactly as

@-’(E*) = O(E)*

and we also have

LEMMA 7. CLOSURE. 4( E“) G @(E)”.

PROOF. @(~**)* = ~- ‘(E***) = @- l(E*) = O(E)*, using the Satisfac-

tion Condition and (5) of Proposition 3. Therefore, @(E“) = 0( E**) G
@(E**)** = +(E)** = O(E)”, using (3) of Proposition 3 and the just-proved

equation. ❑

It is worth pointing out that the inclusion 4( E“) G (@E)” can be proper. This

means that while E R e implies @E = @e, the converse, that @E ~ @e
implies E = e, does not hold. The following gives an easier to check

necessary and sufficient condition for a signature morphism to be a theory

morphism.

LEMMA 8. PRESENTATION. Let ~: 2 ~ E’ and suppose that (X, E) and
(.X’, E) are presentations. Then ~: (X, E“) + (X’, E’”) is a theory morphism
iff O(E) G E“.

PROOF. The “only ifl’ part is trivial. For the “if” part, we have by the

Closure Lemma that 4( E“) G +(E)”. By hypothesis, 4( l?) G E’”. Therefore,
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$x~”) G O(E)” G E“, so @ is a theory morphism. Conversely, if @ is a

theory morphism, then @(-?3°) ~ E“. Thus, ~(13) g E“ because E G E“. ❑

The Presentation Lemma tells us that to check whether @ is a theory

morphism, we can apply o to each sentence e of the source presentation E and

see whether 4(e) is in the closure of E; there is no need to check every

sentence in E”.

2.4. PUTTING THEORIES TOGETHER. The introduction of this paper suggests

that a basic purpose of a specification language is to reduce the difficulty of

describing large theories by providing mechanisms for constructing them from

already available smaller theories. The specification language Clear [15, 16,

17], provided a number of such mechanisms that can be explicated using

colimits in the category of theories over an arbitrary institution. These include:

the sum of theories (in such a way as not to duplicate any subtheories that may

be shared; for example, NAT and BOOL might be subtheories of several

theories, as illustrated below); and the application of a parameterized theory

(such as LIST) to an actual theory (such as NAT) yielding a result theory (such

as LISTINAT]). Clear’s parameterized theories also involve a formal or

requirement theory R, which makes explicit the syntactic and semantic

requirements on an actual theory in order for the result of the application to be

meaningful: R will be a subtheory of the body theory B. Moreover, a binding f
of what the actual theory provides to what the formal theory requires is needed

to carry out the application, called a fitting morphism in Clear. The semantics

of Clear [15, 16] says that the result P of the application is given by the

following pushout diagram, in which P is the resulting theory:

B— P

R——————
fA

Similarly, the sum T of two theories T1 and T2, which share NAT and BOOL

as subtheories, is given by the following colimit diagram, in which all lines

indicate subtheory inclusions:

/T\&“\ 7,--2
NAT BOOL

The construction of large theories as colimits of small theories connected by

theory morphisms, which was implicit in the first paper on Clear [15] was made

explicit in [16] and [22]. For this approach to make sense, the category

of theories should have finite colimits. For the equational institution, the

intuitively correct syntactic pasting together of presentations exactly corre-

sponds to colimits of theories, as proved in [46]. Colimits have become a
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familiar technique in defining the semantics of specification languages, for

example, in ASL [89], Extended ML [87], Act One [25], and Act Two [29], as

well as Clear and OBJ. Quite similar things can be done for logical program-

ming languages, and even for conventional imperative languages like Ada [39,

104]. Thus, there is much motivation for studying colimits in the category of

theories over an institution.

The use of colimits to explicate various ways to combine theories is not

ad hoc. It is a general principle that a large widget can be described as the

interconnection of a system of small widgets using widget-morphisms to

identify the interfaces over which the interconnection is to be done; then the

result of the interconnection is given by the colimit of the diagram; this

principle may be found in [35, 36] from the point of view of general systems

theory. Colimits have also been used for many other things in Computing

Science [40], including graph grammars [23]. We now review the necessary

categorical concepts.

Definition 9. A diagram D in a category C consists of a graph G together

with a labeling of each node n of G by an object D~ of C, and a labeling of

each edge e, say from node n to node n’ in G, by a morphism D(e) in C from

D. to D~t; let us write D: G ~ C. Then a cone a in C over the diagram D
consists of an object ~ of C and a family of morphisms a.: D, - A, one for

each node n in G, such that for each edge e: n ~ n’ in G, the diagram

A

A47 Cl%i

D. - b.!
D(e)

commutes in C. We call D the base of the cone a, A its apex, G its shape,
and we write a: D a A. If a and O are cones with base D and apexes A, B
(respectively), then a morphism of cones a ~ ~ is a morphism f: A s B in

C such that for each node n in G the diagram

commutes in C. Now let Cone( D, C) denote the category of all cones over D
in C, with the obvious composition. Then a colimit of D in C is an initial

object in Cone(D, C).

The uniqueness of initial objects up to isomorphism implies the uniqueness of

colimits up to cone isomorphism. The apex of a colimit cone a is called its

colimit object, and the morphisms cY~ to the apex are called the injections into

the colimit. The colimit object is also unique up to isomorphism.
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Definition 10. A category C is finitely cocomplete iff it has colimits of all

finite diagrams, and is cocornplete iff it has colimits of all diagrams (whose

base graphs are sets). A functor I’: C s C’ reflects (creates) colimits iff

whenever D is a diagram in C such that the diagram D; F in C’ has a colimit

cone d: D + A’ in C’, then there is also a (unique) colimit cone CY:D - A in

C such that a’ = a; F, that is, such that a; = F( afl) for all nodes n in the

base of ~.

Because colimits in the category of theories over an institution are to be used

for putting together smaller specifications to form larger ones, it would be very

nice to have a powerful, general criterion for when such colimits of specifica-

tions actually exist. Perhaps surprisingly, it suffices for the category of signa-

tures to have colimits; the following, more general result is the first really

nontrivial result of this paper.

THEOREM 11. The forgetful functor Sign: Th ~ Sign reflects colimits.

PROOF. Suppose that D: G ~ TII is a diagram in Th, say with D. =
(Z., E.) for n ~ I G 1. Let D’ = D; Sign: G ~ Sign be the corresponding

diagram in Sign, in which D; = X.. Now let a’: 11’ -2 be a colimit cone for

D’. We have to find a colimit cone a for 13 such that Sign(a) = a’. We define

D = (Z, E) where

and we define cY~ = CY~for all n e I G I . Then, each u. is a theory morphism

and we claim that CY= (cY~: (Z., En) + (X, E) I n= I G\) is a colimit cone

over D in Th. For suppose that ~“ = ((3.: (~~, E.) ~ (II, F) I ne I Gl) is

another cone over D in Th. Then, applying Sign to everything, we get a

unique @: X -=’ H such that a.: @ = ~~ for each n ~ I G 1. Thus, there is at

most one ~: (2, E) - (II, F) such that ci~: ~ = ~~ for all n= I Gl, namely

@. Therefore, all we need to show is that @ is a theory morphism. Because

P.: (2., E.) e (H, ~) is a theory morphism, we have i3.( E.) G F. Therefore,

U..l GlD.(E.) G ~, and so

where the first inclusion follows from the Closure Lemma. (See the diagram

below.)

(x)-q — (TI, F)

\’/ ‘

&

l’%

““+ ‘\”An
D. = (Xm, En) D; = En

It now follows, for example, that the category Th of theories in an institution
is finite] y cocomplete if its category Sign of signatures is finitely cocomplete.

(It is easy to see that the converse also holds.) Because the category of

equational signatures is finitely cocomplete (Goguen and Burstall [43, 45] give

a simple proof using comma categories), we conclude that the category of



Institutions: Abstract Model Theory J09

signed equational theories is cocomplete. using similar techniques, we can

show that the category of first-order signatures (as defined in Appendix A2) is

cocomplete, and thus without effort conclude that the category of first-order

theories is cocomplete (this might even be a new result, especially since our

notion of morphism is not quite the usual one in logic).

Actually, the stronger result holds, that Sign creates colimits.

2.5. A MORE CATEGORICAL FORMULATION. The formulation of institution

given in Definition 1 leaves two important questions unanswered: (1) what

about deduction? and (2) what are institution morphisms? We see later on that

institution morphisms are important for many applications and extensions of our

basic theory, including the use of multiple institutions for specification, and the

reusability of theorem provers. Category-theoretic intuition suggests that a more

abstract formulation (than a family of relations) might help us with both of these

questions. (The reader not already familiar with vertical and horizontal compo-

sition of natural transformations who wants to read this subsection might first

consult [67, Section 11.5]).

Let Rel denote the category with sets A, B, C . . . as objects; with relations

R: A ~ B as morphisms, that is, triples (A, R, B) where R G A x B; with

the “diagonal” relation { (a, a) I a ~ A} as the identity on a set A; and with

composition as usual for relations, but keeping track of their sources and

targets. Given a relation R: A ~ B, let R - : B ~ A denote its converse. We

now define the category 3 Trel of “twisted relations”: its objects are relations

R: A - B, and its morphisms from (R: A ~ B) to (R’: A’ ~ B’) are pairs of

functions (~: A’ -A, g: B - B’) such that the diagram

A
R

—------B

A’ --z---- “
commutes in Rel, that is, such that for all a’ in A’ and b in B, we have4

~( a’) Rb iff a’ R’ g( b). The identity morphism on a relation R: A + B is the

pair (lA, 1~), and the composition (f’, g’); (f, g) is (f’; f, g; g’) provided the
target sets of (f’, g‘ - ) equal the source sets of (~, g -).

The notation for a proper categorical definition of the institution concept will

be simpler if we first define two functors on Trel. First, Left: Trel + Set “p is

defined by Left( R: A - B) = A and Left(( f, g)) = f. Second, Right: Trel

-+ Set is defined by Right(R: A ~ B) = B and Right((f, g)) = g. Notice

that Left(f; f’) = Left(f’); Left(f), whereas Right(g; g’) =
Right(g); Right(g’).

Definition 12. An institution is a functor ~: Sign -+ Trel to twisted

relations; its source Sign is its category of signatures; the functor composition
#; Left: sign -+ Set “p is the “model functor” of y, denoted Afod; the

3 One referee wrote that Fred Linton introduced a similar (or identical) notion some time ago, but we
have not found a precise reference.
4 The reader may recognize the ghost of the Satisfaction Conditton here.
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composition Y; Right: Sign + Set is the “sentence functor” of Y, denoted

Sen; and the satisfaction relation = ~ is Y(2) for Z = I Sign 1.

This definition gives the version of institution in which each &lod( Z) is a set,

rather than the more advanced version with a category Mod(X) of models. To

get the category version, we use instead of Trel a category whose objects are

triples (A, R, B), where A is a category, B is a set, and R G IA I x B is a

relation; morphisms are then pairs (F, g) where F: A’ -+ A is a functor and
g: B -+ B’ is a function, such that the above diagram commutes with -f= I ~ I .

Definition 12 with this category gives the desired concept. The following is now

very natural:

Definition 13. An institution morphism Y+ Y‘ consists of a functor

@: Sign + Sign’ and a natural transformation q: @; J‘ + Y. Given (*, q):
Y ~ Y‘ and (0’, q’): Y‘ ~ J”, their composition is defined to

be (@; @’,(@ 0 q); q’); Y“ A J, where 0 denotes the (vertical) composition

of a natural transformation with a functor. Let INS denote the category of

institutions.

