General Logics*

José Meseguer
SRI International, Menlo Park, CA 94025, and
Center for the Study of Language and Information
Stanford University, Stanford, CA 94305

Dedicated with affection to my father, Francisco Meseguer, who
died unexpectedly a few weeks after the Granada Logic Collo-
quium

1 Introduction

The connections between logic and computer science are growing rapidly
and are becoming deeper. Besides theorem proving, logic programming,
and program specification and verification, other areas showing a fascinat-
ing mutual interaction with logic include type theory, concurrency, artificial
intelligence, complexity theory, databases, operational semantics, and com-
piler techniques. The concepts presented in this paper are motivated by
the need to understand and relate the many different logics currently being
used in computer science, and by the related need for new approaches to the
rigorous design of computer systems. Logic programming is of course one
of the areas where logic and computer science interact most strongly. The
attempt to better understand the nature of this interaction, as well as its
future prospects, motivates the following basic question:

What is Logic Programming?

This paper tries to make precise the meaning of this question, and to answer
it in terms of general axioms which apply to a wide variety of different logics.
In doing so, we are inevitably led to ask the more fundamental question:

What is a Logic?

That is, how should general logics be axiomatized? This is because an
axiomatic notion of logic programming must necessarily rest on an axiomatic
notion of logic itself. Most of the paper will be devoted to the second
question. With an axiomatic notion of logic already in place, it will then
answer the first.

*Supported by Office of Naval Research Contracts N00014-82-C-0333 and N00014-86-C-
0450, NSF Grant CCR-8707155 and by a grant from the System Development Foundation.

Beyond their application to logic programming, the axioms for general
logics given here are sufficiently general to have wide applicability within
logic and computer science. Thus, this work has goals that are in full
agreement with those of J.A. Goguen and R. Burstall’s theory of institu-
tions [26, 27]; however, it addresses proof-theoretic aspects not addressed
by institutions. In fact, institutions can be viewed as the model-theoretic
component of the present theory. The main new contributions include a gen-
eral axiomatic theory of entailment and proof, to cover the proof-theoretic
aspects of logic and the many proof-theoretic uses of logic in computer sci-
ence; they also include new notions of mappings that interpret one logic (or
proof calculus) in another, an axiomatic study of categorical logics, and the
axioms for logic programming.

Logic has of course a long tradition of reflecting upon itself. In the
process of seeking the present axiomatization, I have reviewed a variety of
previous axiomatizations of logic. In essence, they tend to fall within two
main approaches:

e a model-theoretic approach that takes the satisfaction relation between
models and sentences as basic, and

e a proof-theoretic approach that takes the entailment relation between
sets of sentences as basic.

I have found that neither of these approaches is by itself sufficient to ax-
iomatize logic programming, and that similar difficulties remain for many
other computer science applications. The axioms presented here unify both
approaches, and yield as one of their fruits the desired axioms for logic
programming.

The entailment relation asserts provability, but says nothing about how
a sentence is actually proved. To account for proofs and for their inter-
nal structure, I also present a new axiomatic notion of proof calculus that
is very general and does not favor any particular proof theory style. The
computer science counterpart of a proof calculus is the notion of an “op-
erational semantics.” The flexibility of the axioms given for proof calculi
permits putting them and operational semantics on a common abstract ba-
sis. This offers the possibility of a more intense mutual interaction between
the two fields. As a fruit of this interaction, operational semantics could
be placed on a firmer logical basis and proof theory could be enriched with
new, more flexible, proof systems. The value of establishing a closer link be-
tween proof theory and operational semantics has been recognized by many
authors, and has led to specific proposals such as the one by G. Plotkin [57];
it is also emphasized in the recent work of J.-Y. Girard [22].

The methods of category theory have taught us that the crucial math-
ematical properties of a given subject do not reside in the structures in
question, and even less in the particular representations chosen for those
structures. Rather, they reside in the mappings that preserve those struc-
tures. In our present case, the structures are logics themselves and the
mappings should be natural ways of interpreting one logic, or one proof cal-
culus, into another. Although instances of such interpretations abound in
logic, and are of great practical importance in computer science, most exist-
ing axiomatic treatments of general logics, with the exception of Goguen and

Burstall’s theory of institutions [26, 27] and work related to institutions, do
not include a formal treatment of such mappings. In this paper, mappings
of this sort play a central role. New general notions of mapping between en-
tailment systems, between logics, and between proof systems, are given and
illustrated with examples. The mappings in question are far more general
than syntactic mappings translating languages in one logic into languages in
another; they can also map languages into theories, or even perform theory
transformations of a more general nature. In addition, they also provide a
systematic way of relating models in different logics. Such notions of map-
ping should have wide applicability in logic. They also have many potential
applications in computer science.

Axiomatic treatments such as “abstract model theory” usually come
with a built-in notion of structure, such as a set-theoretic structure with
functions, relations, etc. Although very useful within their own scope, such
approaches lack the flexibility needed to deal with logics such as nonclassical
and higher order logics, for which the appropriate notion of “model” may
be widely different from traditional set-theoretic structures. For many of
these nonstandard logics the categorical approach initiated by F.W. Law-
vere [45, 46] is ideally suited. In particular, there is at present a thriving
interest in categorical logics in connection with applications of construc-
tive type theory to programming languages and to concurrent systems. To
demonstrate the flexibility of the axioms proposed in this paper, I give a
general definition of categorical logic, discuss examples, study their main
properties, and show how any such logic is a particular instance of a logic
in the sense proposed here. I reexamine this topic in connection with the
axioms for logic programming, in order to show how in this way functional
programming languages based on type theory can be naturally unified with
logic programming.

The main purpose of this paper is to propose new concepts that I believe
can be useful in many areas of computer science and also in logic. Given this
purpose, there are more definitions and examples than there are theorems;
this situation should of course be reversed in the future. Indeed, the paper
as a whole is in a sense more a promise of things to come than an actual
fulfillment of that promise. The concept of a logic as a harmonious relation-
ship between entailment and satisfaction is particularly simple and, once the
observation is made, seems the obvious thing to do. The concept of a proof
calculus is less obvious and is perhaps one of the main new contributions; I
believe that for computer science applications one needs to have great flexi-
bility about what counts as a “proof;” therefore, I have avoided making any
commitments to particular proof theory styles in the proof calculus axioms.
Many future computer science applications of these ideas will heavily use
mappings between logics, between proof calculi, etc. I believe that map-
pings may prove to be the most important concept. They play a key role in
relating different logics and different computer systems, and such relation-
ships are conceptually and practically very important. Also, experience with
them may suggest new methods for the rigorous design and development of
computer systems. Two topics with more particular scopes but still quite
important are categorical logics —specially in their applications to type the-
ory and to concurrency— and the axioms for logic programming, because of
the new possibilities for language design that they suggest.

The paper assumes an acquaintance with elementary concepts of cat-
egory theory, such as: category, subcategory, functor, natural transforma-
tion and natural equivalence, horizontal and vertical composition of natural
transformations, pullbacks and pushouts, and adjoint functors. All the rel-
evant concepts are clearly explained in Mac Lane’s book [47].

1.1 General Logics

As already mentioned, one can speak of two approaches to the axioma-
tization of general logics, a model-theoretic approach that focuses on the
satisfaction relation

Mi=¢

between a model M and a sentence ¢, and a proof-theoretic approach that
seeks to axiomatize the entailment relation

|)

between a set of sentences I and a sentence ¢ derivable from I'. The model-
theoretic approach is exemplified by Barwise’s axioms for abstract model
theory [3] (see also [16] and the volume [2] for a good survey of this field).
The framework of institutions of Goguen and Burstall [26, 27] also belongs
to this model-theoretic approach, but it achieves much greater generality
by using category theory and avoiding a commitment to particular notions
of “language” and “structure.” The proof-theoretic' approach has a long
tradition dating back to work of Tarski [69] on “consequence relations” and
of Hertz and Gentzen on the entailment relation . This approach owes
much to the work of Dana Scott [62] and other authors. The recent work
of Fiadeiro and Sernades [17] belongs to this proof-theoretic tradition, but
uses methods from the theory of institutions; however, that work does not
propose a common axiomatization connecting model theory and proof the-
ory. In my attempt to axiomatize logic programming languages, I have
found that neither of these two approaches is enough by itself to yield a
satisfactory axiomatization. This paper proposes a unified approach that
integrates model-theoretic and proof-theoretic aspects into a single axioma-
tization of a logic. The axiomatization in question is quite simple. It consists
of an “entailment system”, specifying an entailment relation -, together with
a “satisfaction system” (specifically, an institution in the Goguen-Burstall
sense) specifying a satisfaction relation . The entailment and satisfaction
relations are then linked by a soundness axiom. Therefore, institutions pro-
vide the model-theoretic component of a logic in the precise sense given to
this term in this paper. As done in the theory of institutions, the axioms
for a logic are expressed in a categorical way, to avoid building in particular
choices of structures or languages. As a consequence, they are very general.

1.2 Proof Calculi

The entailment relation F says nothing about the internal structure of a
proof. To have a satisfactory account of proofs, we need the additional
concept of a “proof calculus” P for a logic £. The definition of a proof

IThis is an oversimplification, since semantic considerations are also included in it.

calculus is very general, and does not favor any particular style of proof
theory. The same logic may of course have many different proof calculi.
Therefore, when wishing to include a specific proof calculus as part of a
logic, the resulting logic plus proof calculus is instead called a logical system.
The axioms for a proof calculus P state that each language (also called a
signature) in the logic £ has an associated space of proofs, which is an object
of an appropriate category. From such a space we can then extract the actual
set of proofs supporting a given entailment I' - ¢.

We actually need the more general concept of a “proof subcalculus”
where proofs are restricted to some given class of axioms and conclusions
are also restricted to some given class of sentences. It is by systematically
exploiting such restrictions that the structure of proofs can be simplified; for
example, we can in this way arrive at proof theories that are efficient and
can be used in practice as the operational semantics of a logic programming
language. For programming and other purposes we need not just proof
subcalculi, but effective ones.

1.3 Relating Logics

Interpretations mapping one logic, or one proof theory, into another are very
common in logic. They permit the transfer of results between different logics
and serve to provide a relative foundation for a logical system by reducing it
to a simpler one. In computer science there are compelling practical reasons
for establishing similar mappings. Even if not explicitly recognized as such,
the need for mappings of this sort manifests itself in a variety of ways.
For example, for programming languages it may take the form of trying to
combine language features from different languages based on different logics,
or of trying to compile an inefficient operational semantics into an efficient
one. Since the need is there, like a river that nobody can stop, something of
the sort will be done. However, if the approach taken lacks a logical basis
to serve as a criterion for correctness the result may be quite ad hoc and
unsatisfactory, it will probably involve a good deal of costly engineering trial
and error, and may in the end lack a clear intellectual content, making it
impossible to be transmitted as a lasting scientific contribution. Also, since
the development of computer systems is a very expensive and labor intensive
activity, there is a great need for reusing systems as much as possible. One
may for example want to use a theorem prover in one logic to prove theorems
in a different logic, and the soundness of such a procedure must then be
justified by an appropriate map of logics.

This work proposes a general axiomatic theory of mappings that is flex-
ible enough to encompass and unify the maps used in logic and the maps
needed in computer science. The most promising computer science appli-
cation of this theory is probably not to the a posteriori justification of
computer science practice, but to the development of new methods for the
rigorous design of computer systems. For the model-theoretic component,
the maps are similar to the institution morphisms of Goguen and Burstall
[26, 27], which provided the original inspiration. In addition, the following
other types of mappings are defined:

e Maps of entailment systems, relating languages in different logics and
preserving the entailment relation.

e Maps of proof calculi, which in addition relate proofs in different logics.

e Maps of logics, that map their underlying entailment systems and their
underlying institutions.

e Maps of logical systems, that map both logics and their corresponding
proof calculi.

As already mentioned, these mappings permit very general translations.
They are not restricted to translating one language into another, but allow
complex transformations between theories in different logics that also occur
in practice.

1.4 Categorical Logics

Axiomatizing a notion always presents a dilemma. In trying to achieve
generality, an axiomatization can become too weak and somewhat vacuous
in its results. Yet, if the axiomatization is too specific, it will fail to include
relevant examples and, furthermore, it may hinder subsequent developments.
The goal of Section 5 is to show by example that the proposed notion of logic
has, indeed, a wide applicability. I axiomatize a large and important class of
logics, namely categorical logics, as particular instances of the general notion
of logic proposed in this paper, show that they have remarkably nice model-
theoretic properties, and prove a general structure-semantics adjointness
theorem.

The basic insight provided by categorical logic in the sense of Lawvere
is that the essential aspects of a logic, independently of particular syntactic
choices that must be made to talk about it, are categorical properties. For
example, the key categorical property behind the linguistic notion of an
equation is the existence of finite products. Semantics can then be made
functorial, by reinterpreting theories as categories with appropriate structure
and viewing models as functors that preserve that structure.

1.5 Axioms for Logic Programming

The logic programing dream has only begun to be realized. So far, the
overwhelming majority of work in this area has dealt with the Horn clause
fragment of first order logic but the idea is obviously much broader, and its
potential in other contexts remains to a good extent unexploited. This paper
tries to contribute to a scientific discussion of logic programming concepts
in as broad a context as possible. It does so by using the concepts proposed
for general logics as the basis for an axiomatic notion of logic programming.
The axioms proposed are a further step in a series of attempts to make
precise a broad view of logic programming shared with Joseph Goguen.
This view was expressed informally in the joint paper [33], and formally by
Joseph Goguen using the notion of an institution [25]. Logic programming
presents a very interesting combination of proof theory and model theory;
the axioms that I propose try to cover and relate both aspects. I also include
a discussion of different logic programming languages and styles. Within first
order logic there are already several possibilities that are quite different from
the traditional Prolog style. A direct fruit of the study of categorical logics

undertaken in Section 5 is the establishment of a precise connection between
the very active research area of functional programming languages based on
constructive type theory and higher order instances of logic programming.

1.6 Acknowledgements

I wish to thank the organizers of the Logic Colloquium’87 for having given
me the opportunity of presenting these ideas in the magic city of Granada
and for having made the meeting such a wonderful experience. I specially
thank Heinz-Dieter Ebbinghaus and José F. Prida for their kindness, and
for their patience as editors with my delays.

Regarding my ideas on general logics, I am particularly indebted to the
pioneering work of Joseph Goguen and Rod Burstall on institutions, and
indeed the reader will find this paper much in the same spirit as theirs. I
have been fortunate to learn from them many ideas about logic, and to be
present, always as an enthusiastic observer and often as a commentator, at
the moment when those ideas were developed.

The axiomatization of logic programming presented in Section 6 artic-
ulates a broad view of logic programming that I have shared with Joseph
Goguen over the past nine years, and has its roots in our joint work on
the OBJ, Eqlog, FOOPS and FOOPIlog languages, as well as in previous
attempts, some joint, some by Goguen himself, to make this view precise.

I also wish to express my gratitude to Joseph Goguen and Rod Burstall
in a special way for their kind encouragement and their important technical
suggestions along the maturing process that these ideas have undergone
since they were first presented at the Logic Colloquium in Granada. Joseph
Goguen provided also very helpful comments to the final draft.

It is a pleasure for me to express my warmest thanks to F. William
Lawvere with whom I have discussed the ideas of this paper in many con-
versations; beyond his many important suggestions, I owe to him a crucial
influence in my ways of understanding logic and mathematics that goes back
to my years as a graduate student and has been a permanent inspiration ever
since.

An earlier version benefited from very valuable suggestions by Jon Bar-
wise, Keith Clark, Brian Mayoh, Gordon Plotkin, Johan van Benthem and
an anonymous referee that have led to substantial improvements and I am
indebted to them for their kind criticism. Narciso Marti-Oliet deserves spe-
cial thanks for having suggested numerous improvements to several drafts
and for his generous help with the preparation of the I¥TEX diagrams.

2 General Logics

The proof-theoretic and model-theoretic approaches to general logics are
unified in the following way. First, I introduce the notion of an entailment
system that formalizes the provability relation; the axioms are similar to
those of Scott [62], but they also account for translations across different
signatures. Given an entailment system, we can define the notions of a
theory and a theory morphism. The model-theoretic aspects of a logic are
covered by Goguen and Burstall’s notion of an institution [26, 27]. The no-
tion of a logic is then obtained by combining an entailment system with an

institution in such a way that a soundness condition (relating provability
and satisfaction) holds. The logic is called complete if, in addition, satisfac-
tion implies provability. I also show how a complete logic can naturally be
associated with an entailment system or with an institution.

2.1 Entailment Systems

Consider the familiar example of first order logic. We usually fix a particular
signature X, consisting of a pair (F,P) where F' is a ranked alphabet of
function symbols and P a ranked alphabet of predicate symbols. Relative
to such a signature, we have a notion of a sentence. The rules of first order
logic then specify for us an entailment relation,

'k

which holds between a set of sentences I" and a sentence ¢ when ¢ is derivable
from I'. For the moment, we shall make abstraction of the particular rules
used to generate the relation - and concentrate on the relation itself. Indeed,
the entailment relation plays a more central role, since it remains the same
across the many different proof calculi that exist for first order logic.

The first order entailment relation - satisfies three basic properties that
can more generally be justified on intuitive grounds as properties that any
reasonable entailment relation should indeed satisfy. These are:

o reflexivity, i.e., we can always prove a sentence if we can assume it;

e monotonicity, i.e., we can always prove with more assumptions what
we can prove with fewer, and

e transitivity, i.e., using as an additional assumption something already
proved should not give us more conclusions than those already entailed
by our original assumptions.

We may at times wish to change the signature > and move to a new
signature Y’. The signature ¥’ may just be an enlargement of our original
syntax. In other cases, ¥’ may be a genuinely different signature so that
a translation of the old symbols to the new ones must take place. In any
event, the general form of such translations H : ¥ — ¥/, called signature
morphisms, consists, for first order signatures, of a pair of rank-preserving
functions, one for function symbols and another for predicate symbols, both
used for mapping the old symbols into the new ones. Therefore, signatures
form a category Sign with signatures as objects and signature morphisms as
morphisms. Any signature morphism H induces a corresponding translation
at the level of sentences, so that we can associate to each Y-sentence ¢ a
corresponding Y'-sentence H () by systematically replacing the old symbols
by the new ones, according to the signature morphism H. All this can be
expressed in a compact way by saying that the process associating to each
signature X its set of sentences sen(X) is in fact a functor sen : Sign — Set
from the category of signatures to the category of sets. We of course have no
problem accepting the fact that entailments are stable under translation by
signature morphisms: i.e., if we were able to prove a conclusion from some
axioms, we are then able, for any translation H, to prove the translated
conclusion from the translated axioms.

Definition 1 An entailment system is a triple £ = (Sign, sen,) with Sign
a category whose objects are called signatures, sen a functor? sen : Sign —
Set and F a function associating to each ¥ in Sign a binary relation Fy C
P(sen(X)) x sen(X) called X-entailment such that the following properties
are satisfied:

—_

reflexivity: for any ¢ € sen(X), {¢} Fx ¢;
monotonicity: if I' by ¢ and IV D T then I by, ¢;

transitivity: if T by @;, for i € I, and T U {p; | i € I} by 1, then
R SRR

F-translation: if T by ¢, then for any H : ¥ — ¥/ in Sign, H(T') by
H(ep).

In addition, an entailment system is called compact if whenever I' 5 ¢,
then we can find a finite ['g C I" such that I'g Fx . O

Remarks:

1.

The reflexivity, monotonicity and transitivity axioms are similar to
those given by Scott in [62]. However, the present formulation avoids
any compactness assumptions.

. The entailment relation - induces a function mapping each set of sen-

tences I' to the set I'* = {p | ' p}. We call T'® the set of theorems
provable from I'. It follows easily from the reflexivity, monotonicity
and transitivity axioms that the assignment I' — I'® is a closure func-
tion, i.e., it satisfies:

(a) TCTI*
(b) TCI' = [*CTI"
(c) T**=T1*

Tarski’s original axioms [69] were given in terms of this closure.

I am indebted to Joseph Goguen for pointing out to me that the re-
cent work of Fiadeiro and Sernades on “r-institutions” [17] proposes a
notion quite similar to entailment systems. Their notion is expressed
in terms of a closure operator and includes a compactness assumption.

The F-translation axiom can be equivalently expressed by saying that
F is a functor - : Sign — Set, that is a subfunctor of the functor
mapping each signature X to the set P(sen(X)) x sen(X).

One should keep in mind that the entailment relation F is independent
of any rules for its generation. Therefore, the reflexivity, monotonicity
and transitivity conditions should be viewed as abstract properties
of i, and should not be confused with particular rules of a specific
proof calculus for generating F, so that, say, reflexivity would then be

2By convention, the function sen(H) associated by the functor sen to a signature
morphism H will also be denoted by H.

understood as an axiom scheme, monotonicity as a weakening rule,
and transitivity as a cut rule. In fact, it may very well be the case
that an entailment system satisfying the reflexivity, monotonicity and
transitivity conditions is generated by a proof calculus that rejects
most structural rules and imposes restrictions on cut. For example, in
linear logic [21] weakening and contraction are forbidden so that the
calculus is in a sense “nonmonotonic.” We have the sequent A — A
as an axiom, but we cannot derive either A, B — A or even A, A — A
as consequences. The point is that, for ¥ a linear logic signature, the
elements of sen(X) should not be identified with formulas but with
sequents. Viewed as a way of generating sequents, i.e., identifying our
F with the closure of the horizontal bar relation among linear logic
sequents, the entailment of linear logic is indeed reflexive, monotonic
and transitive. The idea that sequents are a good choice for a notion of
sentence in linear logic is very much in keeping with Girard’s intuition
of a sequent A — B as an action from A to B; it is also supported by
recent work on categorical models for linear logic [65, 14, 49].

2.2 Theories

Given a signature ¥, a theory is presented by a set I' of ¥-sentences called
its axioms. We can therefore define a theory as a pair T' = (3,I"). For
some purposes, one deals not with the original axioms I' but rather with
their closure under entailment I'®, so that it is tempting to call T'= (3,T")
a presentation of the theory T' = (X,I'*). However, the view of theories
as presentations allows us to make finer distinctions that are important for
both proof-theoretic and computational purposes. We can, for example,
distinguish between a sentence that is a basic axiom and another that is a
derived theorem. Also, although (X,T') and (3,I'*) are isomorphic in the
general category Th of theories, they are not isomorphic in a more restricted
but useful category of axiom-preserving theory morphisms.

Definition 2 Given an entailment system &, its category Th of theories
has as objects pairs T = (X,T") with 3 a signature and I' C sen(X) and
as morphisms, H : (X,T) — (X/,T), called theory morphisms, signature
morphisms H : ¥ — ¥’ such that if ¢ € T, then I b5 H(p).

A theory morphism H : (X,T) — (X', TV) is called aziom-preserving iff
it satisfies the condition that H(I') C I'. This defines a subcategory Thg
with the same objects as T'h but with morphisms restricted to be axiom-
preserving theory morphisms. Since given an arbitrary theory morphism
H: (X,T) — (¥, 1) the theories (X', I") and (X',T" U H(T")) are always
isomorphic, the restriction to T'hg is not very serious. Notice that the cat-
egory T'hy does not depend at all on the entailment relation K, i.e., any
other entailment system with identical signatures and sentences will yield
the same Thg. O

Remarks:

1. Projection to the first component yields a forgetful functor sign :
Th — Sign : (X,T) — X. Associating to each signature ¥ the theory
(33,0) yields a functor F' : Sign — Th left adjoint to sign, i.e., such
that there is a natural isomorphism T'h(F(X),T) = Sign(%, sign(T')).

10

2. The category Th is equivalent to the full subcategory determined by
theories of the form 7' = (X,I'*). Theory morphisms H : (£,I'*) —
(3, 17%) are always axiom-preserving, i.e., they satisfy: H(I'®) C I'*.
This corresponds to the distinction between entailment closed theories
and presentations mentioned above.

3. By composing with the forgetful functor sign : Th — Sign, we can
extend the functor sen : Sign — Set to a functor sen : Th — Set,

i.e., we define sen(T') = sen(sign(T)).

4. The assignment to each theory T'= (X, T") of the set I'® of its theorems
is a functor thm : Th — Set. Indeed, thm is a subfunctor of the
functor sen just defined for theories.

5. We can extend the functor - : Sign — Set to a functor -: Th — Set
by defining A Fxry ¢ iff AUT by . The original - : Sign — Set
is then recovered by composing with the functor F : Sign — Th.

2.3 Institutions

In first order logic, given a signature ¥ we associate to it a category Mod(X).
Its objects, called ¥-models (or X-structures), consist of a set together with
an interpretation of each n-ary function symbol as an n-ary operation and
of each n-ary predicate symbol as an n-ary predicate. Its morphisms are
functions that preserve the operations and the predicates. Given a YX-model
M and a Y-sentence ¢ we have the notion of satisfaction of the sentence ¢
by the model M, written M [y .

A signature morphism H : ¥ — Y/ allows us to view a Y-model M’
as a Y-model H’(M'), just by giving to each function symbol f in ¥ the
interpretation of H(f) in M’, and doing the same for predicate symbols.
This extends trivially to homomorphisms, so that we have a functor H b
Mod(Y') — Mod(X). Globally, this means that Mod is actually a functor
Mod : Sign®® — Cat, from the dual of the category of signatures (same
objects, reversed direction for morphisms) to the category of categories,
where we have adopted the notation Mod(H) = H”. It follows easily from
the definition of the satisfaction relation that satisfaction is invariant under
the process of changing signatures, i.e.,

H'(M') s ¢ iff M s H(gp).

Definition 3 An institution [26, 27] is a quadruple Z = (Sign, sen, Mod, =

) with Sign a category whose objects are called signatures, sen : Sign —
Set a functor associating to each signature a set of sentences, Mod : Sign®? —
Cat a functor associating to each signature a corresponding category of mod-
els?, and |= a function associating to each signature ¥ a binary relation
Ex C |[Mod(X)| x sen(X), called satisfaction, where |[Mod(X)| denotes the
class? of all objects in the category Mod(Y) in such a way that the following
property holds for any M’ € Mod(¥'), H : ¥ — ¥/, ¢ € sen(X):

3 As before, on morphisms we adopt the notation Mod(H) = H’.
“We shall not worry about foundational issues here. Let whoever worries take refuge
in a Grothendieck universe!

11

=-invariance: H*(M') |=x ¢ iff M =xv H(p).

Given a set of X-sentences I', we define the category Mod(X,T") as the
full subcategory of Mod(X) determined by those models M € Mod(X) that
satisfy all the sentences in I', i.e., M =y ¢ for each ¢ € I'. We can define a
relation between sets of sentences and sentences, also denoted |=, as follows:

I'|=s ¢ iff M =5 ¢ for each M € Mod(%,T).

The naturalness of the definition of entailment system given in Section
2.1 is reinforced by the fact that any institution yields an entailment system.

Proposition 4 For Z = (Sign, sen, Mod, =) an institution, the triple Z+ =
(Sign, sen, =), with = now denoting the associated relation between sets
of sentences and sentences, is an entailment system. O

Of course, since this entailment system has been defined by entirely
model-theoretic methods, we should not in general expect to find an effective
proof calculus to generate it. However, for Z the first order logic institution,
the completeness theorem assures us that ZT coincides with the entailment
system for first order logic already discussed in Section 2.1; this of course
can be generated from a variety of effective proof calculi.

We shall denote by Th the category of theories associated to the en-
tailment system ZT. Let H : (X,T) — (X/,T") be a theory morphism in
Thy; given ¢ € I' we have IV =y H(g) by definition of theory morphisms.
Therefore, for any M’ € Mod(%',T”) we have M’ |=ss H(p) which is equiv-
alent to H’(M') =y, ¢ and consequently H°(M') € Mod(%,T). This shows
that the functor H” : Mod(X') — Mod(X) restricts to a functor:

H’ : Mod(X',T") — Mod(%,T).

Globally, this means that we can extend our original functor Mod : Sign®? —
Cat to a functor:

Mod : Th" — Cat.

We shall call an institution Z liberal [26, 27] if for any theory mor-
phism H : T — T" in Thy the functor H° : Mod(T") — Mod(T) al-
ways has a left adjoint, denoted H*, i.e., there is a natural isomorphism
Mod(T")(H*(M), M') = Mod(T)(M, H*(M')). First order logic is not lib-
eral, but (first order) equational logic and Horn logic are. Liberality of an
institution is an abstract measure of a logic’s algebraic character. Lawvere
showed in his thesis [45] that all the usual free constructions of algebra are
direct consequences of the general fact that equational logic is a liberal in-
stitution. For example, for T the theory of commutative monoids, 7" the
theory of commutative rings, and H : T — T’, the theory morphism that
interprets the monoid operation as ring multiplication, the functor H*, left
adjoint to H”, is the monoid-ring construction that, for free commutative
monoids, specializes to the polynomial ring construction.

We say that an institution Z admits initial models if for any theory
T € Thy the category Mod(T) has an initial object, denoted Ip. The
general definition of initial objects is as follows.