There are reasons for believing that it might have been better to consider the

above as defining a morphism from Y‘ to Y’, rather than from Y to Y‘, even

though in a certain sense the choice is arbitrary; however, we have chosen to

maintain the above definition in this paper for essential y historical reasons.

Section 4.1 gives a more concrete version of this definition. That INS really is

a category, and moreover has whatever limits and colimits Trel has, follows

from some “abstract nonsense” and “general systems theory” 5 de cribed in

the following subsection.
/k

2.5.1. An Even More Categorical Formulation. In order to consider

variations of the notion of institution, and also to study properties of the

category of institutions, it is helpful to take a very general approach. Readers

who are not especially fond of categorical “abstract nonsense” may wish to

skip this subsection; also, it is somewhat sketchy. Given a category C with

pullbacks, we first define the category Rel(C) of relations in C as follows: its

objects are those of C; its morphisms from A to B are pairs ( p 1: R ~
A, p2: R ~ B) of morphisms in C with a common source; its identities have

both p 1 and p2 identity morphisms; and its composition is obtained by

pullback, as shown in the diagram below:

/R’s\
/R\ /s\

‘4 B c

LEMMA 14. If C has pullbacks, then Rel(C) is a category.

We next recall Lawvere’s general comma category construction. If we are

given functors F: A + C and G: B + C, then the category (F/G) is defined as

5An earlier draft of this definition had the natural transformation going the other way; comparison with
the general systems theory in [35] and [36] enabled us to formulate institution morphisms correctly.
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follows: its objects are triples (A, c: F(A) A G(B), B), where ~ is an object

of A, B is an object of B, and c is a morphism of C; its morphisms from

(A, c: F(A) -+ G(B), 1?) to (A’, c’: $’(A’) + G(B), B’) are pairs (a, b) with

a: A ~A’ in A and b: B~B’ in B such that ~(a); c’ = c; G(b); and the

composition (a, b); (a’, b’) in (~/G) is just (a; a’, b; b?. It is known6 that this

gives a category such that whatever limits or colimits are possessed by A and B

and preserved by E’ and G, are also possessed by (~/G).

Next, we give some ways to construct functors into relation categories. Given
~: A + c, define ~T: A + Rel(C) as follows: an object A in A goes to the

object F(A) in Rel(C); and a morphism a: A ~ A’ in A goes to a morphism

(1~(,4), Ha)) from HA) to F( A’) in Rel(A). (It is easy to see that this is a
functor.) Similarly, given ~: A -+ C, define ~J: A“p + Rel(C) by: an object

A in A goes to the object F(A) in Rel(C); and a morphism a: A ~ A’ in A“p

goes to a morphism (l F(A,, F(a)) from F( A’) to F(A) in Rel(A). (It is also
easy to see that this is a functor. ) This last construction will let us “twist”

relations.

Now let’s exercise this machinery. Combining the relation, comma category.

and the T and J constructions will give us the categories of twisted relations that

we need; and taking functors into these will give us the corresponding cate-

gories of institutions. Let’s get the relation categories first. The (original)

definition of institution with &foci set-valued corresponds to the twisted relation

category (1 ~.t J / 1~,t ?) where 1* denotes the identity functor on the category A.

Similarly, Definition 1 corresponds to the category (1 ~,t J / U ?), where U Cat

+ Set is the forgetful functor that takes each category to its underlying set (or

class), and each functor to its underlying function on objects. Both enjoy the
“twist” given by J, but the first gives only sets of models, while the second

gives categories of models; in each case, the source category of the first functor

gives the structure for models.

A natural and interesting variant is given by the category (U 4/ U t), which

allows morphisms between sentences as well as between models; one might

want to think of a morphism from one sentence to another as a “proof” that the

second follows from the first; see [47] and Section 5 for further discussion of

this point.

An institution is a functor into a relation category; in particular, an institution

in the sense of Definition 1 is a functor #: Sign + ( 1~,t L / U T)”p. This leads to

categories whose objects are functors; but because of their source categories

(which are their categories of signatures) may vary, their morphisms will not be

just natural transformations. In fact, these morphisms are pairs of the form

(~: Sign + Sign’, q: @; Y‘ + Y), and area special case of a general construc-

tion for the category of diagrams (with varying shape) over a category: Given a

category T, the objects of Dgm(T) are functors Y: S -+ T, its morphisms

Y+ Y’ are pairs (~: S -+ S’, q: ~; Y’ = Y), and the composition ($: S +

S’, q: @; Y’ = Y); (~’: S’ -+ S“,q’: @; Y“ * Y’) is (%; +’,@ O(q’; v)), where

in the last expression ‘‘ 0‘’ denotes the horizontal and ‘‘;” denotes the vertical

composition of natural transformations. That Dgm(T) is a category is shown,
for example, in [36] in the context of general systems.

This abstract view is also useful for getting other variants of the institution

notion; for example, to get partial satisfaction we might let C be the category

6Actually, somewhat stronger results are known; see [46] and [100].
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Pfn of partial functions; it seems worth exploring this further. This view of

institutions also allows us to get completeness results for the category of

institutions using general results about relation, diagram, and comma cate-

gories; see also [100]. Goguen and Burstall [47] discuss an even more abstract

formulation based on “wedges. ”

3. Constraints

To avoid over specifying problems, we sometimes want to use loose specifica-

tions, that is, specifications for which nonisomorphic models are acceptable. On

the other hand, most problems require some fixed data types, such as the

natural numbers or truth values. In such cases, the subtheories that correspond

to these data types must be given standard interpretations. Finally, sometimes

we want to consider parametrized standard data types, such as SET[X] and

LISTIX], for which sets and lists are to be given standard interpretations, once

an interpretation is given for X, which is loose with respect to some require-

ment theory.

We have already considered the category T* = Mod(T) of all (loose)

interpretations of a theory T over a fixed institution; now we consider how to

impose constraints on these interpretations. One kind of constraint requires that

some parts of T have a “standard” interpretation relative to other parts; these

are the “data constraints” of [17], which generalize and relativize the “initial

algebra” approach to abstract data types of ADJ [54], and slightly generalize

the “canons” of Reichel [84]. Data constraints make sense for any institution,

and are much more expressive than just initiality, even for the equational

institution.

To require that some subtheories T,, . . . . T. of a theory T are initially

interpreted, we could try to use the subtheories themselves as constraints. In

this case, a model A4 would satisfy T with constraint (T,, . . . . T.) iff Ivl

satisfies T, and M restricted to each Ti is initial. More precisely now, given

F,:~+Tfori= l,.. . , n, we can define a satisfaction relation E between

models and theories with constraints by

M=(T, (T1, . . .. TH))

iff AZ h T and Mod(F1)iW is initial in Mod(T, ) for i = 1, . ., n.

Unfortunately, the above definition is too naive. First, to deal with parametri-

zed theories, we need not just initial models (e. g,, for the natural numbers),

but we also need free extensions of models (e.g., to form sets from elements).

Second, it would be very convenient if for any institution Y, we could
construct a new institution %( J ) with sentences either .Lsentences or else

constraints, and with its models the Yrnodels. For this to work, we need

translations of constraints under signature morphisms. Then, if J%ignatures

have colimits, Theorem 11 will imply that &( # )-theories also have colimits,

and thus can be glued together. Unfortunately, there is no obvious way to

translate the naive constraints; however, Definition 19 below gives a notion that
is sufficiently general and also admits translations.

Section 3.3 will generalize constraints further, to include so-called ‘ ‘gener-

ating constraints” and Section 4.2 will generalize to “duplex constraints” that

allow constraints in an institution different from the one in which models are

taken; more generally still, Section 4.3 will consider multiplex institutions.
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3.1. FREE INTERPRETATIONS. Suppose that we want to define the natural

numbers in the equational institution. To this end, consider a theory N with one

sort Nat, and with a signature Z containing one constant O and one unary

operator inc; there are no equations in the presentation of this theory. Now this

theory has many algebras, including some where inc(0) = 0, But the natural

numbers, no matter how represented, give an initial algebra in the category

A1g ~ of all algebras for this theory, in the sense that it has exactly one

~-homomorphism to any other Z-algebra. It is easy to prove that any two initial

X-algebras are Y-isomorphic; this means that the property “being initial”

determines the natural numbers uniquely up to isomorphism, that is, different

representations for the natural numbers give different (but isomorphic) initial

algebras. This characterization of the natural numbers is due to Lawvere [70],

and a proof that it is equivalent to Peano’s axioms can be found in [68, pages,

67-70].

The initial algebra approach to abstract data types [54] takes this

‘‘ Lawvere-Peano” characterization of the natural numbers as paradigmatic for

defining other abstract data types; the method has been used to specify sets,

lists, stacks, and many many other data types, as well as database systems and

programming languages, among many other things. The essential ideas here are

that concrete data types are algebras, and that “abstract” in “abstract data

type” means exactly the same thing as “abstract” in “abstract algebra,”’

namely, uniquely defined up to isomorphism. A number of less abstract

equivalents to initiality for the equational institution, including generalized

Peano axioms, are given in [79].

Let us now consider the case of the parameterized abstract data type of sets of

elements of a sort S. We add a new sort Set, and operators7

0: +Set,

{-}:S + Set,

–U_:Set, Set + Set,
subject to the following equations, where U, U’ and U“ are variables of sort

Set,
Duu=u,

Uu(u’uu’’) =(uuu’)u u”,

uuu’=u’u~,

Uuu=u.
Although we want these operators to be interpreted “initially” in some sense.

we do not want the initial algebra of the theory having sorts S and Set and the

operators above. Indeed, the initial algebra of this theory has the empty carrier

for the sort S (because there are no operators to generate elements of sort S)

and has only the element 0 of sort Set. Rather, we want to permit any
interpretation for the parameter sort S, and then require that the new sort Set

and its new operators are interpreted initially relative to the given interpretation

of s.
Let us make this precise. Suppose that F: T -+ T’ is a theory morphism.

Then, there is a forgetful functor from the category of T’-models to the

category of T-models, F*: T’* + T* as in Definition 6. For the equational

7We use ‘‘ mixfix” declarations in this signature, in the style of OBJ: Each underbar is a place holder

for an element of the corresponding sort from the sort hst between the colon and the arrow.
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case, a very general result of Lawvere [69] says that for every T-model A

there is a T’-model A$ and a ~-lmrnornorphisrn VA: ~ ~ F*( ~$), called the

universal morphism and characterized by the following “universal property”:

given any T’-model B and any T-morphism f: A ~ F*(B), there is a unique

T’-morphism f M: A $ ~ B such that the following diagram commutes in

Mod(T):

F*(B)

/t

/

f F*(j#)

“t—
7A

F*(A$)

Such an object A$ in Mod( T’) is called a free extension of A along F; the

universal property determines #l$ uniquely up

This discussion motivates the following:

to isomorphism in Mod( T?.

Definition 15. Theory morphism F: T ~ T’ is liberal iff for every T-
model A, there is a T’-model A$, called the free extension of A along F,
such that there is a universal morphism q~: A + F*( A$) with the property that

for each T’-model B and each T-morphism f: A - F*(B), there is a unique

T’-morphism f”: A $ e B such that VA; F*( f * ) = f (in the category

Mod(T)). An institution is liberal iff each of its theory morphisms is liberal.