12

Definition 5 In any category A an object I is said to be initial if for any
object X in A there is a unique morphism I — X in A. O

We shall call an institution Z ezact if the functor Mod : Th;zof” — Cat

preserves pullback diagrams.

The institution of first order equational logic is exact and admits initial
models, which are the relatively free algebras on an empty set of generators.
For example, for the theory of rings, the initial algebra is the ring of inte-
gers. In Section 5 we shall encounter many other logics whose underlying
institutions are liberal, admit initial models and are exact.

2.4 Logics

We are now ready to give axioms that cover both the provability and the
model-theoretic sides of a logic. The solution is very simple: a logic has two
components consisting of an entailment system and an institution that share
the same signatures and sentences. In addition, the logic must be sound,
i.e., we must have

'y = TEe@

For complete logics, such as first order logic, this implication is actually an
equivalence.

Definition 6 A logic is a 5-tuple £ = (Sign, sen, Mod, F, =) such that:
1. (Sign, sen, k) is an entailment system;
2. (Sign, sen, Mod, =) is an institution, and

3. the following soundness condition is satisfied: for any 3 € Sign, I' C
sen(X) and ¢ € sen(X),

ks = T'Ese.
A logic is complete if, in addition,

ks & I'Es e

A logic is compact® if its underlying entailment system is so. Similarly, a
logic is liberal, admits initial models or is ezxact if its underlying institution
is so. Given a logic L, its underlying entailment system will be denoted
ent(L); similarly, its underlying institution will be denoted inst(£). O

Remarks:

5Strictly speaking, for an incomplete logic, compactness can be a property of either -,
or of = (i.e., the relation between sets of sentences and sentences induced by satisfaction).
Therefore, we could speak of F-compactness and E-compactness for a logic. In practice,
however, if anything is going to be compact at all, it will probably be .

13

1. In Section 2.3 I presented the original definition of an institution
as given by Goguen and Burstall [26, 27]. More recently, Goguen
and Burstall [28] have added the proof-theoretic requirement that the
set sen(X) is a category, whose morphisms ¢ — 1 are understood
as proofs. By postulating additional assumptions, such as compact-
ness and existence of conjunction for sentences, one could associate to
proofs in this sense an entailment relation I' F . However, it does
not seem possible to treat in this way the general case of an arbitrary
institution.

2. Notice that the inclusion by C |y is natural in ¥. Therefore, the
soundness axiom can be equivalently expressed by saying that the
functor : Sign — Set, is a subfunctor of the functor |: Sign —
Set, and the completeness axiom by saying that the two functors are
identical.

3. A logic £ determines two categories of theories that have the same
objects, but in general have different morphisms. One, Th, comes
from its underlying entailment system; the other, T'h, comes from its

underlying institution. The soundness axiom gives us a subcategory
inclusion T'h — T'hy, and completeness makes the categories identical.

2.5 Going to Extremes

Both entailment systems and institutions provide one-sided accounts of logic.
The general notion of logic given in Section 2.4 has the pleasing flexibility
of allowing us to regard an entailment system or an institution as a full
logic of a special kind. In this way, the proof-theoretic and model-theoretic
opposites are reconciled. In the end, from this abstract perspective, each
can claim to have in some measure what the other contended it lacked.
From our discussion in Section 2.3 we immediately obtain the following,

Proposition 7 An institution Z determines a complete logic having Z+
as its underlying entailment system and having 7 itself as its underlying
institution. By abuse of language, this logic is also denoted Z7. O

A somewhat surprising fact is that, thanks to the generality of the axioms
for a logic, we can pull a logic out of the proof-theoretic thin air of an
entailment system. Fiadeiro and Sernades [17] associate an institution to a
m-institution in a somewhat similar way. The notion of a slice category is
used in the proof of Proposition 9 and will appear several other times in this
paper. Slice categories are an instance of Lawvere’s [45] “comma category”
construction (see [47]).

Definition 8 For B an object in a category C, the slice category B/C has
as objects morphisms f : B — A and as morphisms from, say, f : B — A
tog: B — C those h : A — C in C such that h o f = g; morphism
composition is exactly as in C. Dually, the slice category C/B has as objects
morphisms f : A — B and as morphisms from, say, f : A — B to
g:C — B those h : A — C in C such that g o h = f; again, morphism
composition is as in C. O

14

Proposition 9 We can associate to any entailment system € a logic £ that
has & as its underlying entailment system. Besides, £ is complete, exact,
and admits initial objects. If Th has pushouts, £T is also liberal.

Proof: For ¥ a signature we define Mod(Y) as the slice category (3, () /Th.
A signature morphism H : ¥ — ¥’ induces a functor H* : Mod(X') —
Mod(X) which is just composition with H, i.e., H(G') = G' o H. Given
(G : (£,0) — (¥,T)) € Mod(X) satisfaction is defined by G [=x ¢ iff
IV by G(p). Therefore, G satisfies a set of Y-sentences I' iff there is a
theory morphism G : (X,T') — (X/,T”). Thus, for T' € Th, Mod(T) can
be identified with the slice category T'/Th. The logic is complete, since the
identity theory morphism 1(x 1y € Mod(%,T) is such that 1(x) s ¢ iff
I' by . Any slice category B/C has 1p as its initial object and therefore
&Y admits initial models, with Iz = 17. When Th has pushouts, exactness
and liberality follow easily from the elementary properties of a pushout; in
the latter case, for G € Mod(T) and H : T — T" a theory morphism, we
define H*(G) as the pushout of G along H. O

3 Proof Calculi and Logical Systems

A reasonable objection to the above definition of logic is that it abstracts
away the structure of proofs, since we know only that a set I" of sentences
entails another sentence ¢, but no information is given about the internal
structure of such a I' F ¢ entailment. This observation, while entirely cor-
rect, may be a virtue rather than a defect, because the entailment relation
is precisely what remains invariant under the many equivalent proof calculi
that can be used for a logic. For example, in first order logic we have many
different proof calculi: Hilbert styled, sequent, natural deduction, etc., each
leading to a different notion of proof. However, the logic always remains
the same, first order logic, precisely because all proof calculi yield the same
entailment relation . Therefore, rather than building a particular proof
calculus into the definition of a logic, it seems more satisfactory to axioma-
tize separately a proof calculus P for a logic £, so that many different such
calculi can be used in connection with the same logic. This point is directly
relevant to computer science, because it shows that we can change the oper-
ational semantics (i.e., the proof calculus) of a logic programming language
without altering its mathematical semantics, provided that the old and the
new operational semantics have the same entailments. If we want to choose
a specific proof calculus for a logic, we call the resulting logic plus proof
calculus a logical system. In usual practice, and specially in logic program-
ming applications, we often find proof calculi where certain restrictions are
placed on the signatures, the sentences used as axioms, and on those used
as conclusions. This leads to the notion of a proof subcalculus. In addition,
we must introduce the notion of an effective proof subcalculus.

The basic idea of a proof calculus is that we can associate to each the-
ory T' a proof-theoretic structure P(7") consisting of all proofs that use the
sentences of T' as axioms. The structure of P(T') will typically relate such
proofs in some algebraic manner. For example, P(T) may be a multicate-
goryS. However, the general axioms of a proof calculus to be given below

5T take ample liberties with this notion, due to Lambek [44], and give a definition that

15

will not impose any particular structure; they will postulate that P(T) has
some structure, by declaring it an object of some category of structures.

Definition 10 A multicategory consists of a set O of basic objects together
with a category C whose objects are finite strings I' = Ay, ..., A, of elements
of O, and such that, denoting by I'; A the concatenation of two strings
and denoting by () the empty string, the morphisms of C have a monoid
structure, with the multiplication of two morphisms « : I'1 — A; and
B : T9 — As denoted «, 8 and being of the form «, 5 : ', Ty — Aq, Ag.
In addition, the multiplication a, 3 is actually a functor _,_: C? — C, i.e.,
it preserves identities and composition. For readers familiar with monoidal
categories, we can rephrase the definition by saying that a multicategory is
a strict monoidal category [47] whose monoid of objects is free. The general
notion of homomorphism between multicategories is that of a functor that
preserves the monoid operation _,_ on the nose, i.e., a strictly monoidal
functor. However, I shall impose the additional restriction that the functor
maps basic objects to basic objects. I denote by MultCat the category with
objects multicategories and with morphisms the strictly monoidal functors
that satisfy this additional restriction. O

Example 11 (Natural Deduction) Given a theory T = (3, A) in, say, first
order logic, we can associate to it a multicategory P(T') with sen(X) as
its set of basic objects” and with morphisms® o : A1, ..., A, — By, ..., B,
consisting of sequences o = ay, ..., a,, with a; a natural deduction proof
tree of B; whose leaves only involve formulas among those in A and in
A1, ..., An. The identity ida,,. 4, is the sequence Ay,..., A, viewed as a
sequence of proof trees; the multiplication «, 3 is the concatenation of the
two strings of proof trees. Composition of «: Ay, ..., A, — Bi, ..., By, with
B : Bi,.... By, — C4q,...,Cy is a sequence v = 71, ..., With v; the proof
tree obtained from the tree §; by glueing the tree a; at each leaf occurrence
of Bj. O

We would like to view P as a functor Th — MultC'at. However, some
caution is required. The problem is that, given a theory morphism H :
(3,T) — (3, T”) asentence ¢ € I' is mapped by H to an element of I, but
H(yp) does not necessarily belong to I'. In seeking a natural translation of
proof trees to define a morphism P(H) : P(X,I') — P(X/,IV) in MultCat,
we run into a problem of indeterminacy. This problem appears when we try
to map the proof) — ¢, of an axiom ¢ € I', which consists of the one node
tree ¢, to a proof) — H(y), of H(p), since when H(y) is not in I" many
different proofs may be possible. This difficulty has an easy solution by
restricting our attention to the subcategory T'hg — T'h of axiom-preserving
theory morphisms. In this way, we get a functor Thg — MultCat.

We can forget about the compositionality of proofs, and extract from
P(T) the set of all proofs of theorems of T, proofs(T) = {a : § —

is not equivalent to Lambek’s but allows viewing multicategories in Lambek’s sense as a
particular case.

"Actually, we want the basic objects to be formulas rather than sentences; however,
this is a minor point, since we may assume that sen(X) has been defined as consisting of
formulas, and the notion of satisfaction extends easily to formulas.

8Notice that the sequences of sentences have conjunctive meaning in both the domain
and the codomain of a morphism «.

16

win P(T) | ¢ € sen(T)}. We can obtain proofs(T') as the set Pr(P(T)),
where Pr is a functor Pr : MultCat — Set sending each multicategory
(0,C) to the set Pr(0,C) ={a:0 — Ain C| A € O} The way in
which the proof calculus and the entailment system are linked is quite nat-
ural; it is given by the function 7 : proofs(T’) — sen(T") mapping each
proof a :) — ¢ to its corresponding theorem ¢. Therefore, the inverse
image ﬂfl(cp) yields the set of all proofs of ¢; if ¢ is not a theorem this is
the empty set. It is then easy to check that 7 is a natural transformation
w: ProP = sen.

Definition 12 A proof calculus is a 6-tuple P = (Sign, sen,t, P, Pr,)
with:

1. (Sign, sen,) an entailment system;

2. P:Thy — Structp a functor; for each theory 7', the object P(T') €
Structp is called its proof-theoretic structure;

3. Pr: Structp — Set a functor; for each theory T, the set Pr(P(T))
is called its set of proofs. We shall denote by proofs the composite
functor Pro P : Thy — Set;

4. 7 : proofs => sen a natural transformation, such that for each theory
T = (X,T), the image of 7y : proofs(T') — sen(T) is the set I'*. The
map 77 is called the projection from proofs to theorems for the theory
T.

A proof calculus P is called compact iff its underlying entailment system,
denoted ent(P), is compact. O

We are now ready to axiomatize the notion of a logical system, consisting
of a logic together with a choice of a proof calculus for it.

Definition 13 A logical system is an 8-tuple S = (Sign,sen, Mod,t, =
, P, Pr,m) such that:

1. (Sign,sen, Mod, -,) is a logic, and
2. (Sign, sen,, P, Pr,7) is a proof calculus.

A logical system is called complete, compact, liberal, exact, or is said to
admit initial models iff the corresponding properties hold for its underlying
logic. Given a logical system S, its underlying logic will be denoted log(S);
similarly, its underlying proof calculus will be denoted pcalc(S). O

3.1 Proof Subcalculi

It is quite common to encounter proof systems of a specialized nature. In
these calculi, only certain signatures are admissible as syntax, e.g., finite
signatures, only certain sentences are allowed as axioms, and only certain
sentences (possibly different from the axioms) are allowed as conclusions.
The obvious reason for introducing such calculi is that proofs are simpler
under the given restrictions. This may serve technical or esthetical and

17

expository purposes in logic; in computer science, however, the choice be-
tween an efficient and an inefficient calculus may have dramatic practical
consequences. For logic programming languages, such calculi do (or should)
coincide with what is called their operational semantics, and mark the differ-
ence between a hopeless theorem prover and a very efficient programming
language. Indeed, one of the main tasks of logic programming is finding
efficient proof calculi by imposing judicious restrictions on the choice of ax-
ioms and conclusions. For example, the language Prolog emerged from the
realization that resolution could be made much more efficient when the ax-
ioms are restricted to Horn clauses, and equational programming languages
such as OBJ [19, 29] exploit the fact that term rewriting, which is complete
for equations that are Church-Rosser and terminating, is enormously more
efficient than unrestricted equational deduction.

Definition 14 A proof subcalculus is a 9-tuple Q = (Sign, sen,t, Signg, ax, concl, P,
Pr,), with:

1. (Sign,sen,F) an entailment system.

2. Signg a subcategory of Sign called the subcategory of admissible sig-
natures. We denote by seng the restriction of the functor sen to the
subcategory Signg.

3. ax : Signg — Set a subfunctor of the functor obtained by compos-
ing seng with the powerset functor, i.e., there is a natural inclusion
ax(X) C P(sen(X)) for each ¥ € Signg. Each T' € ax(X) is called a
set of admissible axioms specified by O. This defines a subcategory
They of Thy whose objects are theories T = (X,I') with ¥ € Signg
and I' € ax(¥), and whose morphisms are axiom-preserving theory
morphisms H such that H is in Signy.

4. concl : Signg — Set a subfunctor of the seng functor. The sentences
@ € concl(X) are called the admissible conclusions specified by Q.

5. P :Thy — Structg a functor; for each T' € Th,y, the object P(T') €
Structg is called its proof-theoretic structure.

6. Pr: Structg — Set a functor; for each T € Thy,, the set Pr(P(T))
is called its underlying set of proofs of admissible conclusions. We
denote by proofs the composite functor Pr o P.

7. w: proofs => seng a natural transformation, such that for each T" =
(3X,T) € Thy, the image of mp : proofs(T) — sen(T) is the set
I'* N concl(X). The map mp is called the projection from proofs to
admissible theorems for the theory T

Given a proof subcalculus Q, ent(Q) will denote its underlying entail-
ment system. O

Notice that when no restrictions at all are placed on signatures, ax-
ioms and conclusions, i.e., when Signg = Sign, ax(X) = P(sen(X)) and
concl(X) = sen(X), a proof subcalculus is the same thing as a proof calcu-
lus.

We can, finally, axiomatize the notion of a logical subsystem, consisting
of a logic together with a choice of a proof subcalculus for it.

18

Definition 15 A logical subsystem is an 11-tuple S = (Sign, sen, Mod,
,[|E, Signg, ax, concl, P, Pr,m) such that:

1. (Sign, sen, Mod, -, =) is a logic, and
2. (Sign, sen,, Signg, ax, concl, P, Pr,m) is a proof subcalculus.

Given a logical subsystem S, its underlying logic will be denoted log(S);
similarly, its underlying proof subcalculus will be denoted pscale(S). O

3.2 Effective Proof Subcalculi

This section gives additional axioms for proof calculi that are effective in
the intuitive sense of being mechanizable by an (idealized) computer. The
axioms are not as expressive or as general as possible”; however, they will
suffice for many purposes, including our axiomatization of logic program-
ming in Section 6.

The challenge in a topic like this is to avoid boring and annoying the
reader (and the writer!) with horrible encodings of everything into the
natural numbers. To this purpose, I will follow the axiomatic approach to
computability outlined by Shoenfield in [66]. The basic notions are that of
a finite object, a space of finite objects, and an algorithm. In Shoenfield’s
own words, a finite object is an “object which can be specified by a finite
amount of information;” computer scientists would call this a finite data
structure. A space is “an infinite class X of finite objects such that, given
a finite object x, we can decide whether or not x belongs to X.” Computer
scientists would call this a data type. Given spaces X and Y, a recursive
function f : X — Y is then a (total!) function that can be computed
by an algorithm, i.e., by a computer program, when we disregard space
and time limitations; more generally, if the algorithm may not terminate
for some inputs, we call the corresponding f a partial recursive function
from X to Y. An r.e. subset of a space Y is a subset of the form f(X)
for some partial recursive function f : X — Y. Spaces and recursive
functions form a category Space, and there is an obvious forgetful functor
U : Space — Set to the category of sets and functions. Notice that if X is a
space, then the set Py, (X) of finite subsets of X is also a space. We are now
ready to axiomatize effective proof calculi. Since proof subcalculi generalize
proof calculi, only effective proof subcalculi are defined. The reader may
keep in mind the case of first order deduction for theories with a finite
signature and a finite set of axioms —possibly with additional restrictions
on the axioms and on the theorems that we wish to prove— as a standard
example. Another interesting example is the effective proof subcalculus of
equational logic provided by Church-Rosser and terminating term rewriting
systems, in which the admissible signatures are finite signatures, and the
sets of admissible axioms are finite sets of Church-Rosser and terminating
equations, with proofs being performed by term rewriting. Note that the
Church-Rosser property is a property of an entire set of equations, not of
the individual equations. Many other examples of effective proof subcalculi
are discussed in Section 6.

9For example, they only consider theories with a finite set of axioms, and proof-theoretic
structures are involved only indirectly, through their underlying set of proofs.

19

Definition 16 An effective proof subcalculus is a 10-tuple Q = (Sign, sen,
) Sign(b
seng, ax, concl, P, Pr,), such that:

1. (Sign, sen,F) is an entailment system.

2. Signg is a subcategory of Sign called the subcategory of admissible
signatures. We denote by J the subcategory inclusion functor Signg —
Sign.

3. seng : Signg — Space is a functor such that U o seng = sen o J.

4. ax : Signg — Space is a subfunctor of the functor obtained by com-
posing seng : Signg — Space with the functor Py, @ Space —
Space, that sends each space to the space of its finite subsets. This de-
fines a subcategory Tha, of Thy whose objects are theories T = (X,T")
with 3 € Signg and I' € az(X), and whose morphisms are axiom-
preserving theory morphisms H such that H is in Signg.

5. concl : Signyg — Space is a subfunctor of the functor seng : Sign —
Space.

6. P:Thg, — Structg is a functor.

7. Pr : Structg — Space is a functor. We denote by proofs the com-
posite functor Pr o P.

8. 7 : proofs = seny is a natural transformation.

9. Denoting also by azx, concl, Pr, and 7 the results of composing with
U each of the above functors and the natural transformation 7, the
9-tuple U(Q) = (Sign, sen, -, Signg, ax, concl, P, Pr,) is a proof sub-
calculus.

Notice that if Q is an effective proof subcalculus, for each theory T €
Thg, there is an associated partial recursive function searchr : concl(T) x
IN — Pyin(proofs(T)) such that for each pair (¢,n), consisting of an ad-
missible conclusion ¢ and a natural number n, searchy(p,n) is undefined
if ﬂ}l(tp) has cardinality strictly less than n, and otherwise yields a sub-
set of n elements in ﬂfl(gp) such that, when ﬂfl(tp) is infinite, we have
771 (9) = Unenat S€archr(p,n). An algorithm to compute searchy can be
obtained as follows: since all spaces are isomorphic [66], there is a listing of
proofs(T'), i.e., a bijective recursive function o : IN — proofs(T'). We de-
fine searchr(p,n) = 0; to compute searchp(p,n+ 1), we just scan through
the listing o until we find the first n 4+ 1 proofs «(i1), ..., @(in+1) such that
mr(a(ij)) = ¢. At times, it is possible to do better than this, and provide
an algorithm that behaves like the above searchr when searchr is defined,
but such that for some of the inputs (p,n) for which searchp is undefined,
it yields the value (), understood as positive failure in finite time to find a
set of n proofs. We shall call any such function a search function for T in
the subcalculus Q.

20

4 Relating Logics

In this section, different notions of map are introduced and motivated with
examples for the different logical structures, i.e., for entailment systems,
institutions, logics, proof (sub)calculi, and logical (sub)systems. Each such
type of logical structure together with its corresponding maps determines
a category, and those categories are then related by forgetful functors and
by adjoint functors. In all cases there is a notion of substructure, such
as a subentailment system, a sublogic, etc., that is always expressed as a
map satisfying special properties, thus giving an axiomatic expression to the
corresponding intuitive notion.

4.1 Mapping Entailment Systems

The intuitive idea is simple enough: we want to map the syntax and the
sentences between two entailment systems in a way that is consistent, i.e.,
such that it preserves entailments.

Example 17 Consider the relationship between the entailment systems
ent(Eqtl) of equational logic and ent(Fol) of first order logic with equality.
We map a functional signature, consisting of a ranked alphabet F' of func-
tion symbols, to the first order signature ®(F') = (F,()) with same function
symbols and with no predicate symbols. Similarly, we can define a map «
sending an equation t = t’ to the first order sentence V...V, t =t where
Z1,..., Ty are the variables occurring in either ¢ or ¢’. For I a set of equations
and «(T") the set of its corresponding first order sentences we of course have

Prhpt=t = o) e alt =1).

Indeed, we actually have an equivalence rather than just an implication
between the two entailments, so that this particular map is conservative. O

Maps of entailment systems that send a signature to another signature
are called plain. However, there are natural examples of maps that are not
plain.

Example 18 Let VFol denote the fragment of first order logic without
equality consisting of sentences that are the universal quantification of a
quantifier free formula. Let YEFnFol; be the fragment of two-sorted first or-
der logic with equality having signatures that involve only function symbols,
and with sentences also restricted to universal sentences. We shall use the
symbol u to denote one of the sorts, and the symbol bool to denote the other.
The idea of viewing every predicate as a characteristic function yields a map
relating the entailment systems of these two logics. However, an unsorted
signature (F, P) should not be mapped to another signature, but to a theory
®(F, P) whose signature consists only of the following function symbols:

1. for each n-ary function symbol f € F there is a function symbol f :

u" — u;

2. for each n-ary predicate symbol p € P there is a function symbol
p° :u™ — bool;

21

3. there are constants true, false, a unary operation not and binary op-
erations and, or, implies, all with sort bool for their arguments and
their result.

The axioms of the theory ®(F, P) are those needed to force the interpretation
of the sort bool to be a two-element boolean algebra. The key axioms are
true # false and (Vb : bool) (b = true) V (b = false). In addition, we must
give equational axioms forcing not, and, or and implies to have the standard
meaning.

We can now define a translation o between sentences in the expected way.
We translate a quantifier free formula ¢ into a term ¢° of sort bool as follows.
An atomic formula p(ty, ..., t,,) is translated into the term p°(t1,...,t,), and
the connectives are translated in the obvious way, e.g., ¢ A v is translated
into and(p°,1°), etc. We then translate a sentence Vzj..Vx, ¢ with ¢
quantifier free into the equational sentence Vzi...Vx, ©° = true. As in the
previous example we have

I'Fs ¢ = o) For) aly)

and, indeed, the implication is also in this case an equivalence. The map
from signatures to theories is in fact a functor'® ® : Signyro — Thyrn Fol50

and the translation « is a natural transformation « : senyp, = senven, Fol5©
. O

Another interesting example of a map of entailment systems that is not
plain is furnished by the translation of the second order lambda calculus
into Martin-Lof type theory described in [53].

Notice that any functor ® : Sign — Th{, together with a natural
transformation o : sen = sen’ o ® can easily be extended to a functor
® : Thy — Thy, called the a-extension to theories of the original functor,
by mapping a theory T = (X,T') to the theory ®(T") with same signature as
that of ®(X) and with axioms those of ®(3) together with the axioms ax(T).
Notice also that the natural transformation a : sen = sen’ o ® can be sim-
ilarly extended to a natural transformation « : sen = sen’ o ® between
the functors sen : Thy — Set and sen’ o ® : Thy — Set; we just define
oz) = ax. Therefore, we may as well view ® as a functor ® : Thg — T h{
mapping theories to theories, and call a functor ¥ : Thy — Th{, a-simple
iff it is in fact the a-extension to theories of a functor ¥ : Sign — Thj. In
addition, we call ¥ a-plain if it is the a-extension to theories of a functor ¥
that factors through the functor F : Sign’ — Th{, sending each signature
>/ to the theory (X',0), i.e., if it is the a-extension to theories of a functor
mapping signatures to signatures.

This way of relating entailment systems is already quite general, but is
it general enough? The answer is “no.” There are natural and interesting
examples of maps between entailment systems that map theories in a more
subtle way.

Example 19 (Unfailing Knuth-Bendix Completion) Consider the entail-
ment system of equational logic ent(Fqtl). By using an unfailing Knuth-
Bendix algorithm [1], we can associate to an equational theory "= (X,T") a

10 A5 before, we denote by Tho the subcategory of Th whose theory morphisms map
axioms to axioms.

22

(possibly infinite) Knuth-Bendix completion K B(T') = (X, KB(T")) so that
equational deduction in 7" can be treated by term rewriting in K B(T"). This
can be viewed as a functor, KB : Thgguo — Thgguo which is not a simple
functor. Since T and K B(T') are isomorphic theories we have

Prrt=1t <= Trgpmt=t.

After defining the notion of a mapping of entailment systems we shall
be able to see that the functor KB, together with the identity natural
transformation 1., from sen to itself, give us an entailment system map
(KB, 1sen) @ ent(Eqtl) — ent(Eqtl). O

An even simpler example is provided by closure under entailment.

Example 20 (Entailment Closure) Given an entailment system & = (Sign, sen, -
), the functor (_)® : Thg — Thp mapping a theory T'= (X,T") to the theory
T* = (X,I'*), together with the identity natural transformation 1, from
sen to itself, will give us an entailment system map ((-)®, lgep) : € — €. O

Notice that the functors KB and (_)®* map theories having the same
signature to theories having the same signature; actually, in these two ex-
amples signatures are left unchanged. Let us denote by (X', T”) the image
obtained by applying to a theory (3,T") a functor ® : Thy — Thy that
maps theories with the same signature to theories with the same signature.
In particular, we denote by (X',(/) the theory ®(X,0). If the functor ® is
a-simple, we have the following property:

r :(D/UO(X;(F).
This is not satisfied by KB and (_)®; however, they satisfy the weaker con-
dition
(I)* = (0" Uax(T))".

These functors, although more general, are “sensible” in the following sense.

Definition 21 Given entailment systems & = (Sign, sen,t) and &' = (Sign/, sen/,
F), a functor ® : Thy — Th{, and a natural transformation « : sen —-
sen’ o @, we call ® a-sensible iff the following conditions are satisfied:

1. There is a functor ®° : Sign — Sign’ such that sign’o® = ®°osign.

2. (I")* = (I Uax(I))".

a-sensible functors have the nice property that their natural transfor-
mation « only depends on the signatures, not on the theories. This is a
consequence of the following lemma.

Lemma 22 Given entailment systems & = (Sign, sen,) and £’ = (Sign/, sen/ I
), and a functor ® : Thy — Thy, satisfying condition (1) in Definition 21,
then any natural transformation a : sen = sen’ o ® can be obtained by

23

horizontal composition with the functor sign : Thy — Sign from a natural
transformation a° : sen = sen’ o ®°.

Proof: Again, we use the notation ®(3,I") = (X/,I"). What we have to
show is that for any T} = (3,I"), T = (X, A) in Thy, we have ar, = ar,.
Then, we can define af, = ap,. Notice that, for any 75 = (X, A), we have a
theory morphism 1y, : (X,0) — (X, A) in Thg. Therefore, it is enough to
establish this property when T = (X, (). Since ® satisfies condition (1), we
must have:

P(ly : (5,0) — (X,4)) = (1y : (X,0) — (X', A")).

Therefore, we have sen(ls) = lgnx), and sen/(®(1x)) = sen'(ly) =
Lsen(sr)- The naturality of a then forces ar, = arp,, as desired. O

By abuse of language, in the following we shall drop the “diamond” and
write ay; instead of of,.

Definition 23 Given entailment systems £ = (Sign, sen,) and £ = (Sign/, sen’,
F'), a map of entailment systems (®,a) : € — &’ consists of a a natural
transformation « : sen = sen/ o ® and an a-sensible functor ® : Thyg —

Thy, satisfying the following property:

Iy ¢ = as(D) Fpsg) as(e).

We call (®,a) conservative if in addition we have,

'k ¢ & ax(l) l—QD(E’@) ax ().

We call (®,a) plain if ® is a-plain, and, similarly, we call (®,a) simple
if ® is a-simple.