In any institution, if we are given a free extension A* along F for each A in

Mod(T), then there is unique way to define a functor F$: Mod( T) ~ Mod( T’)
such that F$( A) = A$; then F$: T* ~ T’* is called the free (extension)
functor determined by F. (This follows from a general result about adjoints

[67], noting that F$ is a left adjoint to F*, and q is a natural transformation,

the units of this adjunction. In particular, an institution is liberal iff the forgetful

functors induced by its theory morphisms always have left adjoints.) The

equational institution is liberal, as are the institutions of Horn clause logic with

equality, and of conditional equations; however, the first-order logic institution

is not liberal (the latter three institutions are defined in Appendix A2). Notice

that even in a nonliberal institution, there may be many models that have a free

extension along a given theory morphism, and there may also be many theory

morphisms that have a free extension functor. Hence, in the following, we may

use the notation F$( A ) for a free extension of A along F even when there is

no free functor F$ for F.
Returning to our set example, consider the theory morphism Set that is the

inclusion of the trivial theory TRIV having just the sort S, into the theory of

sets of S, let’s call it SET, obtained by adding the sort Set and the operators

and equations given above. Then Set * takes a SET-algebra and forgets the new

sort Set and the three new operators, giving an algebra that has just the carrier

of S-sorted elements. The free functor Set $ takes a TRIV-algebra (i.e., a set)
A and extends it freely to a SET-algebra, with the new operators giving distinct

results except where the equations of SET force equality. This ensures that

Set$( A) is the algebra of all finite subsets of A.
Given a SET-algebra B, there is a natural way to check whether or not its

Set sort and operators are free over its parameter sort S: let A = Set *( 1?) in
the above diagram, and let f = 1sefx(~); then f #: (Set*( B)) $ ~ B should be
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“ (F’*(B))$ + B is calledan isomorphism. In general, the morphism (1 ~x(~)) *.

the cotmit (of the adjunction, if there is one) and is denoted e~. In a liberal

institution, it has the following couniversal property, dual to that of the unit:

given any B’ in Mod( T’) and ~: F$( B’) ~ B in Mod( T), there is a unique

u: B’ ~ F*(B) such that F$( u); CB = f, that is, such that the diagram

F$(B’)

F$(u) 11f
F$(F*(B)) ~ B

commutes in Mod(T). This motivates the following:

Definition 16. Let F: T ~ T’ be a theory morphism. Then, a T’-model B
is a F-free iff F*(B) has a free extension F$( F*( B)) along F such that

‘B = (1P(B)) * is an isomorphism. Let us call a functor G: Mod(T) ~ Mod( T’)
extensive iff G(A) if F-free for every T-model A.

Of course, we are mostly interested in whether or not a free extension functor

is extensive. The notion of F-free for the equational case is due to Thatcher,

et al. [103]; here, we generalize to arbitrary institutions, without assuming that

there is necessarily a free functor F ‘. Originally, we defined B to be F-free if

B and F$(F*( B)) were isomorphic [17]. However, there are examples8 where

these two objects are isomorphic, but not naturally so by the counit morphism

eB. There is also a concept that is dual to F-free in a certain sense:

Definition 17. Let F: T ~ T’ be a theory morphism. Then, a T-model A
is F-protected iff it has a free extension A $ along F such that the universal

morphism VA: A ~ F*( A‘) is an isomorphism. Moreover, the free functor F$
is persistent iff every T-model A is F-protected, using the free extension

F$(A).

This definition generalizes the concept of persistence in [103] to any institu-

tion. Let us define a theory morphism F: T - T’ to be conservative iff e # T
implies F(e) ~ T’. A syntactic characterization of persistence for the equational

institution is given by Goguen and Meseguer in [49] 9: when F is injective on

sorts, F$ is persistent iff it is conservative and whenever t‘ is a X’-term with its

variables and its sort in F(T), then there is an equation (VX) t’ = F(t) in T’
with t a X-term (where X is the signature of T and X’ is the signature of T’).
Unfortunately, this result uses some rather subtle constructions in the equational

institution that it is not obvious how to generalize to other institutions. The

following simple result relates the concepts of Definitions 16 and 17.

PROPOSITION 18. Let F: T ~ T’ be a theory morphism in a liberal institu-
tion.

(1) If a T-model A is F-protected, then F$( A) if F-free.

8 Our thanks to Eric Wagner for this comment.
9 The result in [49] is slightly more general, because it allows theory morphisms that map operators to
terms.
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(2) If a T’-rnodel A’ is F-free, then F*( A’) is F-protected.
(3) If F$ is persistent, then F$ is extensive.

PROOF. For the first assertion, we use the unit isomorphism q,q: A +

F*( F$( A)) and the fundamental equation for the adjunction (see [67, Theorem

IV.2, p. 81]), F$(q~); c~~f~) = 1~$(~), to see that

F$(F*(F$(A )))~F$(A)~F~(,4).

is also an isomorphism. The second assertion is proved in the same way. The

third assertion, that F$ persistent implies F$( A ) is F-free for every A,
follows directly from the first. ❑

The following remarks may be of some interest to those familiar with adjoint

functors: Let F: T ~ T’ be a liberal theory morphism. Then, F$ is persistent

iff the unit q: 1 Mod(T) - F$; F* of the adjunction between F$ and F* is an

isomorphism. Moreover, in this case, F$ can be chosen so that this isomor-

phism is actually an equality, that is, such that F$ is what Thatcher,

et al. [103] call strongly persistent.
Results of Mahr and Makowsky [75] show that there is a sense in which the

most general sublanguage of infinitary first-order logic admitting initial models

is Horn clause logic with infinitary conditions; further, the most general finitary

sublanguage uses finitary Horn clauses; the most general equational sublan-

guage uses (infinitary) conditional equations; and the most general finitary

equational sublanguage consists of finitary conditional equations. These results

are in the style of abstract model theory, a framework much closer to first-order

logic than to institutions; also, the results concern the existence of initial models

rather than left adjoints to forgetful functors. Tarlecki has extended this work of

Mahr and Makowsky to characterize liberal sublanguages [99], and has also

generalized to what he calls “abstract algebraic institutions” [98].

3.2. CONSTRAINING THEORIES. It is very convenient in program specification

to distinguish between sets of sentences that are to be interpreted “loosely”

(i.e., any model satisfying the theory will do) and those that require a standard

interpretation, say an initial model, or more generally, a free extension. For

example, in a parameterized specification, we may want to permit any interpre-

tation of the parameter (say, any partially ordered set) but also want to constrain

the interpretation of the specification that enriches this parameter to be free over

it (say, strings of elements of the set, instead of just some arbitrary monoid over
them).

Thus, in a specification language, we may want to let theories include not just

the sentences provided by some institution, but also sentences that constrain

certain subtheories to be interpreted freely relative to others, in the sense of

Section 3.1. We call such sentences constraints and we call theories that can

include them constraining theories. For example, in a first-order theory we

might introduce a sentence that constrains interpretations of a theory of the

natural numbers to be standard, that is, to actually be the natural numbers. Our

approach will provide a general logic-independent way of moving to a more

powerful language that can impose such constraints. We show that theories with

such constraints in them can be treated just like ordinary theories. Moreover,
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we show that an institution whose signatures can be glued together (with

colimits) yields another institution whose theories may have constraints, such

that these theories can also be glued together (with colimits).

Returning to the example of the previous subsection, let us further enrich

SET with some new sorts and operators to get a theory SETCH, which adds an

operator

choose: Set ~ S

that chooses an arbitrary element of any non-empty set, as described by the

conditional equation

choose(U) e U if U+@,

where U is a variable of sort Set. This is a good example of a loose

specification. Now let Etc:SET + SETCH be the theory inclusion, with

Etc: Sign(SET) + Sign(SETCH) the corresponding signature morphism. Then,

a SETCH-algebra A interprets sets as intended iff Etc*( zl ) satisfies SET and

is Set-free. This motivates

Definition 19. Let X be a signature. Then, a Z-constraint is a pair

(F: T“ - T’, 0: Sign(T’) ~ E)

consisting of a theory morphism and a signature morphism. (We may call a

E-constraint a Z-data constraint if it is used to define a data type. ) A X-model

A satisfies the X-constraint c = (F: T“ -+ T’, 0: Sign( T’) ~ 2) iff 0A satis-

fies T’ and is F’-free, which means that E’*(d A) has a free extension along F

such that ( 1~.(e~)) # = eo~: F$(F*(13A)) ~ 0(A) is an isomorphism; in this

case we write A 1=~ c.

Notice that T“ may be the empty theory. The following picture of the

situation in this definition may help:

In our set example, F: T“ + T’ is the inclusion Set: TRIV + SET and

d: Sign( T’) ~ ~ is the signature morphism that underlies the theory inclusion

Etc: SET + SETCH. For any X-algebra A, it makes sense to ask whether 6A

satisfies T’ and is F-free, as in Definition 19. It is not necessary that the

institution involved is liberal.

Our work on constraints dates from the Spring of 1979, and was influenced

by a lecture of Reichel in Poland in 1978 and by the use of functors to handle

parametric data types by Thatcher, et al. [103]. Historically, the first work in

this area seems to be the little-known 1971 paper of Kaphengst and Reichel

[65], which apparently considered the case of a single chain of theory
inclusions. This was later generalized to “initially restricting algebraic theories”

by Reichel [84] (see also [85]). There are three main differences between our

“data constraints” and the “initial restrictions” of [84]: first, an initial

restriction on the algebraic theory is a pair of subtheories, whereas we use a

pair of theories with an arbitrary theory morphism between them, plus a
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signature morphism from the target theory. It seems very natural to use

subtheories, but this does not give rise to an institution l”; also, the added

generality (of arbitrary theory morphisms) seems to permit some interesting

additional examples. The second difference is simply that we are doing our

work over an arbitrary institution. The third difference lies in the manner of

adding constraints: whereas Reichel [84] defines a “canon” to be an algebraic

theory together with some initial restrictions on it, we define a new institution

whose sentences on a signature E include both the old Z-sentences and also

Z-constraints. This route has the technical advantage that both kinds of new

sentence refer to the same signature. Moreover, we can hope to apply general

results about institutions to these new institutions. The constraints of Ehrig,

et al. [28] add a third component 00: ZO + X to the two in our notion, in order

to deal with “derive;” their paper treats the equational institution, and requires

that the model functor Mod preserve pushouts.

We now show that constraints behave like sentences even though they have a

very different structure. Like sentences, they impose restrictions on the allow-

able models. Moreover, a signature morphism from Z to 2’ translates Z-con-

straints to Y-constraints, just as it translates from Z-sentences to Z’-sentences.

Definition 20. Let @: 2 + Y be a signature morphism and let c = (F, 19)

be a Z-constraint. Then, the translation of c by @ is the ~’-constraint

(F, $; ~): we write this as @(c).

It is the need for the translation of a constraint to be a constraint that leads to

constraints in which 9 is not an inclusion. We now prove the Satisfaction

Condition for constraints.

LEMMA 21. CONSTRAINT SATISFACTION. If ~: 2 ~ Z’ is a signature mor-
phism, if c is a E-constraint, and if B is a X’-model, then

B C @(C) iff O(B) != c.

PROOF. Suppose that c = (F, 8) with F: T“ ~ T’ and O: Sign( T’) + X.
Then, B b @(c) means that B ~ (F, 19;@), which means that (0; +)(1?) satis-

fies T’ and is F-free. On the other hand. +(B) E c means that qb($(B))
satisfies T’ and is F-free. To show that these are the same, we must show that

(6; @)(B) = I#s(O(B)); but this is just the functoriality of Mod. ❑

Given an institution #, we can construct another institution having as its

sentences both the sentences of Y and also constraints. This construction is of

particular interest for liberal institutions, where we know that there is always a
coursit morphism with the couniversal property.