A subentailment system is a map (®,«) : € — &’ of entailment systems
that is plain, conservative, with @ faithful and injective on objects, and with
« injective. We write (®,«) : £ — &' to denote a subentailment system. O

Example 17 shows that the entailment system of equational logic is a
subentailment system of that of first order logic. Note that in that example
neither ® nor « are actual inclusions; they are only injections.

The following lemma follows easily from the basic properties of sensible
functors and is left as an exercise.

Lemma 24 For (®,a) : £ — &’ a map of entailment systems, the following
property is satisfied:

TEmay e = as(l) Fora) as(e)-

Furthermore, if (®,«) is conservative, the above implication is actually an
equivalence. O

Given maps of entailment systems (®1,a1) : &€ — & and (P2, o) :
& — &" we can define their composition (P2,) o (P1, 1) : € — £ as
the pair (@3, ag) with &3 = ®9 0 P; and with as the natural transformation
obtained by pasting together the two cells

24

The TH, TH!
NN N
sen sen’ sen'!
Set

Using Lemma 24, it is easy to check that this composition is itself also
a map of entailment systems and that, therefore, we have a category Emnt
whose objects are entailment systems and whose morphisms are maps be-
tween them.

The following lemma is left as an exercise.

Lemma 25 The composition of conservative maps of entailment systems is
conservative. Furthermore, if for (®1,a1) : £ — &£ and (P9, 0) : &' — E”
maps of entailment systems the composition (P9, a5) o (®1,0q) : € — E”
is conservative, then (®1,a1) : € — &’ is conservative. O

4.2 Mapping Institutions

The idea of a map of institutions is somewhat counterintuitive. Although the
syntax part is mapped just as for entailment systems, the models are mapped
in the opposite direction. This can be best illustrated by an example.

Example 26 Let Eqtl be equational logic, and let MSFEqtl be many-sorted
equational logic. The process of “omitting sorts” should map the underlying
institution of MSFqtl to the underlying institution of E¢tl. A many-sorted
theory is a pair (5, F) with S a set of sorts, and F' an alphabet of func-
tion symbols, each with a rank consisting of a pair (w,s) with w € S*
giving the sorts of the arguments and s the sort of the result. By omit-
ting sorts, we map such a signature to the signature F' such that f has
rank n iff, in its original rank (w, s), w had length n. This defines a func-
tor @ : Sign,, SEq Sign Eqtl from many-sorted to unsorted signatures.
In many-sorted equational logic, the number and sort of the variables be-
ing quantified in an equation must be made explicit [32], but this is not
required for unsorted equational logic. Omitting sorts and explicit quantifi-
cation transforms a many-sorted equation into an unsorted equation, and
we can view this as a natural transformation « : senysgq = sengqy o ®.
However, for (S,F) a many-sorted signature, there is no natural way of
associating an unsorted F-algebra to a many-sorted (S, F')-algebra. What
is natural is to associate to the F-algebra A the (S, F')-algebra G(A) with
carrier {A;}ses such that A = A for all s € S, and such that each function
symbol f with rank (w, s) such that w has length n is interpreted by the same
function Ay : A" — A that interpreted f in the F-algebra A. This gives
us a functor fB(pg) : Modpe(®(F,S)) — Modygpeu(F,S), and globally
defines a natural transformation 3 : Modg, o ® = Mod)sp.- By defini-
tion of B(A), for any many-sorted signature (S, F') and any (S, F')-equation
i we have,

A Er alp) iff B(A) (s F) ¢

25

Notice, finally, that instead of restricting ourselves to equational logic we
could just as well have considered unsorted first order logic and many-sorted
first order logic. O

Definition 27 Given institutions 7 = (Sign, sen, Mod, =) and ' = (Sign’, sen’,
Mod' | "), a map of institutions (®,«,3) : T — I’ consists of a natural
transformations a : sen = sen’ o ®, an a-sensible functor'! & : Thy —
Thy, and a natural transformation 3 : Mod' o ®° = Mod such that for
each ¥ € Sign, ¢ € sen(X), and M' € Mod'(®(X,()) the following property

is satisfied:

M Egign@(s.0)) as(e) iff B g (M) Ex @

We call (®, o, 5) plain iff ® is a-plain, and similarly call (@, «, 3) simple
iff ® is a-simple.

A subinstitution is a map (®,«,3) : T — I’ of institutions that is
plain, with ® faithful and injective on objects, with « injective, and with G a
natural isomorphism. We write (®, «, 3) : Z < Z' to denote a subinstitution.
For example, equational logic is a subinstitution of first order logic. O

Given maps of institutions (®1,aq,31) : Z — I’ and (P2, a9, 32) :
I’ — T" we can define their composition (®a,as,32) o (P1,0q,01) : L —
" as the pair (®3,a3,03) with &3 = ®5 o &1 and with ag the natural
transformation obtained by pasting together the two cells

Tho IR T P2 iy
RN N
sen sen’ sen'!
Set

and 3 the natural transformation obtained by pasting together the two cells

Th() op (I)OP , Th6 op (I)o2p , Th/O/ op
pas L
Mod Mod’ Mod"
Cat

It is easy to check that this composition is itself a map of institutions.
Therefore, we have a category Inst whose objects are institutions, and whose
morphisms are maps between them. Recall now that, by Proposition 4, every
institution Z has an associated entailment system Z*. This is just the object
part of a functor ()" : Inst — Ent, as shown by the following lemma.

"The functor ® is a-sensible for the entailment systems (Sign,sen, =) and
(Sign',sen’, =) associated to Z and Z'. Since the categories Thi—o and Thi_, do not

depend at all on the entailment relations = and =, we write Tho and Thy, instead.

26

Lemma 28 If (®,a,3) : Z — 7’ is a map of institutions, then (®,«) :
It — I'" is a map of entailment systems.

Proof: We have to show
FEs e = as(D) Fesp) as(y)

which, rephrased in terms of the closures and adopting the notation ®(3,I") =
(X', T), reads

(NS I = az((p) S (@l U ag(F))',

but ¢ € I'* iff for each M € Mod(X,T") we have M =5, ¢. Notice that, since
® is a-sensible, we have ®(1y : (X,0) — (X,1)) = 1y : (X,0) — (¥, TY)
and therefore (C TV so that Mod(¥X/,T') C Mod(¥', (). Now consider the
functor

By : Mod' (X, T") — Mod(%,T);
by naturality of 3 this is just the restriction of the functor
Bes0) - Mod (X, 0') — Mod(%,0).

This implies that for each M’ € Mod (®(X,T)), B (M') Fs @, which
is equivalent to M’ Ey ax(p). This shows ax(p) € I'*; and since @ is
a~sensible this is equivalent to ax(p) € (I’ Uax(I))®, as desired. O

Remark. Although closely related and inspired by them, the maps of
institutions defined above are different from what Goguen and Burstall call
institution morphisms [26, 27]. These are of the form (®,«o,3) : T —
7', with ® : Sign — Sign’ a functor, and «a : sen’ o ® = sen, (3 :
Mod = Mod' o ®°P natural transformations satisfying a condition entirely
similar to the one above. Besides their restriction to a “plain” ®, the main
difference is that their o and § go in exactly the opposite direction than
mine. Since the ® still goes in the same direction, the concepts are not dual
and their relationship is not entirely clear unless special properties, such as
adjointness, are assumed for ®. Both notions of mapping will probably be
needed to account for all relevant examples. In this presentation, I have
favored the notion of a map of institutions because it fits well many natural
examples and permits flexible ways of mapping theories. Also, one of the
motivations for defining maps of institutions is to introduce the concept of
a subinstitution as a map of institutions that satisfies additional properties;
this does not seem possible using institution morphisms.

4.3 Mapping Logics

Mapping logics is now easy. We just map their underlying entailment and
institution components.

Definition 29 Given logics £ = (Sign, sen, Mod, -, =) and L' = (Sign’, sen’, Mod',
H E'), a map of logics (®,a,8) : L — L' consists of a functor!? & :

Thy — Thy, and natural transformations a : sen = sen’ o ® and

B : Mod o ® = Mod such that:

2Notice that, since Tho does not depend on the entailment relation, we have Tho =
Th":07 so that, indeed, the domain and codomain of ® are not altered by viewing ¢ as a

map of entailment systems or, alternatively, as a map of institutions.

27

1. (®,a,B) : inst(L) — inst(L') is a map of institutions, and
2. (®,a) : ent(L) — ent(L’) is a map of entailment systems.

Therefore, we have a category Log whose objects are logics and whose mor-
phisms are maps of logics, and there are forgetful functors inst : Log —
Inst and ent : Log — Ent yielding the underlying institution and the
underlying entailment system of a logic respectively.

We call (®, «, 3) plain iff @ is a-plain, and, similarly, call (®, a,) simple
iff ® is a-simple. We call (®, o, 3) conservative iff (®,«) is so as a map of
entailment systems'3.

A sublogic is a map (®,a,) : L — L' of logics that is both a subin-
stitution for the underlying institutions and a subentailment system for the
underlying entailment systems. We write (®,a,) : L — L’ to denote a
sublogic. O

Example 30 All the previous examples of maps of entailment systems and
maps of institutions were fragmentary descriptions of maps of logics:

1. Example 17 comes from a sublogic Fqtl — Fol™ that views equational
logic as a fragment of first order logic with equality.

2. Omitting sorts is a (plain) map of logics MSEqtl — FEqtl (or more
generally, MSFol= — Fol~). The paper [32] shows that this map is not
conservative, and characterizes the largest subcategory of Sign MSEqt

for which omitting sorts is conservative.

3. Notice that, viewing each unsorted equational signature as a many-
sorted signature with one sort gives us a sublogic Eqtl — MSFEqtl,
that when composed with the above “omitting sorts” map MSEqtl
— FEqtl yields the identity map on FEqtl; therefore, omitting sorts is
a retract map.

4. The encoding of predicates as characteristic functions is a conservative
map of logics VFol — VEFnFol; which is not plain.

The construction given in Section 2.5 of the logic ZT associated to an
institution Z is actually a functor (_)* : Inst — Log. This follows easily
from Lemma 28. Actually, we have two natural ways of associating a logic
to an institution, one associates the most complete logic, and the other
associates the least complete one.

Proposition 31 The forgetful functor inst : Log — Inst has both a left
and a right adjoint.

Proof: The right adjoint is precisely (_)T, and the unit map of the ad-
junction is the sublogic £ < (inst(£))". The left adjoint is the functor
(-)” : Inst — Log sending an institution 7 to the logic having 7 as its
underlying institution and such that I' - ¢ iff ¢ € I'. The counit of this
adjunction is the sublogic (inst(£))” — L. O

13Strictly speaking, for a noncomplete logic we could distinguish between F-conservative
and [=-conservative maps. However, conservativeness of the underlying map of entailment
systems seems the most important notion.

28

The construction given in Section 2.5 of the logic £ associated to the
entailment system £ does not seem to correspond to a functor ()" : Ent —
Log. Given a map (®,a) : £ — &', the natural choice for a transformation
[for the models seems to go in the wrong direction, since it sends a model
H:T — T in & to a model ®(H) : ®(T) — ®(T") in £'T. There are sev-
eral possible choices for the directions of the natural transformations a and
0B corresponding to different notions of “map” betwen entailment systems
and between institutions, and this construction happens to be functorial for
a different choice of directions.

4.4 Mapping Proof Calculi

The intuitive idea is very simple. Given two proof calculi, a mapping between
them must first of all involve a map (®,«a) of their underlying entailment
systems. In addition, we want to map a proof p of a theorem ¢ of a theory
T € Thy to a proof y(p) of the theorem «a(y) of the theory ®(T).

Example 32 Consider the subentailment map (®, «) : ent(Eqtl) — ent(Fol™)
from the entailment system of equational logic to the entailment system of
first order logic with equality described in Example 17. We can associate to
the equational entailment system the proof calculus Pggy with P : Thy —
Clat the functor sending each equational theory 7' = (3,I") to the category
P(T) whose objects are X-terms, and whose morphisms are chains of ele-
mentary steps of equational deduction using equations in I". Morphism com-
position is chain concatenation. The functor Pr : C'at — Set sends each
small category C to the set of triples Pr(C) = {(A, f,B) | f: A— Bin C}.
Therefore, the functor proofs sends T to the set of triples of the form (¢, p, ")
with ¢, ¢ Y-terms and p a chain of elementary steps of equational deduction
using the equations in T'. The projection function 7 forgets about the proof
p and yields the equation ¢t = t/. Consider now a proof calculus Ppy= as-
sociated to ent(Fol~™). We can for example have a natural deduction proof
calculus extended with rules for equality, and give to its proofs the struc-
ture of a multicategory. A map of proof calculi Pggy — Pro= compatible
with the subentailment (®,«) : ent(FEqtl) — ent(Fol™) now consists of a
systematic way of translating a chain of elementary equational deductions
p : t — t' using axioms in T into a natural deduction proof y(t,p,t’) of the
theorem a(t =t') = (Vz1..Va, t = t') for the theory ®(7T), i.e., in a family
of functions,

1+ proofspen(T) — proofspe=(®(T)).

Of course, “systematic” means that the maps 7 should be independent
of changes in syntax, i.e., that they should form a natural transformation
v i proofsgpqy == proofspe=. The fact that proofs of one theorem go to
proofs of its translation by « has a concise expression in terms of natural
transformations, as explained below. O

Definition 33 Given proof calculi P = (Sign, sen,t, P, Pr,w) and P’ =
(Sign/, sen’, ', P', Pr' @), a map of proof calculi (®,a,v) : P — P’ con-
sists of a map (®,a) : ent(P) — ent(P’) of the underlying entailment
systems together with a natural transformation + : proofs = proofs o ®
such that the following cells are identical:

29

proofs proofs

v N[N

Thy——51 Set = Ty V7 Set
N -
Th Th
i) 0 sen) 0 sen

An embedding!* of proof calculi is a map of proof calculi (®, a,7) : P —
P’ such that (@, «) : ent(P) — ent(P’) is a subentailment system and - is
injective. We write (®,a,v) : P — P’ to denote an embedding. O

Another good example of a map of proof calculi is the translation of
proofs in the sequent calculus into natural deduction proofs. Basically, a
proof in the sequent calculus can be viewed as a set of directions for con-
structing a natural deduction proof in normal form (see [59], Appendix A).

Given maps of proof calculi (®1,1,71) : P — P’ and (P3, a0,72) :
P’ — P we can define their composition (@3, a2,v2) 0 (P1,a1,71) : P —
P" as the triple (®3, a3,73) with (P53, a3) the composition of the underlying
maps of entailment systems, and 3 the natural transformation obtained by
pasting together the two cells,

Ofl

Tho

proofs

Checking that (®3,as,73) is itself a map of proof calculi, and that com-
position is associative, is an easy cell pasting exercise. Therefore, we have
a category PCalc having proof calculi as its objects and having maps of
proof calculi as its morphisms. There is of course a forgetful functor ent :
PCalc — Ent sending each proof calculus to its underlying entailment
system.