Definition 22. Given an arbitrary institution Y, construct the institution
‘4’(.7 ) whose theories contain both constraints and Y%entences as follows: the

category of signatures of %‘( Y“ ) is the category Sign of signatures of Y: if Z

is an Ysignature, then Sen ~~,f)( X) is the (disjoint) union of the collection
Sen ~(x) of all Z-sentences from Y with the collection of all Z-constraints 11;

~~Andrzej Tarlecki has shown us a counterexample.
There are some foundational questions about the size of the closure of a constraint theory that we

will ignore here; they can be solved for example by limiting the size of the category of signatures used
in the original institution.



Institutions: Abstract Model Theory 119

also Mod(E) is the same for &(Y) as for #; we use the constraint translation

of Definition 20 to define Sen( ~) on constraints; finally, satisfaction for %’( Y )

is as in Y for X-sentences from J, and is as in Definition 19 for Y

constraints.

PROPOSITION 23. If Y is an institution, then %?(Y) is an institution.

PROOF. Clearly, the first condition of llefinition 1 is satisfied, because the

signature category of %(.~ ) is that of ~. For the second condition, we must

show the functoriality of Sen ,,,(~~. Let ~: X + Y in Sign; then Sen ,,(,, ~(d):

Sen ,,(,, )( ~) ~ Sen ,(,, )( x’) is the disjoint union of the map Sen,, (0) defined on
Sen,1 ( ~) and the map sending X-constraints to their translations by @. Because

Sen,y is already functorial, it suffices to prove functoriality of constraint

translation. But this is obvious.

There is nothing to check for the third condition. This leaves the Satisfaction

Condition: we already know that it is satisfied for %’( Y )-sentences that are
Ysentences; and Lemma 21 shows that it is satisfied for constraints. D

This means that all the concepts and results of Section 2 can be applied to

theories that include constraints as well as sentences, that is, to %’( J )-theories. 12

We call such theories constraining theories, Thus, we get notions of presenta-

tion and closure, as well as theory. In particular, the Presentation and Closure

Lemmas hold, and we also get the following important result, which enables us

to glue together constraining theories:

THEOREM 24. Given an institution with a [finitely] cocomplete category
of signatures, then its category of constraining theories is ulso [finitely]
cocomplete.

PROOF. Immediate from Theorems 11 and 23. El

Let us consider what this means for the equational institution. Although rules

of deduction for inferring that an equation is in the closure of a set of equations

are familiar, we have no such general rules for constraints. However, it should

be possible to obtain such rules (although they will not be first order, and in

general will not be complete [73]) because a constraint corresponds to an

induction principle plus some inequalities [18, 79]; in particular, the constraint

that sets are to be interpreted freely gives us all the consequences of structural

induction (in the classical sense [13]) for sets. In more detail, this constraint for

sets demands that all elements of sort Set are generated by the operators

@,{ _} and – U _, which can be expressed as a principle of structural
induction over these generators (but note that structural induction is not first

order). The constraint also demands that two elements of sort Set are unequal
unless they can be proved equal using the given equations. One way to express

this distinctness is to add a new boolean-valued binary operator on the new sort,

say = . with some new equations such that t = t‘ = false iff t # t‘,and also

such that true = false does not hold [79]. Or we might consider an institution

with disequations (see [14] for some related discussion).

12Note that there is no reason to suppose that %’(#) is liberal if -@ 1s.
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Let us now consider an easier example, involving equational theories with the

following three (unconstrained) presentations:

(1) E–the empty theory: no sorts, no operators, no equations.

(2) N–the theory with one sort Nat, one constant O, one unary operator inc,

and no equations.

(3) NP–the theory with one sort Nat, two constants O and 1. one unary

operator inc, one binary infix operator +, and equations O + n = n,
irzc(m) + n = irzc(m + n), 1 = inc(0).

Let 2N and ~Np be the signatures of N and NP respectively, and let

f’N: E + N and FNP: N ~ NP denote the inclusion morphisms. Now NP as it

stands has many different interpretations, for example the integers modulo 10,

or the truth values with O = false, 1 = true, inc( fake) = false, inc( true) =
true, false + n = false, true + n = true. In the latter model, + is not

commutative. In order to get the standard model suggested by the notation, we

need to impose the constraint (F’N, Sign(FNp)) on the theory NP. Then the

only model (up to isomorphism) is the natural numbers with the usual addition.

Note that the equation m + n = n + m is satisfied by this model and therefore

appears in the equational closure of the presentation; it is a property of +

provable by induction. There are also extra constraints in the closure, for

example, c’ = (F’, ~), where F is the inclusion of the empty theory E into the

theory with O, 1 and + with identity, associativity and commutativity equa-

tions, and @ is its inclusion into NP. This constraint is satisfied in all models

that satisfy the constraint (F’N. Sign( FNP )). ln this sense, C’ is a derived
induction principle. Further examples can be found in [18].

In general, the closure of a constraining presentation to a constraining theory

adds some new equations derivable by induction principles corresponding to the

constraints; and it also adds some new constraints corresponding to derived

induction principles. The new equations are important in giving a precise

semantics for programming methodology. For example, we may want to supply

NP as an actual parameter theory to a parameterized theory whose requirement

demands a commutative binary operator. The new constraints seem less essen-

tial. For the Horn clause institution, constraints enable us to define predicates

by induction, as discussed further at the end of Section 4.

What may be a promising approach to the proof-theoretic aspect of constrain-

ing theories is discussed by Clark [20], Reiter [86], McCarthy [77], and others

who have been concerned with ways to get new sentences that are satisfied

under a “closed world” assumption (the common sense assumption that the

information actually given about a predicate is all the relevant information about
that predicate: McCarthy identifies this with Occam’s famous razor). We, of

course, identify that L‘closed world” with the initial model of the given theory.

Clark’s scheme, called predicate completion, is simply to infer the converse

of any Horn clause. This is sound for ground queries in the institutions of

conditional equations and first order Horn clauses (in the sense that all the

answers thus obtained are true to the initial model); but it is not complete [94].

McCarthy calls his scheme circumscription and is interested in its application

in the context of full first-order logic [77]; it has been shown sound when

minimal models exist, but can be unsound when such models do not exist.

It is worth considering what happens if we add extra silly equations to NP

constrained by (FN, FNP). For example, 1 + n = n contradicts the constraint.
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In fact, if we add it, we simply get a constraining theory that is inconsistent, in

the sense that it has no models.

There is a rather elegant construction that gives a somewhat different notion

of constraining theory than that given by l?(Y). Let Y be an institution. Then

the signature category of %’(Y) is the category of theories of Y, If T is a

theory of #, then a T-model for %’(Y) is just a Sign( T)-model in Y that
satisfies T [thus Mod,~ ,[,f )( T) = Mod ~ (T)], and a T-sentence for V’(Y) is a

pair (F’: T + T’, 6: T’ A T) of morphisms of theories in Y. Finally, if A is
a T-model and (F, O) is a T-sentence, then A = (F, 0) iff 0 A is F-free. This

use of pairs of theory morphisms for constraints is perhaps more elegant than

Definition 19; but theories in %’(Y) do not contain the consequences in Y of

these constraints—they contain only other (given and derived) constraints. As

noted above, some important applications require the new A sentences that

follow from the added constraints.

3.3. OTHER KINDS OF CONSTRAINT. Several variations of the data constraint

notion have been proposed for the equational institution, and it seems worth-

while to generalize these variations to the level of institutions. In fact, very little

of Section 3.2 depends on “F-freeness” in the definition of constraint satisfac-

tion. This suggests weakening that notion. Recall that a ~-model A satisfies a

data constraint c = (F: T ~ T’, 0: Sign( T’) ~ X) iff &J~ satisfies T’ and is

F-free, which means that F*(O A) has a free extension along F, and ( ~~~to~j) *

“ F$(F*(O A)) ~ L9A is an isomorphism. For the equational institution,= eeA.

the most obvious ways of weakening the F-free concept are to require that ed~

is only injective or only subjective, rather than bijective as for F-free. For ~. ~

to be injective generalizes the “no confusion” condition of [19]; it means that

no elements of $ A are identified by the natural mapping from ( F*(O A )) $.

Some work of Poign+ uses this notion under a name like “protecting. ” For e. ~

to be subjective corresponds to what is called a “generating constraint” in [28];

it means that all elements of 8 A are generated by elements of F*( 0 A ); this

condition generalizes the “no junk” condition of [19]; it is also related to

various concepts of “hierarchy constraint” found in the literature, for example,

[106] and [90]. Of course, infectivity and subjectivity of C6A together imply

F-freeness. Now the general notion:

Definition 25. Let Y be an institution, let .& denote a class of model

morphisms for each signature 2 of p, let c = (F: T ~ T’. Sign( T’) ~ 2) be a

constraint from Y, and let A be a Z-model from Y. Then, xl .@satisfies c iff

19~ satisfies T’ and has a free extension along F such that (1 F*@.l)J # = 68A

lies in W“. (This could be further generalized to allow a different .ti for each

X-theory T.)

PROPOSITION 26. Modifying the construction of ‘ti’( Y ) to use d-satisfact-
ion gives an institution, and theories in this institution are as cocomplete
as .Y is.

The proofs are similar to those of Proposition 23 and Theorem 24.

In particular, this result implies that we can glue together theories with gen-

erating constraints using the usual colimit constructions, and we can do the

specification language constructions of Clear [17]. To study generating
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constraints a little more closely, we assume that the morphisms in the categories

of models of an institution have factorization, in the following sense:

Definition 27. An image factorization situation for a category C consists

of

(1)

(2)
(3)
(4)

a class AZ of monies and a class of & of epics in C such that

both # and 4 are closed under composition,

all isomorphisms are in both 4 and d, and

every morphism f can be factored as e; m with e c & and m c 4
“uniquely up to isomorphism” in the sense that, if e’; m’ is another

factorization of f with e’ c & and m’ c X, then there is a unique

isomorphism from the center object C of e; m (i. e., the target of e and

the source of m) to the center object C’ of e’; m’ such that the following

diagram commutes:

This concept, which seems originally due to Isbell, is actually a bit stronger

than our application demands, but it has been well-studied, and has many

pleasant properties; for example, it was used in [46] for a general study of some

institution-like concepts. Herrlich and Strecker [62] give more detail on image

factorization situations, including proofs of the following:

PROPOSITION 28. Let ~, .L be an image factorization for a category C.
Then

(1)

(2)

(3)

Diagonal Fill-in Property. If e; b = a; m with e ~ # and m ~ J[ and if
C and C’ are the center objects of the two factorization, then there is
a unique morphism c: C + C’ such that e; c = a and c; m = b.

c

A Ic B

c’

If f ~ & and f ~ J, then f is an isomorphism.
Ifa; b~#, then beg, andifa; b~~, thena~~.

Definition 29. An institution Y has image factorization iff it has an

image factorization situation for each of its categories of Z-models.
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Let Y be a liberal institution with image factorization, let F’: T ~ T’ be a

theory morphism and let ~ be a T’-model. Then, ~ is F-generated iff there is

a morphism e: F$(F*( A )) ~ A in E with the couniversal property.

Let Y’ be an institution with image factorization, let F: T ~ T’ be a liberal

theory morphism, and let A be a T’-model. Then, ~ F-prime iff for all m:

B + ~ in ../ with F*( m): F*B ~ F*(A) an isomorphism, m is also an

isomorphism.

Let Y be an institution with image factorization. Then, a ~-theory T is

~l-universal iff it is “preserved under submodels” in the sense that whenever

m: A ~ B is .1 and A is a T-model, then B is also a T-model.

The name, universai, is motivated by the fact that in traditional first-order

logic, a theory is universal iff it has a presentation with all formulas in Skolem

normal form with all quantifiers universal.

The following is a direct consequence of the definitions.