Proposition 34 The functor ent : PCalc — Ent has a right adjoint
(1) : Ent — PCalc.

Proof: Given an entailment system & = (Sign, sen,t), the proof calcu-
lus £ is the 6-tuple £ = (Sign, sen, -, thm, 15et,j) with thm the func-
tor sending each theory to the set of its theorems described in Section
2.2, and j the natural subfunctor inclusion thm C sen. The unit of the
adjunction for a proof calculus P = (Sign,sen, =, P, Pr,m) is the map

(1sign, lsen, ™) : P — (ent(P))?, where 7 is now viewed as a natural trans-
formation 7 : proofs = thm. O

HSince the term “proof subcalculus” has already been used with a specific technical
meaning, [use the term “embedding” instead.

30

Since proof subcalculi generalize proof calculi, the above definition of a
map of proof calculi generalizes to the following definition.

Definition 35 Given proofsubcalculi P = (Sign, sen, -, Signg, ax, concl, P, Pr,)
and P’ = (Sign/, sen’,\', Signg, ax’, concl’, P, Pr', 7"}, a map of proof sub-
calculi (®,a,y) : P — P’ consists of a map (®,«a) : ent(P) — ent(P’) of
the underlying entailment systems such that the functor ® : Thy — Thy

restricts to a functor!® & : Th,, — Th! ., together with a natural transfor-

mation 7 : proofs = proofs’ o ® such that the following cells are identical:

proofs proofs
b 4 N
Thax sen M = Tha:c ny M
N - 2D
TH , TH. ,
& — sen/ & — sen

An embedding of proof subcalculi is a map of proof subcalculi (@, o,) :
P — P’ such that (®,«) : ent(P) — ent(P’) is a subentailment system
and 7 is injective. We write (®,a,7) : P — P’ to denote an embedding. O

Composition of maps of proof subcalculi is defined as for proof calculi,
and we get a category PSCalc with objects proof subcalculi and morphisms
maps of proof subcalculi. We then have a forgetful functor ent : PSCalc —
Ent sending each proof subcalculus to its underlying entailment system.

By replacing everywhere the category Set by the category Space and
considering effective proof calculi as objects we can define in an entirely
similar way the notion of an effective map of proof calculi. This gives us a
category F f fPSCalc and a forgetful functor U : Ef f PSCalc — PSCalc.

4.5 Mapping Logical Systems

We can now gather everything together and obtain notions of a map of
logical systems and a map of logical subsystems.

Definition 36 Given logical sytems S = (Sign, sen, Mod,t, =, P, Pr,)

and 8" = (Sign’,sen’, Mod' .-, |=', P, Pr',7") a map of logical systems (¥, «, 3,7) :
S — &’ consists of a functor ® and natural transformations «, 3, such

that:

1. (D,a,) : log(S) — log(S’) is a map of the underlying logics, and

2. (®,,7) : peale(S) — peale(S') is a map of the underlying proof
calculi.

5Intuitively, this says that ® transforms theories using only Signo signatures and ax
axioms into theories that only use Signy signatures and az’ axioms.

31

This defines a category LogSys whose objects are logical systems and whose
morphisms are maps of logical systems, and we have forgetful functors log :
LogSys — Log and pcalc : LogSys — PCalc.

An embedding of logical systems is a map (®,a, 3,7) : S — 8’ of logical
systems such that (®,c«,) is a sublogic and (P, «,~) is an embedding of
proof calculi. We write (®,«,3,7) : S — &’ to denote an embedding of
logical systems. O

The following result is entirely analogous to Proposition 34 and is left as
an exercise.

Proposition 37 The functor ent : LogSys — Log has a right adjoint
(L)% : Log — LogSys. O

Maps of logical subsystems are defined in an entirely analogous manner.

Definition 38 Given logical subsystems S = (Sign, sen, Mod, -, =, Signg, ax, concl,
P, Pr,m) and &' = (Sign/, sen’, Mod',F', ', Signy, ax’, concl’, P, Pr',7') a

map of logical subsystems (®,a, 3,7v) : S — S’ consists of a functor ® and

natural transformations «, 3, such that:

1. (D,a,) : log(S) — log(S’) is a map of the underlying logics, and

2. (®,,7) : pscale(S) — pscale(S’) is a map of the underlying proof
subcalculi.

This defines a category LogSSys whose objects are logical subsystems and
whose morphisms are maps of logical subsystems, and we have forgetful
functors log : LogSSys — Log and pscalc : LogSSys — PSCalc.

An embedding of logical subsystems is a map (®,a,0,7) : § — &’
of logical subsystems such that (®,a,) is a sublogic and (®,«,~) is an
embedding of proof subcalculi. We write (®,«, 3,7) : S — &’ to denote an
embedding of logical subsystems. O

We can summarize the relationships between the different categories
of entailment systems, institutions, logics, proof (sub)calculi and logical
(sub)systems by the following commutative diagram, where for simplicity
only the forgetful functors are included. The several adjoints already de-
scribed as well as the category of effective proof subcalculi are omitted, but
they should be kept in mind to obtain a more complete summary.

LogSys | LogSSys

scalc

PCalc ¢ * PSCalc

ent ent

ent

nst
Inst Ent

32

5 Categorical Logics

Categorical logics give us great model-theoretic flexibility, since their models
are not restricted to the traditional set-theoretic structures with functions,
predicates, etc., that are assumed as basic even in axiomatic approaches
such as abstract model theory. In fact, the question “What is a model?”
is far from settled for the many higher order logics of interest to logicians
and computer scientists. Some of the proposed models have a somewhat ad
hoc character, and may fail to reflect adequately the basic intuitions. Nev-
ertheless, models are essential to semantic understanding. Category theory,
and in particular the categorical approach to logic originating in the wide
and seminal work of F.W. Lawvere, has much to offer in this regard. This is
probably quite widely recognized and in some cases, such as the relationship
between the typed A-calculus and cartesian closed categories, or between in-
tuitionistic set theory and topos theory, well understood. However, the
potential of the categorical point of view has yet to be fully exploited.

There is no better way to begin our discussion of categorical logics than
by quoting some words from a fundamental paper published by F.W. Law-
vere in 1969 [46]. The paper begins with the following words:

“That pursuit of exact knowledge which we call mathemat-
ics seems to involve in an essential way two dual aspects, which
we may call the Formal and the Conceptual. For example, we
manipulate algebraically a polynomial equation and visualize ge-
ometrically the corresponding curve. Or we concentrate in one
moment on the deduction of theorems from the axioms of group
theory, and in the next consider the classes of actual groups to
which the theorems refer. Thus the Conceptual is in a certain
sense the subject matter of the Formal.”

and ends with the following paragraph:

“Finally, in Foundations there is the familiar Galois connec-
tion between sets of axioms and classes of models, for a fixed
set of relation variables R;. Globalizing to an adjoint pair allows
making precise the semantical effect, not only of increasing the
axioms, but also of omitting some relation symbols or reinter-
preting them, in a unified way. And if we deal with categories
of models, allows the latter to determine their own full sets of
natural relation variables, thus giving definability theory a new
significance outside the realm of axiomatic classes. To do this for
a given species — equational, elementary, higher-order, etc.— of,
say, I-sorted theories, one defines an adjoint situation

semantics
Theories®P (Cat,[Sets™])
structure

in which the right hand side denotes a category whose morphisms
are commutative triangles

33

N~

of functors with C and C’ more or less arbitrary categories. The
invariant notion of theory here appropriate has, in all cases con-
sidered by the author, been expressed most naturally by identi-
fying a theory T itself with a category of a certain sort, in which
case the semantics (category of Models) of T' is a certain subcat-
egory of the category of functors 7" — Sets. There is then a
further adjoint situation

Sets!

Formal Theories

describing the presentation of the invariant theories by means of
the formalized languages appropriate to the species. Composing
this with above, and tentatively identifying the Conceptual with
categories of the general sort (Cat, [Sets]), we arrive at a family
of adjoint situations

Formal®? ——————— Conceptual

(one for each species of theory) which one may reasonably hope
consitute the fragments of a precise description of the duality
with which we began our discussion.”

The use of the category Sets! is more an illustration for the case of
classical set-theoretic models than a necessary requirement. The version
axiomatized below has a category 7 of categories with structure instead of
Sets!. The relationship with the axiomatic definition of logic presented in
Section 2 is as follows:

e The category that Lawvere calls “Formal” coincides with the category
Thg for a logic £ in our sense.

e A theory in Lawvere’s sense is a category C with a certain structure.
That structure is meant to capture the essential aspects of a logic
L, so that the category C can be understood as an abstract “theory”
that is independent of both a choice of syntax for £ and a particular
presentation of the axioms. In fact, such categories can be viewed
both as abstract “theories,” and as “generic” models. For example, a
typed lambda calculus theory (X, E') generates a free cartesian closed
category F (2, E), which is the abstract theory in Lawvere’s sense, and
also the generic “term” model of the theory (X, F).

e To avoid confusion between concrete and abstract theories, I iden-
tify Lawvere’s category Theories with a category 7 whose objects are
categories with some additional structure, and whose morphisms are
functors preserving that structure. For example, in the case of the
typed A-calculus, 7 = CCCat, the category of cartesian closed cat-
egories, with morphisms functors that strictly preserve the cartesian
closed structure [43].

34

Example 39 (General Equational Logic) Equational logic was the first in-
stance of a categorical logic considered by Lawvere in his doctoral disserta-
tion [45]. Lawvere restricted his analysis to classical set-theoretic models.
Given an equational theory (X, E'), he exhibited a category with finite prod-
ucts F(X, E) such that Y-algebras A that satisfy the equations E can be
put into 1-1 correspondence with functors A : F (X, E) — Set that strictly
preserve products; i.e., chosen products in F (3, E') are mapped to cartesian
products in Set.

The category F(X, E) is easy to describe. Its objects are the natural
numbers. A morphism [t] : n — 1 is the equivalence class modulo the
equations E of a >-term t whose variables are among z1, ..., x,,. A morphism
n — m is an m-tuple of morphisms n — 1. Morphism composition is term
substitution. For example, [xo+ x1]0 ([z7*x3], [v4+x5]) = [(x4+ x5) + (27 *
x3)]. It is then easy to see that the object n is the n'® product of the object
1 with projections [z1], ..., [x,]; and, more generally, that the product of the
objects n and m is n+ m. The functor A associated to the algebra A sends
the morphism [t] : n — 1 to the derived operation A" — A associated to
the term ¢. Under this correspondence between algebras and functors, an
equation t = t' is satisfied by a (X, E)-algebra A iff A([t]) = A([t']). The
analogous case of many-sorted equational logic was studied by Bénabou in
his thesis [4]. The category F (X, E) is constructed as in the unsorted case,
but now it has as its set of objects the free monoid S* generated by the set
S of sorts.

In the many-sorted case, we can view the construction of F(X, F) as
a functor F : Thy — xCat where the theories in Thy are many-sorted
equational theories, x Cat is a category whose objects are small'® categories
with chosen finite products and whose morphisms are functors that strictly
preserve the chosen finite products. The functor F is the left adjoint of
a functor U : x Cat — Thy that associates to each category with (cho-
sen) finite products C the many-sorted equational theory U(C) whose set
of sorts is the set |C| of objects of C, whose ranked set of operations has
as constants of sort A the morphisms @ : 1 — A, with 1 the chosen final
object, as unary operations of type A — B the morphisms f : A — B
in C, and as n-ary operations of type Ay ... A, — C, for n > 1, symbols
fa,..a,,one for each f : B = A; x...x A, — C in C as well as new
operations v4, 4, : A1...A, — B for each B = A; x ... x A,,. The
equations of U(C) include the equations va, 4, (74, (2),...,7a,(x)) = =,
for my, : A1 x ... x A,, — A; the chosen ith projection in C, the equations
fay.a, (@1, xn) = f(va,. A, (z1,...,2,)), and all other equations satis-
fied when interpreting the v4, 4, ’s as identitities and the f’s and fa,..4,’s
by their corresponding morphisms in C. For example, if h : C — D with
D = A x B is the unique morphism in C induced by morphisms f : C — A,
and g : C — B, then we have an equation v p(f(x),g(x)) = h(x).

The great conceptual advantage of viewing a T-algebra as a product
preserving functor F(T) — Set is that the concept generalizes immedi-
ately to that of a T-algebra in any category with finite products. Thus,
for Tgrp the theory of groups, a topological group can be regarded as a

18T will not worry much about foundations; later examples will also involve “large”
categories. All concerns can be resolved using universes.

35

product preserving functor F(Tgrp) — Top landing in the category Top
of topological spaces, and a sheaf of groups on a topological space X can
be viewed as a product preserving functor F(Tgyp) — Sheaves(X) land-
ing in the category Sheaves(X) of sheaves on X. Therefore, we can in
general define a group in a category with finite products C as a product
preserving functor F(Tg,p) — C. Since F(Igyp) is also a category with
finite products, we can consider the group 1x (1,) : F(Tarp) — F(LGrp),
which can be understood as the generic group. By construction, this group
satisfies the equation ¢t = ¢’ iff [¢t] = [¢], iff the equation ¢t = ¢’ is a theo-
rem of group theory. By using product preserving functors, we can even
relate groups in different categories. For example, we can relate a sheaf of
goups G : F(Tgrp) — Sheaves(X) to its group of global sections I'(G)
by composing with the global sections functor I'(-) : Sheaves(X) — Set,
which can therefore be understood as a homomorphism!” between those two
groups. Thus, we can structure all the possible groups in all possible cat-
egories and the product preserving functors that relate them as the slice
category F(Tgrp)/x Cat. O

Definition 40 A logic £ is called a categorical logic on 7 if there is a
category 7 with pushouts and with a faithful functor Z — Clat such that:

1. There are functors Y : T — Thy and F : Thy — T with F left
adjoint to U.

2. The functor Mod : Tho®® — Cat is naturally isomorphic'® to the
functor
Thy? 2% 70 7L Cat,

where the functor _/Z sends an object!? C € Z to the slice category
C/T.

3. For any theory T' = (X,I') and sentence ¢ € sen(X) we have:
Iks e & 1x1) Es ¢
g

Example 41 The general equational logic example where 7 = x Clat has
already been discussed in detail. Here are a few other additional examples:

1. £ the logic of the typed lambda calculus, where 7 = CCCat is the
category of cartesian closed categories; see [43] and Section 6.2.

2. L higher order intuitionistic logic, where 7 = Toposes is the category
of elementary Lawvere-Tierney toposes; see [6].

3. L the logic of Martin-Lo6f type theory with equality types, where 7 =
LCCCat is the category of locally cartesian closed categories; see [63]
and Section 6.2.

17 A more general notion of homomorphism that specializes to the usual one when all
the groups are in the category Set is discussed in Remark (2) at the end of this section.

8Ty simplify the discussion, in what follows I ignore this isomorphism and identify
Mod(T) with F(T)/L.

19We think of C as a category with a certain structure, and of 7 as the category of all
categories with that type of structure.

36

4. L the logic of Martin-Lof type theory without equality types, where 7
is either Cartmell’s category of contextual categories, or the category
RCCCat of relatively cartesian closed categories; see [10, 41].

5. L the logic of the Girard-Reynolds polymorphic lambda calculus [20,
60], where 7 = PLCat is Seely’s category of PL-categories; see [64]
and Section 6.2.

6. L the logic of the Girard-Reynolds polymorphic lambda calculus [20,
60], where Z = RCCClat is the category of relatively cartesian closed
categories; see [53] and Section 6.2.

7. L Girard’s linear logic [21], where T is Seely’s category of linear cate-
gories; see [65, 49], and the related [14].

Categorical logics have very nice model-theoretic properties indeed, as
expressed in the following theorem.

Theorem 42 Any categorical logic L is complete, liberal, exact, and admits
initial models.

Proof: Completeness is clear from condition (3), since we have

F’:z(p:}l}'(zl*)):290:>F|_2 @Y.

For any C € 7, the map 1¢ : C — C is obviously an initial object in the
slice category C/Z. Therefore, 1z(7) is an initial object in F(T")/Z and as
a consequence Mod(T') has an initial model.

Liberality is a direct consequence of the following well known lemma.

Lemma 43 Let A be a category with pushouts, and f : C' — C’ a morphism
in A. Then, the “composition along f” functor f/A : C'/JA — C/A
mapping each h : C' — D to ho f : C — D has a left adjoint given by
“pushout along f” that maps each g : C — FE to the map C’ — E’ in the
pushout diagram

E i E’

C/

For exactness, notice that, since F : Thg — 7 is a left adjoint, by
duality F°P : Tho’? — T is a right adjoint. Since right adjoints preserve
limits (see [47], Theorem V.5.1) and Mod = (_/7) o F°P, we only have to
show that _/7 preserves finite limits. This follows from the easy lemma
below.

37

Lemma 44 For any category A, the functor _/A : A? — Cat preserves
pullbacks. O

|

In the passage of Lawvere’s paper [46] cited above, Lawvere mentions
a structure-semantics adjointness result. This result appeared in his thesis
[45] for the case of algebras on the category of sets and has since then
been generalized in many directions. However, I am not aware of other
formulations with the degree of generality of Theorem 45 below.

Notice that the functor _/7 : 7°° — Cat factors as:

T *=% Cat//T — Cat,

where:

e Cat//T is the full subcategory of the slice category Cat/7T given by
those functors A — 7 such that A has an initial object 14 that we
assume chosen once and for all;

e the functor sem sends C to the projection functor C/Z — 7 : (C —
D) — D, and

e the functor Cat//T — Cat is the projection functor (A — 7)) — A.

Theorem 45 For L a categorical logic on 7, the functor sem : TP —
Cat//T is full and faithful, and has a left adjoint str : Cat//T — T°P.

Proof: The functor sem is clearly faithful since, given f, f': C — C' in T

with f 7 f', we have (f/T)(1er) = f # f' = (f'/T)(1er).
To see that it is full, let H : C'/T — C/T be a functor such that

cir —H o1

N

commutes. Then H has to send the object 1¢: toamap f : C — C' in 7. We
claim that H = f/7_. Indeed, since H commutes the triangle, and there is a
morphism g : 1 — ¢ in C'/7T for any g : (' — D, we must have a morphism
H(g)=g:f— H(g)in C/T and therefore H(g) = go f, so that H and f/T
coincide on the objects. H and f/7 coincide trivially on the morphisms,
since for any h : ¢ — ¢ in C'/T we must have H(h) = h = (f/7T)(h),
because both H and f/7 commute the triangle.

The left adjoint str : Cat//T — T° sends an object A : A — T
to the object A(I4) € 7, and a morphism H : A — B to the morphism
B(h): B(Ig) — A({4) in T, for h : Ig — H(I4) the unique morphism in B;
functoriality then follows from the initiality of each Iy in its category X.

The functor A : A — 7 factors through A(I4)/7 as

A A(TW)/T — T

38

with na(X) = A(h) : A(I4) — A(X), for h: Iy — X the unique morphism
in A, and n4(g) = A(g) for g : X — Y. This yields our desired map
na: A — sem(str(A)).

Let now D : A — sem(C) be a morphism in Cat//7 and assume that
there is a morphism D : sem(str(A)) — sem(C) such that D ony = D.
Then, since we have shown that sem is full and faithful, we must have
D = f/T : A(I4)/T — C/T for a unique f : C — A(I4). But the
equation D ony = D forces

D(na(14)) = D(awy) = (f/T)(Lauyy) = f = D(1a)

and makes D, if it exists, unique, namely, D = D(I4)/Z. Since D(14)/T is
the identity on morphisms, and D sends g : X — Y in A to A(g) : D(X) —
D(Y) with D(Y') = A(g) o D(X), to show that indeed D(I4)/Z ona = D it
is enough to check it on the objects. But, for any X € A, we have

D(X) = A(h) o D(I4) = na(X) o D(14) = (D(14)/L)(na(X)),
for h: I4 — X the unique morphism in A. O

Corollary 46 For any C in 7 there is a natural isomorphism C = str(sem(C)).

Proof: This follows directly from sem full and faithful right adjoint; see
[47], Theorem IV.3.1. O

The structure-semantics adjointness theorem makes clear why Lawvere
calls 7 the category of (abstract) theories. We can think of F(T) as the
abstract, presentation independent, theory specified by the presentation 7.
Indeed, we can establish an equivalence relation among theories T', 7" € Thy
by defining T'= T iff there is an isomorphism:

~

F(T)/L ——F(T")/T

NI

that is, T'= T iff the corresponding categories of models are isomorphic in
a way that is consistent with their projection functors to 7. We then have,

Corollary 47 T =T ift F(T) = F(T").

Proof: The “if” part is clear. For the “only if” part, let 7= T’. Then
sem(F(T)) = sem(F(T")), and applying the functor str we get

F(T) = str(sem(F(T))) = str(sem(F(T"))) = F(T"),
as desired. O

Remarks:

39

1. In some instances, the class of models is restricted by restricting the
class of categories C on which a model M : F(T') — C of a theory T
can land. For example, in the original treatment of equational logic
given by Lawvere [45], the category C must be the category Set. More
generally, one could restrict the class of categories by requiring that
they belong to the image of a functor V : W — 7. For example,
all topos models of the polymorphic lambda calculus are obtained by
restricting the corresponding relatively cartesian closed categories to
be toposes, i.e., to belong to the image of the forgetful functor V :
Toposes — RCCCat [53]. Therefore, given a functor V: W — T
and a categorical logic £ on 7, we can define the V-restriction L]y of L
to V as the logic with same entailment system as £ and such that, for T’
a theory, Mod(T) is the “comma category” [47] F(T)/V whose objects
are pairs (M : F(T) — V(D),D), with M : F(T) — V(D) in T
and D € W, and with morphisms H : (M : F(T') — V(D),D) —
(M': F(T) — V(D'),D’) morphisms H : D — D’ in W such that
V(H)o M = M'. Satisfaction is defined as before, i.e., (M,D) E ¢
in L]y iff M = ¢ in £. This notion of V-restriction includes the
case when C is constrained to be just one category: in that case, we
take as our V the functor from the one morphism category 1 to T
that picks up the category C. For any “restriction functor” V there
is an associated map of logics £L — L[y, called its restriction map.
The case when V : W —— T has a left adjoint K is particularly
interesting, since then, the comma category F(7')/V is isomorphic to
the slice category K(F(T))/W. Therefore, if the unit map nz(r) :
F(T) — V(K(F(T))) is such that I' - ¢ & 5z | ¢, then it
follows easily that the logic L]y is in fact a categorical logic on W.

2. The definition of categorical logic given above is satisfactory and gen-
eral for the models. Such models are functors of the form M : F(T') —
C, for T the theory in question, that satisfy the additional properties
of morphisms in 7. However, the notion is too restrictive for homo-
morphisms. The only homomorphisms permitted between two models
M : F(T) — C and M’ : F(T) — C' are functors H : C — ('
in 7 such that M’ = H o M. Consider the equational logic case
already discussed in Example 39, where ordinary -algebras A satis-
fying equations E were placed in a 1-1 correspondence with product-
preserving functors A:F (X, FE) — Set. Under such correspondence,
Y-homomorphisms f : A — B can be put into 1-1 correspondence
with natural transformations f : A = B. Therefore, in order to give
a full account of homomorphisms we should allow for natural trans-
formations in our definition. The point is that 7_ should be not just a
category, but a 2-category [47], and the forgetful functor 7 — Cat
should be a 2-functor. This leads to the definition of a 2-categorical
logic. The details of this definition will be given elsewhere.

6 Axiomatizing Logic Programming

What does programming in a logic mean? We can begin to answer this
question by stating informally some of the requirements that a logic pro-

40

gramming language should satisfy. I call the view represented below the
“weak” view.

Weak Logic Programming. A program P in a logic pro-
gramming language is a theory in a logic £. After entering the
program P into the machine, the user can ask questions about
his/her program. Such questions, called queries, belong to a
specified class of sentences in the language of P. When the user
submits a query ¢, if it is the case that ¢ is a provable conse-
quence of the axioms in P, then the machine will return a set
of answers justifying the truth of p. We can view each of these
answers as different proofs of the truth of ¢; such “proofs” may
reasonably omit a good part of the information that a completely
detailed proof would provide. If the query ¢ is not provable from
P, two things can happen: either the machine stops after a finite
amount of time with the answer “failure,” or otherwise the ma-
chine loops forever. Therefore, two things are made equivalent:
computation in the machine, and deduction in the logic.

One should of course add that in some pragmatic sense the implemen-
tation in the machine should be reasonably efficient so that for a broad
enough class of applications the language can in fact be used in practice;
otherwise such a system should be better described as a theorem prover. We
could summarize the weak view with the slogan

Computation = Deduction.

Although this view is probably the most commonly held, I do not take
it as primary. The problem with it is that it makes no reference to the
models that the theory is a linguistic device for. A theory may in principle
have many models. However, when solving a particular problem, such as
computing a numerical function or sorting a list of names, we usually have
a specific model in mind, such as the integers, the real numbers, or the set
of all sequences of expressions of a certain kind. Such a model is then the
intended or standard model of the theory, and its conceptual importance
is primary; the theory serves only a secondary role as a linguistic device
for describing the model. In the logic programming literature, the standard
model is referred to as the “closed world” that the program describes. In a
wide variety of cases this standard model can be characterized as an initial
model.

Let us denote by Ip the model intended by our program P. In the context
of such a model, the meaning of a query ¢ acquires a new significance. Our
primary interest is not in truths that are generally valid for all models.
Rather, our interest is in the facts that are true about our model. In other
words, we are primarily interested in the satisfaction of the query ¢ by
the model Ip and only secondarily in the provability of ¢ from the axioms
in P. The theory P is a linguistic device through which such satisfaction
may be verified, since if the query is provable, it must be true in all models
and therefore it should be a true fact about Ip. The most satisfactory way
of exploiting provability as a method of settling facts about our model is
to restrict our attention to queries for which, conversely, if the query is
true in the intended model Ip, then it is provable from P. Otherwise, in

41

cases when the query cannot be proved, we would be left with the doubt
as to whether or not it is true in our model. As we shall see, this is a
widely exploited property that I call “query completeness.” It leads us to
the following stronger requirements for a logic programming language,

Strong Logic Programming. A program P in a logic pro-
gramming language is a theory in a logic £. The mathematical
semantics of the program P is a model Ip of the theory P that
is standard in an adequate sense. After entering the program P
into the machine, the user can ask questions about what proper-
ties hold in his/her model. Such questions, called queries, belong
to a specified class of sentences in the language of P and have the
property that for sentences ¢ in that class the standard model
Ip satisfies ¢ if and only if ¢ is provable from the axioms of the
theory P. When the user submits a query ¢, if it is the case that
 is a provable consequence of the axioms in P, then the machine
will return a set of answers justifying the truth of ¢. We can
view each of these answers as different proofs of the the truth
of ; in other words, the operational semantics of the language
is given by some proof theory. If the query ¢ is not provable
from P two things can happen: either the machine stops after a
finite amount of time with the answer “failure,” or otherwise the
machine loops forever. Therefore, three things are made equiv-
alent: computation in the machine, deduction in the logic, and
satisfaction in the standard model.

Of course, the efficiency requirement applies exactly as before, and pro-
vides the pragmatic boundary between theorem proving and logic program-
ming. We can summarize the strong view of logic programming under the
slogan

Computation = Deduction = Satisfaction in the standard model.

I have already mentioned that the weak view of logic programming, being
exclusively proof-theoretic in nature, is unsatisfactory. Nevertheless, weak
logic programming seems to have the advantage of having a broader range of
applicability, so that it could cover certain examples of logic programming
languages for which strong logic programming might prove too restrictive.
However, we have already seen in Proposition 9 that, thanks to the generality
of the axioms for a logic, we can always associate a model theory to an
entailment system so that the entailment system becomes a complete logic
with initial models. This shows that there is no need for carrying along
two different notions. Surprisingly enough, we can actually understand the
weak view of logic programming not as a broader notion, but rather as a
special case of the strong notion, one for which the models are proof-theoretic
structures. This suggests making strong logic programming our basic notion.
This is a richer, conceptually and semantically more satisfactory notion, yet
in the sense just explained it is the notion that is most broadly applicable.

Definition 48 axiomatizes the strong logic programming view. This def-
inition is a further step in a series of previous attempts by J.A. Goguen
and the author to articulate a broad view of logic programming open to
many logics and languages. The paper [33] presented this view and used it

42

as a natural way to unify two logic programming language paradigms, the
functional and the relational, by unifying their logics. It also argued that
every program should have an initial model as its mathematical semantics,
and showed that this was the case for first order functional programming,
first order relational programming with Horn clauses, and their unification.
This view was made formal in a paper by J.A. Goguen [25] using institu-
tions. Goguen proposed that logic programming languages should have an
underlying institution so that the statements of the language were sentences
in that institution, the operational semantics was given by an efficient form
of deduction in that institution, and the mathematical semantics was given
by a class of models, preferably initial; the paper [28] by Goguen and Bur-
stall also proposed this formalization. The definition below is very much
in the same spirit, but it combines the proof-theoretic and model-theoretic
aspects of the issue using the concepts developed in this paper to suggest
two new conditions. One is a query completeness requirement with the ex-
plicit demand that what is provable should coincide with what is true in
the initial model; the other is a formal definition of an operational seman-
tics as an effective proof subcalculus. Also, the use of initial models for the
mathematical semantics is here made mandatory.