Fact 30. Let Y be an institution with image factorization, let F: T - T’
be a, theory morphism, and let xl satisfy T’. Then, xl is F-generated iff it

satisfies the cf~constraint (F, 1s,~n(~,J.

We next show that F-generation in this sense is (essentially) equivalent to a

condition called F-generation by Ehrig, et al. [28], but which we call F-prime 13

(our F-prime concept differs from their F-generation concept only in that we

replace equality by isomorphism, and of course in that their concept is restricted

‘m the equational institution). Proposition 31 greatly increases our confidence

that the concept in question has been correctly captured in the institutional

framework.

PROPOSITION 31. Let Y be an institution with image factorizotions, let
F: T ~ T’ be a liberal theory morphism with T’ ..#-universe. Then a
T’-model A is F-prime iff A is F-generated.

PROOF. Assuming that A is F’-generated, that 14 F*m: F*B ~ F*A is an

isomorphism, and that m: B - A is in ..[, we must show that m is an

isomorphism. We know that 6A: F$( F*A ) ~ A lies in &. Then, the desired

conclusion follows from the facts that m lies in both .1 and (f, using (2) and

(3) of Proposition 28, and that the left upward arrow in the diagram below is an

isomorphism
CA

F’$(F*A) —A

F$(F*t?l)
I t

m

F$[F*B) ‘B
<B

For the converse, we must show that, if CA is not in .//, then there is some

m: B 4 A in ..// not an isomorphism such that F*m is an isomorphism.

Let e; m be a factorization of ~~ with center object B. Then m cannot be an
isotmor@ism, because if it were, then it wcwkt be in c (by (3) of Definition 27),

13This terminology follows [98]; intuitively, A is F-prime if it cannot have a proper (i.e ,

nomsomorphic) .Aubobject m: B + A unless m is already proper when viewed through F*.

‘4 Some notation in this proof is condensed by leaving out parentheses.
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implying that e; m = e~c # (by (2) of definition 27), contrary to our

assumption.
‘$A

p~ F$F*A >. *A

‘\F+m

d F$u’F*B

/

u

c’ F$C’

To show that F*m is an isomorphism, we show that c~; m satisfies the

universal property for ~~, that is, that given C and f: F$C ~ A, there is

unique u: C ~ F*B such that F$ u; ~~; m = f. First, let u’ be defined by the

universal property of ~~ using the morphism f, and then let u be defined by

the universal property of ~~ using the morphism F’$ u’; e. Note that B is a

T’-model because T’ is universal. For the uniqueness, assume u: C + F*B
.~=F$u; c~(=F$u’; e)sou=u, bysuch that F$u; CB; m = f. Then F$U; c

the universal property of ~~. This Implies that the unique morphism h:
F*C -+ F*A such that u’ = u; h is an isomorphism. But F*m is such a

morphism, because e is natural. ❑

(Note that proving F-generation implies F-prime does not require T’ to be

universal. We thank Andrezej Tardecki for pointing out some errors in an

earlier version of this proofi the reader may also wish to see [98] for a proof of

a similar result for the case of “algebraic institution.”)

4. Institution iWorphisms— Using More than One Institution

After the work in Section 3.2, we know how to express constraints in any

institution, and in particular, we can use constraints in the equational institution

to specify parameterized abstract data types. We can also give loose specifica-

tions in any institution. Constraints seem most natural for liberal institutions,

because we are guaranteed that satisfaction is possible. But liberality is a rather

significant restriction, because nonliberal institutions can often be more expres-

sive than liberal institutions; for example, if one adds negation to the equational

institution, it ceases to be liberal; also, first-order logic is not liberal. Thus, the

ambitious specifier might want both the rich expressive power of first-order

logic and also the data structure definition power of the equational institution.

This section shows he can have his cake and eat it too. The basic idea is to
precisely describe a relationship between two institutions in the form of an

institution morphism, and then permit constraints that use theories from the

second institution as an additional kind of sentence in this “duplex” institution;

we can even have more than two institutions. Moreover, there are some other

uses for institution morphisms; in particular, we use this concept in considering

when a theorem prover for one institution is sound for theories from another
institution.

4.1. INSTITUTION MORPHISMS. Let us consider the relationship between the

institution of first-order logic with equality, ~@ 8Q , and the equational

institution, &42. First of all, any first-order signature can be reduced to an
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equational signature just by forgetting all its predicate syrnbols. Secondly, any

equation can be regarded as a first-order sentence just by regarding the equal

sign in the equation as the distinguished binary predicate symbol that is

interpreted as actual identity in models (the equal sign in the equations of the

equational institution is not a predicate symbol, but just a punctuation symbol

that separates the left and right sides). Thirdly, any first-order model can be

viewed as an algebra just by forgetting all its predicates. These three functors

are the substance of an institution morphism 2–0 d’~ 4 d ~.

Definition 32. More concrete version of Definition 13. Let Y’ and Y‘ be

institutions. Then an institution morphism @: .9-+ .Y’ consists of

(1) a functor @: Sign + Sign’,

(2) a natural transformation a: @; Sen’ * Sen, and

(3) a natural transformation ~: Mod = @“p Mod’

such that the following Satisfaction Condition holds

for any X-model m from Y and any *(x)-sentence e’ from Y‘.

We leave it as an exercise for the interested reader to prove that this

definition agrees with Definition 13. In fact, a is q; Right and ~ is q; Left.
The reader who prefers her definitions as concrete as possible may wish to see

what ‘‘ naturality” means in conditions (2) and (3) above: the following two

diagrams spell this out, for ~: Z ~ Z’ a signature morphism in Y:

ax
Sen’(@(2)) — Sen(~)

Sen’(@(@)) [ I SM4)
Sen’(@(Z’)) — Se.’(Z’)

@z’

The reader may now verify that @: 3-0 c?42- 4’Y as sketched above really

is an institution morphism, by verifying the two diagrams above and the

Satisfaction Condition.

Just as there is an elegant equational way to state the Satisfaction Condition

for institutions (see the beginning of Section 2.3), there is also one for

institution morphisms. From the basic Satisfaction Condition

for m a Z-model from Y and e’ a @(x)-sentence from Y‘, we get

for A4 a collection of Z-models, and therefore

{e’ I fl~(kf) E e’] = {e’ I ME= ax(e’)}
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A more elegant form of this result is given in the following:

PROPOSITION 33. Given an institution morphism @: 1 ~ Y‘, a set M of
E-models from .$, and a set E of +(X)-sentences from Y‘, then

(1) (D~M)* = a; ’(M*), and

(2) (a.E’)* = @j’(E’*).

PROOF. The first assertion is just a reformulation of the result above this

proposition. The second assertion can be proved in a similar way. ❑

We now turn to the question of when it is sound to use a theorem prover for

one institution on (translations of) sentences from another. The basic concept is

given by the following, which is a kind of subjectivity condition:

Definition 34. An institution morphism +: Y+ Y‘ is sound iff the functor

(3Z is subjective on objects. for every signature Z from Y.

For example, the institution morphism .5-0 i’~ ~ 44 discussed above is

sound .

PROPOSITION 35. If @: Y+ Y‘ is a sound institution morphism and if E’
is a collection of 2 ‘-sentences from J‘, then a Z’-sentence E is in E’” iff
CVX(e’) is in CYZ(E’)”, for any signature Z from Y such that X’ = 4?(X);
that is, e’** = CYS1(a~(E’)**) whenever Q(2) = X’.

PROOF. Assuming that @(Z) = 2’, the two conditions to be shown equiva-

lent are:

(1) for all m’, if m’ t=z E’, then m’ b~ e’.
(2) for all m, if m b> aX(E~, then m h> az(e’),

Let us assume the second condition and prove the first from it. Thus, we

assume that m’ = ~, E’. Now using soundness of @, we get a model m from Y’

such that m’ = 13~(m). Because @ is an institution morphism, we have that

m i= ~ CYZ(E). Then, condition (2) gives us that m = ~ a~( e’). Therefore,

m’ hz. d. again because @ is an institution morphism, and we are done.
For the converse, assume that m I=Z a~( E’) and let m’ = 6>(m). Then,

m’ F ~, E’ because @ is an institution morphism. Now condition (1) gives us

that m’ = ~, e’, and again using that @ is an institution morphism, we conclude

that m t=> a(e’). ❑

For example, it now follows using the institution morphism from Y–O 44? to

4Q , that a theorem prover for first-order logic with equality can be used for

equational theories.

Under certain rather common circumstances, an institution morphism @:
#~ J ‘ induces a fun~tor from theories over ~ ‘ to theories over ~ .



Institutions: Abstract Model Theory 127

Definition 36. Given an institution morphism @: Y+ Y‘ such that @:

Sign + Sign’ has a left inverse T: Sign’ + Sign (i.e., T; @ = l~i~n), define

V: Th,, r +Thi by

=((2’, E’)) = (W(Y), (av(#’))”),

and

We now need the following:

PROgOSITION 37. ~(+) as defined in Definition 36 is a theory morphism,
and ~ is a functor.

PROOF. To show that ~(~) is a theory morphism, by the Presentation

Lemma (Lemma 8), it suffices to show that

Hence, letting e = uv(~h)( e’) with e’ e E:, we have to show that

for all W’( X;)-models m. It follows that Sen’(@)( e’) e ~, so that

But

ay(z,,(Sen’(@)( e’))

= aW,Xi,(Sen’(@(Y( q5)))(e’) [because Y: @ = 1]

= Sen(T(@))(~~~x~)(e’)) [by naturality]

= Sen(T(@))(e),

V(q5)( e), as desired.so that m !==~(xl)

We omit the proof that !? is functorial. ❑

We now consider how putting together theories over the target institution

relates to their translations in the source institution. First, we need the follow-

ing:

Definition 38. An institution morphism @: Ye Y‘ is ~initely] cordial iff

@: Sign + Sign’ has a left inverse ~: Sign’ + Sign (i. e., Y, @ = l~i~n ) that is

[finitely] cocontinuous.

THE~REM 39. If +: Y+ Y‘ is a [ finilely~ cordial institution morphism,
then ~: Th ~, ~ Th ~ is [finitely] cocontinuous.

PROOF. Let D’: G ~ Th,f, be a diagram with D; = (>;, E:), and let

~’: D’ = T’ be its colimit in Th ~, where T’ = (2’, E’). Then, by construction
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of Theorem 11, 2’ is the colimit of the diagram n’; Sign’ in Sign’, and

Now define 11: G A Th f to be the diagram n’; ~. Then by assumption,

is a colimit cone in Sign’; let y. = V!(yj), 2. = Y(E:), ~ = V(X’). Again by

the construction of Theorem 11, y: D - T is also a colimit cone, where

T= (2, E) with

E= ( u w(%)]”>
n=lGl

where

J%= (c+,(%)) “.

Then it remains to show that =( T’) = T. that is, that

Let us denote these two Y-theories by L and R, respectively. Then

where the last step follows by naturality of a v with respect to ~n: Zn + ~, as

in the diagram
-.

CK.r

Sen’(@(XN)) ~Sen(Xn)
I

Sen’(@(~.))
1 1

Sen ( -yn)

Sen’(@(S))~ Sen(~)

Thus,
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so that L G R. Therefore, it remains to show that R G L. For this, we

calculate

( )
R = u ‘Yn(%m E;)” “

n

=L,

where the second step follows by the Closure Lemma (Lemma 7) and the third

follows by (11) of Proposition 3. •l

It is worth noting that many institution morphisms that aris~ in practice are

cordial. Also, this proof supports a stronger conclusion: W preserves on

theories whatever colimits ‘1 preserves on signatures. Theorem 39 implies that

if a large theory in the target institution is expressed as a colimit of smaller

theories, then the corresponding theory in the source institution can also be so

expressed. This can help with the practicalities of using a theorem prover for

one institution on sentences from another, by modularizing the proofs. Some

experiments using OBJ as a theorem prover have exploited this viewpoint

[41,42].

4.2. DUPLEX INSTITUTIONS. There are many specification examples where it

is convenient to use more than one logical system. For example, we might want

to use equational logic for specifying abstract data types, and to use first-order

logic, or perhaps temporal logic, to specify some programs over these types. In

these cases, the more general institution should not be used for defining types,

because it is not liberal. This motivates seeking an institution whose theories

can contain both sentences from an institution Y and constraints from another

institution Y‘. For example, Y might be first-order logic and #‘ might be

equational logic. We call this approach “duplicity. ”

To make this construction work, we need an institution morphism @: Y+ Y‘

to express the relationship between the two institutions. This idea was intro-

duced informally and applied to some examples in [18]. Note that all the results

of this section generalize to the notion of .c<satisfaction given in Definition 25,

although they are stated for the special case of data constraints, that is assuming

a? is the class of isomorphisms.

Definition 40. Let @: ~- Y‘ be an institution morphism and let Z be a

signature from Y. Then, a Z-duplex constraint is a pair

c = (F: T“ -+ T’,@: Sign(T’) ~ @(Z)),

where F is a theory morphism from Y‘ and 0 is a signature morphism from

Y‘. Then a ~-model m from Y satisfies c iff (3( ~z( m)) satisfies T’ and is

F-free; as usual, we write m P ~ c.

The following picture of the general situation in this definition may help:

T,,* ~ T,* Mod’(Sign(T’)) ~Mod’(@(X)) ~Mod(Z)
F$ >
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It is worth remarking that in practice, T“ and T’ could be just presentations, as

long as F is a theory morphism in Y‘.

Definition 41. Let +: Y ~ Y‘ be an institution morphism. let Z be a

signature from #. let c = (F’, 6) be a Z-duplex constraint, and let @: Z ~ Y

be a signature morphism from Y. Then, the translation of c by O is the

Z’-duplex constraint of @c = (F’, 6; *(0)).

LEMMA 42. SATISFACTION. Let @: Y* Y‘ be an institution morphism, let
2 be a signature from J, let c = (F, 19) be a Z-duplex constraint, let
d: 2 * E’ be a signature morphism from 9, and let m be a X(-model from
f. Then

PROOF. Suppose that c = (F, 0) with F: T“ ~ T’ and 6’: Sign( T’) =’
O(X). Then, m e @c means that m ~ (F, 0; Q(+)), which means that

19(@(O)( ~z,( m))) satisfies T’ and is F-free. On the other hand, +m I= c means
that 0( @z( @m)) satisfies T and is F-free. To show these are the same, we need

that @(@)( ~X, (m)) = ~Z(@m), which is just the naturality of ~ (the second

diagram after Definition 32). ❑

Definition 43. Let @: Y ~ Y ‘ be an institution morphism and let X be a

signature from .1. Then the duplex institution over @, denoted 9(@) has: its

signatures those from Y; its X-sentences the Z-sentences from # plus the

Z-duplex constraints; its ~-models the Z-models from Y; and satisfaction is

defined separately for sentences from Y and for duplex constraints.

For example, if we let @: 30 flQ ~ J !2 as above, then we can write loose

specifications in full first-order logic, and at the same time we can impose

constraints for defining data structures in the liberal institution of equational

logic. This actually gives quite a powerful framework for specification, as

shown by some examples written in Clear [18].

THEOREM 44. If J is an institution and @: Y* .Y’ is an institution
morphism, then $7(Z) is an institution.

The proof is similar to that of Proposition 23 and is omitted here. By

Theorem 11, this result implies

THEOREM 45. If the category of signatures of Y is [finitely] cocom-
plete, then so is the category Th <,(d) of theories of the duplex institution
5’(0).

Thus, we can do parameterized specifications with constraining theories that
use both sentences from Y and duplex constraints constructed with Y‘,

because these are the theories over the duplex institution 9(1). Of course, we

can also use the more general notion of d-satisfaction of constraints.

There is a much simpler way to use an institution morphism @: Y ~ Y‘ to

construct a new institution in which one simply permits sentences from either .Y
or Y‘. For example. it may be convenient to use already existing equational

theories when constructing new first-order theories.

Definition 46. Let @: Y+ Y‘ be an institution morphism. Then Y–(@) is

the institution with: its signatures Z those from Y; its Z-sentences either

Z-sentences from Y, or else pairs of the form p = (T’, 0: Sign( T’) ~ +(2)),
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where T’ is a theory from Y‘ and O is a signature morphism; the Z-models of

Y-(Q) are those of Y; and p is satisfied by a X-model m iff O( D>( m))
satisfies T.

This construction differs from that of Definition 43 primarily in the notion of

satisfaction involved: in 9(~), satisfaction of a pair (F: T“ - T’, O: Sign( T’)
~ 0(X)) is a constraint satisfaction, involving F-freeness, whereas in Y-(@),

satisfaction of (T’, 6: Sign( T’) + *(Z)) is simple satisfaction in Y‘.

PROPOSITION 47. Y–( *) is an institution.

4.3. N4ULTIPLEX INSTITUTIONS. In order to use several different institutions at

once, some for various kinds of constraints and others for additional expressive

power, all we need is a morphism to each from some fixed base institution. Let
Y be an institution and let 0,: Y+ Y, be institution morphisms for 1 < i s
m + n. Now define .,{i(@l, . . . . @fl; Z.+l, . . . . +~+n) to be the institution

with: signatures those from Y; sentences either those from Y, or else

constraints (F’: T“ -+ T’, 19:Sign( T’) ~ @,(E)) with 0, T“, T’ from Y, for

some 1 < i < n or else pairs (T’, 9: Sign( T’) ~ @,(Z)) with 6, T’ from .P1

for some n + 1 < i < n + m; with models those of Y; and with satisfaction

as usual for the Y-sentences, for the constraints as in Definition 40, and as in

Definition 46 for the others. Notice that the institutions Y, for i = 1, . . . . n

could each use a different collection .“il of morphisms to define constraint

satisfaction, even if they use the same institution. Thus, we could glue together

first order theories that use combinations of generating constraints, hierarchy

constraints, and data constraints in the equational institution, as well as loose

first order axioms.

For example, consider the diagram in the category of institutions, with

@~: Y–{) 6 ~ + g$?z’ and @,: Y–(? 8’9 + .Y %’2’, where J–l) 6’2 is first-order

logic with equality and Y %Y is Horn clause logic. Then we can define a data

type, such as STRING-OF-NAT, using initiality in #<j , and inductively

define a predicate, such as even in W %’4!, for example, by

even(0)

even(n) * even(n + 2),

These both use data constraints, and the institutions are liberal (for jfl KY’,

“data” is a misnomer, because we are -inductively defining predicates, riot

data). We can then define extra functions and predicates (which are interpreted

“loosely”) in Y-i782 , using existential quantifiers and negation if convenient.

5. Sumtnary and Future Research

We have formalized the intuitive notion of “logical system” or ‘ ‘abstract model

theory” with the institution concept, and have shown that institutions whose

signatures have finite colimits are useful in programming methodology. Many

properties have been proved that relate classes of models and of sentences. We

have also shown how to define abstract data types by several kinds of
‘ ‘constraint, ” which are abstract induction principles, including data and

generating constraints. Liberal institutions, where the forgetful functors induced

by theory morphisms have corresponding free functions, are particularly suit-

able for constraints. We have also introduced the notion of an institution

morphism and shown how to use it in determining (for example) when a
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theorem prover for one institution can be soundly used on (translations of)

theories from another institution. Institution morphisms were also used in

defining duplex and multiplex institutions, which formalize the simultaneous

use of more than one institution; this permits combining the expressive capabili-

ties of several institutions. We showed that many institution morphisms

preserve finite colimits of theories, which means that they preserve theory

structuring mechanisms. These mechanisms support generic modules for logical

programming languages such as (pure) Prolog, OBJ, and Eqlog, as well as

specification languages like Clear, and program development systems like LIL.

This paper dealt with sets of abstract sentences, using satisfaction to define

the closure of a set of sentences, but has said little about proofs. In fact, it is

attractive to include proofs in the notion of institution, by letting an inference

step be an arrow from a tuple of sentences to another sentence. Such arrows can

be composed, yielding a category, as in Lawvere theories. Then, Sen( Z)

becomes a category, and Sen takes a signature morphism covariantly to a

functor (Goguen and Burstall [47] give the definition and some results). Proof

theory has recently taken on new interest in logic programming and type theory

(in the sense of Martin-Lof) because of doctrines like “computation is deduc-

tion” and “constructive proofs yield programs, ” In such a setting, complexity

of proof translates into complexity of computation. This provides further

motivation for studying institutions with proofs.

Some problems mentioned but not discussed in detail in this paper include the

following:

(1) It can be tedious to show that something really is an institution, particularly

to check the Satisfaction Condition. This has led us to develop a method for

constructing institutions from simpler structures called “charters, ” in a

way that guarantees the Satisfaction Condition [47]. Charters are more

concrete than institutions, because they specify the syntax of sentences.

Parchments go even further in this direction [47].

(2) An open problem mentioned in a preliminary version of this paper [44], to

characterize when institutions are liberal and relate this to work of Mahr

and Markowsky [74], has been solved for “strongly liberal” institutions

(where F$A is F-generated) by Tarlecki [98].

(3) More thorough explorations of the properties of the category of institutions,

including some completeness results appear in [47] and [97]; see also [100].

We conclude this section by mentioning two broad research programs that

arise naturally from this paper. One is to extend the range of constructions

treated institutionally; for example, Sannella and Tarlecki [88] discuss ‘‘ ob-

servational equivalence, ” that is, abstract machines, in an arbitrary institution.
We recommend doing as much computing science as possible in as general an

institution as possible. The second program is to carry out as much abstract

model theory as possible in the more general framework of institutions;

Tarlecki [97] makes a good beginning.

Appendix A. Examples of Institutions

The first section of this appendix presents the details needed to establish

equational logic (i. e., many-sorted general algebra) as an institution. Then,

using this material, the second section develops first-order logic and some

related institutions. Not everything here is as elementary as it may seem; in
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particular, there are subtle points to the definitions of variable, equation, and

first-order model morphism.

A 1. General Algebra

This section is a quick review of many-sorted general algebra, which provides a

first example of the institution concept, and also aids in working out the details

of several other institutions. If you know all about general algebra, you can skip

to Section A2. (A more leisurely exposition will appear in [42].)

We use the notation of [37] (see also [42, 54]) based on “indexed sets, ” in

contrast to the more complex notations of [8], [10], and [63]. If 1 is a set (of

“indices”), then an I-indexed set A (also called a family of sets indexed by
1) is just an assignment of a set A i to each index i in 1. If A and B are

1-indexed sets, then a mapping, map, or morphism of 1-indexed sets,

f: A ~ B, is just an I-indexed family of functions, f,: A, ~ B, for i c 1.

There is an obvious composition of l-indexed mappings, (f; g) ~= fi; g,
(where the composition f; g of functions f, g is defined by (f; g)(x) =

g( f ( x))). This gives a category t3et ~ of I-indexed sets. We may use the
notations A = ( A i I i e 1) for an l-indexed set with components A ~ and

f = (f,: A, ~ Bi I i G 4 for an I-indexed mapping A ~ B Of ~-indexed sets~
where A = (A, I i c 1) and B = ( Bi \ i = 1). All the basic concepts of set

theory extend component-wise to 1-indexed sets. Thus, A G B means that
Al ~ B, for each i in ~, A fl B = (A, n Bil i~~), etc. This can greatly

simplify notation.

Al. 1. EQUATIONAL SIGNATURES. Intuitively speaking, an equational signa-

ture declares some sort symbols (to serve as names for the various kinds of

data) and some operator symbols (to serve as names for functions on data), each

with a declaration that gives a list of input sorts and one output sort. Then a

morphism between signatures should map sorts to sorts and operators to

operators, preserving their input and output sorts.

Definition 48. An equational signature is a pair (S, ~), where S is a set

(of sort names) and Z is a family of sets (of operator names), indexed by

S* x S; we will often write just Z instead of (S. >). a in E,<, ~ is said to have

arity u, sorts, and rank u,s; we may write o: u ~s to indicate this.

Definition 49. An equational signature morphism ~ from a signature

(S, Z) to a signature (S’, Z’) is a pair (f, g) consisting of a map f: S -S’ of
sorts and an S x S*-indexed family of maps g,,, ~: XU, ~ ~ ~~.[,,), ~(,) on opera-

tor symbols, where f*: S* ~ S’* is the extension of f to strings. 15 We

sometimes write @(s) for f(s), +(u) for f *( u), and 4(a) or even @a for

g,,,,(o) when uc ZU,,.

In the language of programming methodology, a signature declares the

syntactic interface for a module, package, capsule, object, abstract machine,

abstract data type, . . . (unfortunately, there is much variation of terminology in
this area). Signature morphisms are useful for expressing the binding of an

actual parameter to the formal parameter of a parameterized software module.

15This extension is defined by: ~*(h) = A, where A denotes the empty string and .,f’( WS) = .,f”( w)~(s),
for w m S* and .s in S.
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Definition 50. The category of equational signatures, denoted Sig, has

equational signatures as its objects, and has equational signature morphisms as

its morphisms. The identity morphism on (S, E) is the corresponding pair of

identity maps, and the composition of morphisms is the composition of their

corresponding components as maps. (This clearly forms a category.)

For the usual term algebra construction to yield an initial algebra, it is

necessary that whenever 06 xx ~ and o e xx, ,,, then s = s’. We assume that all

signatures satisfy this assumption. (For practical purposes, it suffices to assume

that expressions have been disambiguated by a parser, so that each operator

symbol has a unique sort.)

A 1.2. ALG~~~As. Given a signature ~,~ a X-algebra interprets each sort

symbol as a set and each operator symbol as a function. Algebras, in the

intuition of programming, correspond to concrete data types, that is, to data

representations such as those in [64].

Definition 51. Let (S, X) be a signature. Then, a Z-a[gebra A is an

S-indexed family of sets I xl I = ( xl, I s e S) called the carriers of A. together

with an S* x S-indexed family a of maps a,,, ~: ZU, ~ ~ [AU ~ As] for u in

S* and s in S, where A~, ... . . = A~l x o“ “ x a,,, and [A ~ B] denotes the

set of all functions from A to B. (We may sometimes write A for \ A I and

lAl, for A~.)Foru=sl ”.. sn, foroin ZU,, and for(al, . . ..an)in Al,
we write o(al, . . . , an) for a,,, ~(a)(al, . . . , an) if there is no ambiguity.

Note that if u = X., the empty string, then a ~ 2,, ~ denotes a constant,

because UU,,( o)(”) is an element of A,, where * is the unique element of A,,.

Definition 52. Given a signature Z, a Z-homomorphism from a Z-alge-

bra (A, a) to another ( A’, a’) is an S-indexed map f: A ~ A’ such that for all

c in EU, ~ andalla= (al,..., an) in A. the homomorp?~ism condition

f,(a(o)(al,.. ., an)) = a’(o) (f~l(al), . . . . f~~(an])

holds, that is, such that the following diagram commutes:

f. ~,
.4U u

cl(u) \ 10CY’u

A. — .4:
f.

Definition 53. The category A1g, of ~-algebras has ~-algebras as objects

and E-homomorphism as morphism-s; compo~ition and identity in Alg, are

composition and identity as maps. (This clearly forms a category.)

Alg extends to a functor on the category Sig of signatures, associating with

each signature Z the category Alg( Z) of all ~-algebras, and also defining the

effect of signature morphisms on algebras:

Definition 54. The functor Alg: Sig + Cat “p sends each signature 2 to the

category Alg ~ of all X-algebras, and sends each signature morphism @ = (f: S
~ S’, g: Z ~ Z’) to the functor Alg( 0): Alg ~, + A1g ~ that

(1) sends a X-algebra ( A’, a’) to the Z-algebra (A, a) with As = A~(~) and

a = g; a’, and
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(2) sends a Y-homomorphism h’: A’ ~ B’ to the E-homomorphism

Ala) = h: Alg(q5)( A’) ~ Alg(@)(B’) defined by h, = h~(,).

It is often convenient to write O( A’) or ~ A’ for Alg( q5)( A’) and to write

O(h’) for Alg(~)(h’).

If S is the sort set of Z, then there is a forgetful functor U Alg ~ + Set ~

that sends each algebra to its S-indexed family of carriers, and sends each

Z-homomorphism to its underlying S-indexed map. (Functoriality follows from

the fact that U = Alg( @), where ~ is the signature inclusion (S, 0) ~ >.)

For each S-indexed set X, there is a free algebra (also called a term or

word algebra), denoted TV( X), with I TX(X) I , consisting of all the Z-terms

of sort s using “variable:’ symbols from X; that is, ( Tz( X)) ~ contains all

s-sorted terms with variables from X that can be constructed using operator

symbols from Z; moreover, the S-indexed set TX(X) forms a Z-algebra in a

natural way. In order to make this more precise, we first consider a special

case, defining (TX), to be the least set of strings of symbols such that

(1) ~~,s G Tx,, and
(2) uc Z,l ... ,~,, and tie TX,,, imply that the string o(tl,.... In) is in TX,,.

Then, the Z-structure of TX is given by CYdefined by:

(1) for rxe~x,~ let U(o) be the string o of length 1 in TX,,; and

(2) for a~ ~~1 ....~ , and tie TX,,, let a(o)(tl, . . . . tn) be the string

(J(tl, ..., tn) in TX, ~.

Next, define 2(X) to be the S-sorted signature with (X( X))x, ~ = Zx,s U X.

and (X( X)),,, ~ = 2U,, if u # h. Then T>(X) is just TX(X) regarded as a

~-algebra rather than as a 2(X)-algebra. 16 The freeness of TX(X) is ex-
pressed by the following:

THEOREM 55. Let ix: X ~ U( TJ X)) denote the inclusion. Then the
following “universal” property h~lds: for any Z-algebra A, every (S-
indexed) map f: X -+ A, called an assignment, extends uniquely to a E-
homomorphism f #: TX(X) ~A such that ix; U(f”) = f.

A proof may be found, for example in [19]. We may omit the U’s in such

equations, as in the following traditional diagram of S-indexed sets and

mappings for the above equation.

B

/“1

f P

In particular, taking X = @, we see that there is a unique Z-homomorphism

from TX to any other Z-algebra; thus, Tz is the initial X-algebra.

‘6 That is, 4( T~(X1) where ~: Z + 2(X) is the signature inclusion.
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Al. 3. EQUATIONS AND SATISFACTION. We now define equations, and the

satisfaction of an equation by an algebra. Let us fix, for the rest this subsection,

an infinite set Y“ of ‘‘ variable symbols. ” Then a sort assignment is a partial

function X: $-~ S where S is a set of sorts; we also let X denote the

S-indexed set defined by 17 X. = {xe % I X(x) = s}. This is used in the

following:

Definition 56. A E-equation e is a triple (X, t1, t 2), where X is a sort

assignment !2’-+ S with S the set of sorts of Z, where t1 and t 2 in I T>(X) I ~

are terms over (the S-sorted set) X having the same sort s e S. We may write

such an equation in the form (vX) t1 = t 2.
The necessity for variable declarations in equations has been shown by

Goguen and Meseguer in [50]: without them, the expected rules of deduction

for many-sorted equational logic are unsound. 18

Definition 57. A Z-algebra A satisfies a Z-equation (vX) t 1 = t 2 iff

a# ( t 1) = a# ( t2) for every assignment a: X + I A 1. In this case, we write

A EZ e.

We now define another functor, Eqn, on the category of signatures. In order

to do so, we first define for each signature morphism ~: 2 + Z’ a function qi -

from Z-terms to Y-terms.

Definition 58. Let +: Z ~ 2’ be a signature morphism (f: S ~ S’, g), let

X: 4”~ S be a sort assignment, and let X’ be the sort assignment X; f. The

following will define an S-indexed map @-: I T>(X) I ~ I 4( TX ( X’)) I : First,

note that 19 X q I O( Tz, ( X’)) I because if x e X, then x e X~L,l and .X~(,l G

I Tx(X’) I ~(,j = 14(TX(X’)) 1,; let j: X - I @(TZ(X’)) I denote this inclu-
sion. Then j has a uruque extension as a Z-homomorphism j*: T~( X) +

0( TX,( X?)) by Theorem 55, and we simply define ~ - = I j# 1.

Definition 59. The functor Eqn: Sig ~ Set takes each signature 2 to the

set Eqn( 2) of all E-equations, and takes each @ = (f, g): X - Z’ to the

function Eqn(@): Eqn( 2) ~ Eqn( Z’) defined by

Eqn(@)((X, tl, t2)) = (X; f,~- (tl), @- (t2)).

It is often convenient to write 4(e) or +e instead of Eqn( @)(e).

PROPOSITION 60. SATISFACTION CONDITION. If ~: 2 + Z’, if e is an E-equa-
tion, and if A’ is a X’-algebra, then

A’ EZ r)(e) iff @(A’) =X e.

We omit the proof of this result. An elegant proof using the machinery of

charters and parchments may be found in [47], and a direct, but rather lengthy,

proof by calculation may be found in [44]. Summarizing, we have

Example 61. Many-Sorted Equational Logic. This is an institution, with

Sign the category Sig of equational signatures (see Definition 50), with Mod

the functor Alg of Definition 54, with Sen the functor Eqn of Definition 59,

17We thank Andrzej Tarlecki for pointing out a problem with our approach to variables m [44].

18Some special assumptions about the form of signatures, such as that each sort has at least one
constant, will also ensure soundness [50].
19Of course this means that X, ~ I @(~x (X’)) I , for each s e S.
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and with equational satisfaction as in Definition 57. The Satisfaction Condition

holds by Proposition 60. We denote this institution #&.

A 2. First-Order Logic and Related Institutions

We follow a path like that in Section Al, but now for some more complicated

logical systems. The previous work on equational logic will greatly aid with this

task.

Definition 62. A first-order signature ~ is a triple (S, ~, II), where

(1) S is a set (of sorts),
(2) E is an S* x S-indexed family of sets (of operator or function symbols),

and

(3) II is an S*-indexed family of sets (of predicate or relation symbols).

A morphism of first-order signatures,
where

(1) +1: S ~ S’ is a function,

(2) ~a: Z ~ Z is an S* x S-indexed

%(u):4,(s) and

(3) cjq: II ~ H’ is an S*-indexed family

from Q to W, is a triple (4,, CPz,0s),

family of functions ( Oz) ,,,,: ~t,,, +

of functions (q5s)U: IIU + II\f(U).

Let FoSig denote the category with first-order signatures as its objects, with

first-order signature morphisms as its morphisms, and with the obvious identi-

ties and composition.

Definition 63. For Q a first-order signature, an O-model (or O-structure)
A consists of

(1) an S-indexed family I A I of nonempty sets (A ~ \ s e S), where A,, is

called the carrier of sort s, and

(2) an S* x S-indexed family a of functions aU,,: Z,,,, + [ A,, + A,] assign-

ing a function to each function symbol, an S*-indexed family (? of functions

(3U: IIti + Pow( A J assigning a relation to each predicate symbol, where

Pow(A) denotes the set of all subsets of A.

For mcIIU with u=sl. ..snandai~A,i for i= l,. ... n,we say that

“7r(al,. ... an) holds” (in A) iff (al, . . . . an) c ~(x); as usual, this may be

abbreviated “~(al, . . . . an). ”
Next, we define a first-order O-homomorphism f: A * A’ of Q-models to

be an S-indexed family of functions f,: A ~ - AL such that the homomorphism

condition holds for Z (as in Definition 5) and such that for T e II ~ with
~=sl... sn, and with aiin A,, for i= 1,. ... n,

~(7r)(al,. . . ,an) implies ~’(r) (f~i(al), . . . . f~~(an)).

(Some readers might think that “implies” above should be ‘ ‘iff”; however,

such a notion of homomorphism would be too strong, eliminating many maps

that are necessary for the term model to be initial in the Horn clause institution;

see [51].)

Let FoMod denote the category with first-order models as objects and with

first-order morphisms under the obvious composition. FoMod extends to a

functor FoSig -+ Cat “p as follows: Given a first-order signature morphism
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~: Q ~ 0’, define the functor

FoMod(@) : FoMod(W) + FoMod( Q )

to send: first of all, A’ in I FoMod( Q’) I to ~ = @#l’ defined by

(1) A, = A~, for SCS with s’ = ~,(s),

(2) at,, S(O) = a;,, # (( OF),,,.) for ~ e S*, s=S, and CJCx,,,, where u’ =
O?(u) and s’ = O1(s),

(3) 61,(T) = 6j((43)J7r)) for u G S* and z 6 H,, with u’ as above;

and secondly, to send f’: A’ + B’ in FoMod( 0’) to j = @fl: ~ ~ B in

FoMod(Q), where A = $A’ and B = @B’, defined by f. = fj where s’ =

41(s). This construction extends that of Definition 7, and it is easy to see that it
does indeed give a functor.

The next step is to define the sentences over a first-order signature Q. We do

this in the usual way, by first defining terms and formulas. However, we have

to be somewhat careful about variables. To this end, let ,7’ be a fixed infinite

set of variable symbols, and let X: %+ S be a partial function, that is, a sort

assignment; as before, X also denotes the S-indexed set with X, = { x e

# I X(x) = s}. Now define the S-indexed family THUWX(Q) of (Q, X)-
terrns to be the carriers of T3( X), the free Z-algebra with generators X, and

define TERM(~) to be the (disjoint) union of all the TERMX( ~); thus, we

assume (as in the equational case) that each Q-term comes with an explicit

indication of what its variables are. Now define the (S-indexed) function F’ree

on TERMX ( ~ ) inductively by

(1) Free,(x) = {x} forxe X~

(2) Free.(u(tl, . . . . trz)) = u:= ,Free~i(@.

Finally, Free extends to all of TERM( !J).

Definition 64. A (well-formed) (Q, X)-formula is an element of the carrier

of the (one-sorted) free algebra WFFX ( !2) having the atomic (Q, X)-formulas

{7r(tl ,. ... tn)l ~~~,, with u = S1 ... sn and ti~TERMx(Q)~l}

as generators, and having the following as its (one-sorted) signature:

(1) a constant true,
(2) a unary prefix operator -,

(3) a binary infix operator &, and

(4) a unary prefix operator (V x) for each x in X.

Let WIT(Q) be the union of all WFFX( !2).

The functions Var and Free, giving the sets of variables and free variables of

Q-formulas, can be defined inductively over the above logical connective by

(1) Var(true) = Free(true) = @,
(2) Var(7r(tl, , , ., tn)) = Free(r(tl, , . . . tn)) = (J~=lFree(j’i),
(3) Vm-(=P) = Var(P), and Free(mF’) = Free(P),
(4) Var(P&Q) = Var(P) U Var(Q), and Free(P&Q) = Free(P) U

l+ee( Q), and

(5) Var((Vx)P) = Var(P) U { x}, and Free((vx)P) = Free(P) - { x}.
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We now define an ~-sentence to be a closed O-formula, that is, an Q-formula

P with Free(P) = a, and we let FoSen( ~) denote the set of all Q-sentences;

it is the union of the sets FoSen x( 0) of closed (Q, X)-formulas. For conve-

nience, we can now define the remaining logical connective, false, V, - , % ,

and (3x) in terms of the basic ones given above in the usual way.

These definitions of TERMX( ~) and WI?FX( Q) follow the “initial algebra

semantics” advocated by [37] and [55] in emphasizing the freeness of the

algebras involved. We exploit this to define the effect of FoSen on first-order

signature morphisms, so that it becomes a functor FoSig + Set. Given ~: Q ~

W, we can define FoSenx(@): FoSenx(~) ~ FoSenX(~~, where X’ =

X; 01, using initiality. Because (01, 01): Z -+ Z’ is a signature morphism, there

is an induced morphism *: TJ X) + Tz,,( X’), which then gives us

~: TERiWX( ~) ~ TERMX, ( 0’). Now define W17FX( ~): J72W”( Q) +

WFFX ( ~’) by its effect on the generators of WFFX( ~), which are the atomic

formula, by

WFFx(@)(~(tl, . . . . tn]) = ~,(7r)(~(tl),. . .,~(tn)).

Finally, define FoSenx( ~) to be the restriction of WFFX( 4) to FoSen x( Q) G

WFFX( ~). For this to work, it must be checked that WFFX( ~) carries closed

Q-formulas to closed Q’-formulas; but this is easy. FoSen( ~) is then defined to

be the union of the functions FoSenx( @) on the union of the sets FoSenx( ~).
It remains to define satisfaction. This corresponds to the usual “semantic

definition of truth” (originally due to Tarski [102]). If A is a first-order model,

let Asgnx( A ) denote the set of all assignments of values in A to variables in

X, that is, [X+ A], the set of all S-indexed functions f: X + A.

Definition 65. Given an Q-sentence P and an O-model A, define

Asgnx( A, P), the set of assignments in A for which P is true, inductively as

follows:

(1) if P = m(tl ,. ... tn) then f6Asgnx(A, P) iff (f#(tl), . . . . f#(tn))e
6(T), where f # ( t) denotes the evaluation of the Z-term t in the ~-algebra

part of A with the values of variables given by the assignment f using

initiality.

(2) Asgnx(A, true) = Asgnx( A).
(3) A.sgnx(A, 1P) = Asgnx(A) – Asgnx(A, P).
(4) Asgrzx(A, P&Q) = Asgnx(A, P) n Asgnx(A, Q).
(5) Asgnx(A, (VX)P) = {f I Asgnx(A, f, x) G Asgnx(A, P)}, where

AsgnX( A, f, x) is the set of all assignments f’ that agree with f except
possibly on the variable x from X.

Then A satisfies P c WFF~( X), written A EQ P, iff Asgnx( A, P) =
Asgnx(A).

Finally, we must verify the satisfaction condition. This follows from an

argument much like that used for the equational case, and is omitted here; the
result can also be obtained using the methods of “charters” [47]. Thus,

summarizing the above, we have

Example 66. (Many-Sorted) First-Order Logic. This is an institution; let

us denote it Y_@f.
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Example 67. (Many-Sorted) First-Order Logic with Equality. This insti-

tution is closely related to that of Example 66. A signature for first-order logic

with equality is a first-order signature Q = (S, Z, II) that has a particular

predicate symbol -, in 11~~ for each s e S. A morphism of signatures for

first-order logic with equality is a morphism of signatures for first-order logic

that preserves these predicate symbols, that is, that satisfies oq( =. ) = - ~lt$)

for all s c S. This gives a category FoSigEq of signatures for first-order loglc

with equality.

If Q is a signature for first-order logic with equality, then a model for it is

just an Q-model A in the usual first-order sense satisfying the additional

condition that

a =x a’ iff a = a’

for all SCS and for all a, a’ cA,.
A homomorphism of first-order Q-models with equality is just a first-order

Q-homomorphism (in the sense of Definition 63). and we get a category

FoModEq( !2) of Q-models for each signature Q in I FoSigEq 1, and

FoModEq is a functor on FoSigEq. Q-sentences are defined just as in Example

66, and so is satisfaction. We thus get a functor FoSenEq: FoSigEq + Set.

The Satisfaction Condition follows immediately from that of first-order logic

without equality. Let us denote this institution by Y–(!7# i?.

It is interesting to note that many liberal institutions that are familiar from

logic have served as bases for programming languages, including those men-

tioned below.

Example 68. (Many-Sorted) Horn Clause Logic with Equality. We may

specialize the previous example by limiting the form that sentences can take,

but without restricting either the predicate or operator symbols that can enter

into them. In particular, we maintain the equality symbol with its fixed

interpretation from Example 67; but we require that all sentences be of the form

(VX)A,&A,&8ZAn+A,

where A and each A, is an atomic formula T( t,, . . . , tm) with variables from

X. In particular, disjunction, negation and existential quantifiers are excluded.

That this is an institution follows from the facts that first-order logic with

equality is an institution, and that the class of Horn clauses is closed under

translation by signature morphisms. Let us denote this institution .17 ‘J-Y’ ti~ ; it

is the basisz” for the logical programming language Eqlog [51].

Example 69. (Many-Sorted) Conditional Equational Logic. As a spe-

cialization of Example 68, let equality be the only predicate symbol. This gives

the institution often called conditional equational logic. It is the basis20 of the

logical programming language OBJ [32, 33, 48, 56].

Example 70. (Many-Sorted) Horn Clause Logic without Equality. We

can also restrict Example 68 by dropping equality with its fixed interpretation.

This too is obviously an institution because it is just a restriction of ordinary

‘“ More precisely, the order-sorted [53] variant of this loge is the basis.
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first-order logic; it is the basis for the logical programming language (pure)

Prolog [71]. Let us denote this institution YF ‘~~.

Gabriel and Ulmer [34] describe a very general notion of logical system with

some results for demonstrating liberality.

It seems clear that many-sorted temporal or modal logic can be treated in

much the same way, by adding the appropriate modal operators to the signature

and defining their correct interpretation in all models, which will be ‘‘ Kripke”

or “possible world” structures. nigher order equational logic is also presum-

ably an institution: the development should again follow that of equational

logic, using higher order sorts and operator symbols. 21 ‘‘ lnequational logic”

[1 1], order-sorted equational logic [53], and various kinds of infinhary equa-

tional logic, such as continuous algebras [55, 107], are also institutions [99].

We further conjecture that in general, mechanical theorem provers, such as the

Eloyer-Moore prover [121, Aubin’s system [3] and STP [95], are based on

logical systems that are institutions (or if they are not, they should be modified

so that they are!). Clearly, it would be helpful to have some general results to

help establish that various logical systems are institutions. This motivates the

study of “charters” and “parchments” in [47].

A way to generate many other examples [74] is to let the sentences over a

signature Q be all the specifications using Q written in some specification

language (such as Clear); we could think of such a specification as a convenient

abbreviation for a (possibly very large) conjunction of simpler sentences.

However, this seems inappropriate under the view that the purpose of a

specification language is to assist with programming-in-the-large, by providing

facilities for building new specifications by reusing old specifications as a

whole, for example, by applying a parameterized specification, as opposed to

local operations on sentences, such as conjunction.
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