Definition 48 A logic programming language LP is a 4-tuple LP = (L, Signy, stat,
quer) with:

1. £ = (Sign,sen, Mod,F, =) a logic.
2. Signg a subcategory of Sign.

3. stat : Sign — Set a subfunctor of the functor obtained by composing
sen with the finite powerset functor, i.e., there is a natural inclusion
stat(X) C Pyin(sen(X)) for each ¥ € Sign. Each I' € stat(X) is called
a set of X-statements in LP. This defines a subcategory Thgiqt of Thg
whose objects are theories P = (X,T") with ¥ € Signg and T" € stat(X%),
and with morphisms axiom-preserving theory morphisms H such that
H € Signg. Each such theory P € Thgy is called a program in LP.

4. quer : Sign — Set a subfunctor of the sen functor. The sentences
¢ € quer(X) are called the X-queries of LP.

In addition, the following properties are satisfied:

Mathematical Semantics: Each program P € Thg,: has an initial model
Ip. The denotation function

P Ip
is called the mathematical semantics of LP.

Query Completeness: For each program P = (3,I') and query ¢ €
quer(X) we have
Fpy & Ip Ex .

Operational Semantics: There is an effective proof subcalculus of the
form O = (Sign,sen,t, Signg, seng, stat, quer, P, Pr,), i.e., having
ent(L) as its underlying entailment system, Signg as its category of
admissible signatures, stat as its axioms, and quer as its conclusions.

43

The effective proof subcalculus O is not assumed to be unique. Any such
O is called an operational semantics for the logic programming language LP.
O

Notice that, as pointed out at the end of Section 3.2, given an operational
semantics O for a logic programming language LP, every program P has an
associated partial recursive search function

searchp : quer(P) x IN — Py, (proofs(P)),

so that we can ask for as many answers to a query ¢ as we desire, and then
we get back the answers if they exist, or otherwise either information about
failure in finite time or no answer at all. One way in which the operational
semantics of the logic programming language can change is by changing the
mode of computation; for example, in a debugging mode answers should
be much more informative than in a standard mode. The axioms for an
effective proof subcalculus are very flexible; they allow expressing different
notions of “proof” suitable for different purposes as different subcalculi.

This finishes our axiomatization of logic programming languages. How-
ever, the above definition has the drawback of not taking into account effi-
ciency considerations. In practice, we would not be willing to use a logic pro-
gramming language if answers to queries were to take an inordinate amount
of time compared with the time that it would take to compute the solution
to the problem using a more conventional language. We might be willing to
accept the system implementing the language as a theorem prover, but not
as a programming language. Therefore, some pragmatic line must be drawn
between theorem provers and programming languages. It may be impossible
to settle this issue once and for all, for the following reasons:

Emergence of increasingly more efficient operational semantics:
Linear resolution made it possible to develop interpreters for Horn
clause logic, and term rewriting allowed equational logic programming
interpreters. Present compilation techniques for Horn clauses and for
functional languages permit developing compilers that make the ef-
ficiency of these languages entirely acceptable compared with more
conventional languages run on the same sequential machines.

New models of parallel computation and new architectures: These
can drastically alter the mathematical complexity of many problems
and make possible computations that were not feasible with previous
technology. Logic programming languages, thanks to their declarative
character, can, in fact, play a leading role in the discovery of such new
models and architectures.

Advances in hardware technology: For the moment, these show a
dramatic increase in computing speed and a decrease in device size,
although the laws of physics will eventually pose a hard boundary to
such advances.

However, there are intrinsic complexity theory bounds that no technological
advance can reverse. Therefore, one of the most important tasks in logic

44

programming is to find efficient proof subcalculi for those entailment systems
that have them.

In practice, we can observe a migration process. First, certain logics
exist; then, some theorem provers are developed to mechanize their deduc-
tion; and, finally, some of these theorem prover techniques are found to be
efficient and give birth to programming language interpreters. Each new
language in turn suggests new models of computation, new compilers, and
new architectures. In first order logic programming this is clearly the trend,
and in type theory a similar trend is apparent for higher order logics. Of
course, historical developments are not logical necessities, and in the future
we may find more and more language designers in the role of producers
rather than consumers of new logics.

6.1 First Order Logic Programming

The logic programming ideas historically originated from the tradition of
first order resolution theorem proving [42, 71] and were first embodied in
the Prolog language [11]. The Prolog culture has been so successful that
for many researchers the part —i.e., Horn clause relational programming in
its different variants, or perhaps first order logic programming for the truly
ambitious— seems to become identified with the whole. This of course may
be styfling. A different theorem proving tradition, namely equational theo-
rem proving, has existed alongside and provided term rewriting techniques
that were recognized by several researchers in the late seventies as a very
good basis for designing and giving semantics to functional programming
languages. Pioneering work in this direction includes that of J.A. Goguen,
who created the OBJ language [23, 24], and M.J. O’Donnell’s thesis [55]. In
the 1980’s it became gradually apparent that these two styles of first order
logic programming, the relational based on Horn clauses and the functional
based on equations, should be unified and several proposals emerged. The
Eqlog language [31] was the first proposal suggesting that this unification
could best be achieved by unifying both logics into Horn clause logic with
equality, and giving an initial model semantics for the resulting programs.

What follows is a discussion of a variety of first order logic programming
styles. The emphasis is on the particular choices of statements, queries and
proofs. I mention some languages only to give a few examples. There are
of course many other languages that could be mentioned, but this is not a
survey. To simplify the exposition, I present the ideas in an unsorted first
order logic notation; however, all that I say generalizes to many-sorted and
order-sorted first order logic.

Horn Clause Logic Programming

In this case, the signatures are finite first order signatures, and the sets of
statements are finite sets of Horn clauses, i.e., of sentences of the form

Vi A< By, ..., B,

where A, By, ..., B, are atomic formulas that do not involve an equality
predicate. The queries are existential sentences of the form

7 Y, ..., Chy

45

with C, ..., C,, atomic formulas not involving equality. The initial model of
a program P = (X,T) is its Herbrand model T% r, whose functional part
consists of the term algebra Tr on the function symbols F' of ¥, and for
each n-ary predicate symbol p and t € T7 we have,

{G PTs iff Ty p(f}

Query completeness is a direct consequence of Herbrand’s theorem. The
standard operational semantics is Horn clause resolution [42]. A proof of
a query J& C4,...,C, for a program P is a substitution 6 such that Fp
0(C1),...,0(Cy). Although Prolog [11] is the most popular Horn clause logic
programming language, its extralogical features, the incompleteness of its
search strategy and its nonstandard unification make it fall short of the logic
programming ideal.

Equational Logic Programming

In this case, signatures are finite functional signatures, and the sets of state-
ments are finite sets of Church-Rosser and terminating equations?’. The
mathematical semantics of a program P = (F,FE) is given by the initial
algebra T g in the class of all models of the theory (F, E). For any set E
of F-equations, the initial algebra Tk g has a very simple construction as
the quotient algebra of the term algebra Tr by the congruence relation =g
defined by

t=pt ifEtpt="t.

See the original ADJ paper [37], or the survey [54] for a detailed proof of
the initiality of Tr/ =pg. The operational semantics is term rewriting, i.e.,
equational deduction using the equations only from left to right. Since the
equations are Church-Rosser and terminating, each term ¢ rewrites after a
finite number of steps to a unique canonical form cang(t) that cannot be
further simplified by the equations. The term cang(t) is the unique canonical
representative of the =g-equivalence class [t]. Therefore, an isomorphic
(but computationally more intuitive) representation of the initial algebra
Tr E can be given as the set Cangr whose elements are ground terms of
the form cang(t); this set has an obvious F-algebra structure making it
isomorphic to Tr/ =g, namely for f € F, and ty,...,t, € Canp g we define
feanp p(t1, - tn) = canp(f(t1,...,t,)). Two basic computations that can be
performed by term rewriting are: reduction of a ground term ¢ to canonical
form, and deciding when two ground terms ¢ and ¢’ are made equal by the
equations. They give rise to two types of queries:

1. dJzxt=2x
2. t=t¢

where the sentence Jz t = z is always true (since we could choose x to be ¢
itself) but we are interested in the most informative proof possible, namely

20This condition can be relaxed, e.g., by dropping the termination property. O’Donnell
[56] does not require termination, but imposes sufficient conditions to ensure the Church-
Rosser property. In any event, Church-Rosser and terminating equations are powerful
enough to specify all total computable functions [5].

46

one where x is chosen to be cang(t). Therefore, for queries ¢ of type (1)
query completeness is trivial; for queries of type (2) it follows trivially from
the definition of =g.

An example of a logic programming language of this type based on un-
typed equational logic is the language of Hoffmann and O’Donnell [39, 56].
The OBJO language was also untyped [24], but subsequent versions have all
been typed. OBJ2 and OBJ3 [19, 29] are based on order-sorted equational
logic [35], where types can be related by a partial order subtype relation,
e.g., Nat < Int, and operations can have several typings, e.g., natural,
integer, rational and complex addition, all with the same restriction to sub-
types; this makes OBJ programs very expressive. The expressiveness of OBJ
programs is also increased by the use of conditional equations, so that the
whole discussion above should be understood as taking place in the context
of conditional equational logic.

One of the great advantages of logic programming languages is that
they are declarative and make no commitments to a particular execution
sequence. Therefore, they can be used to design and program entirely new
parallel architectures. In the case of equational logic programming, one such
architecture is the Rewrite Rule Machine that Goguen, Leinwand, Winkler,
Aida and I are building at SRI [36]. Its model of computation is a new
operational semantics for equational logic programming based on concurrent
term rewriting [30].

Horn Clause Logic Programing with Equality

Horn clause logic programming is relational, whereas equational logic pro-
gramming is functional. Each approach has its own, somewhat comple-
mentary, strengths. For a problem where searching is crucial, the relational
approach is ideal. However, many computations are functional in nature and
do not require any search or backtracking; for those, term rewriting is best.
In [33] Goguen and I suggested that the functional and relational approaches
to logic programming could be combined by combining the corresponding
logics. The combination is of course Horn clause logic with equality. In
this logic programming style, the signatures are finite first order signatures,
and the sets of statements are finite collections of Horn clauses that now
may involve the equality predicate and such that the clauses for equality
are Church-Rosser and terminating in a suitable sense?!. The mathematical
semantics is an initial model semantics that generalizes Herbrand models
and initial algebras. Given a first order signature ¥ = (F, P) and a set '
of Horn clauses —possibly involving equalities— the initial model Tx 1 has
a functional part consisting of the quotient algebra of the term algebra T
under the congruence relation =r defined by

t=rt'iffTFet="¢
and a relational part given by

([tl], ey [tn]) € DPTsr iff ' s p(tl, ...,tn)

21Gince we have Horn clauses, the equations may be conditional and even have predicates
other than equality in their conditions.

47

for each p € P, in P. See [34] for a detailed proof of the initiality of 7%
in the general case of order-sorted logic, that contains unsorted logic as a
sublogic. Queries are existential sentences of the form

% Oy, .., Chy

with C1,...,C), atomic formulas but now some of them can be equations.
Query completeness is a direct consequence of Herbrand’s theorem; see [34]
for a proof in the general case of order-sorted logic. Solving queries is done
in a fashion entirely similar to ordinary Horn clause resolution; the only
difference is that standard unification is replaced by unification modulo the
equations of the program. By the Church-Rosser and terminating assump-
tions, this can be done by some complete strategy for narrowing [40]. As
before, the answers to queries are substitutions that make the instance of
the query provable. The Eqlog language [33] is an example of a language
in this style of logic programming; its logic is order-sorted Horn clause logic
with equality. Other approaches encode predicates as functions [18, 15] or
functions as predicates [72].

Logic Programming in other Fragments of First Order Logic

Although Horn clause logic with equality is in a sense the end of the road
for fragments of first order logic admitting initial models [48], we can still
view the kind of weak logic programming that is possible in any fragment
of first order logic as an instance of strong logic programming for a logic £’
that has the same entailment system as first order logic, but has a different
underlying institution admitting initial models. There are several such pos-
sible institutions. One is given by Theorem 9, which in a sense is the ideal
model theory for people with a strong proof-theoretic bias; another such in-
stitution could have hyperdoctrine models such as “logical categories” [73].
As a model theory, such choices seem preferable to standard first order logic
where one would have to worry about many different models, none of them
initial.

6.2 Higher Order Logic Programming

Although type theory and logic programming share a vital connection with
logic, they have developed in relative isolation from each other. Much can
be gained at both the conceptual and practical levels from an attempt to
understand the relationships between these two fields. Conceptually, logic
programming can be saved from becoming parochial and losing important
new opportunities, and type theory may gain new logic and model-theoretic
insights. At the practical level, what can be gained is a much better un-
derstanding of how to design powerful new languages that integrate such
features as generic modules, higher order functions, logical variables and
subtypes, and yet have a clear and rigorous semantics based on logic. Cate-
gorical logic plays a key role in relating type theory and logic programming,
so that functional languages based on type theory can be understood as
logic programming languages in the strong sense of our axiomatization.
One of the greatest strengths of categorical logics is that they unify
proof theory and model theory in a particularly illuminating way. Given a

48

theory T', the associated free category F(T') is at the same time an abstract
theory, providing a notion of equivalence of proofs, and the initial model of
the theory. The logic programming axioms underscore the importance of
these free or “term” models, because in them mathematical and operational
semantics are interlocked as two aspects of the same reality. Being initial,
these models are in a sense the most general, and being generated by the
rules of the logic, they wear their operational semantics on their sleeves.

Type theories can be used to define programming languages with power-
ful type mechanisms. They can also be used as formal frameworks to reason
about programs or to automatically generate correct programs from their
specifications. Although, of course, it is one of the great advantages of type
theory that formal reasoning about a program written in it can be carried
out in the type theory itself, for the purposes of this paper, I concentrate
on the first use. I consider three well-known examples of type theory: the
typed lambda calculus, the Girard-Reynolds polymorphic lambda calculus,
and Martin-Lof type theory. All of these calculi are higher order equational
logics, and all have a notion of reduction entirely similar to term rewriting
in first order equational logic. Therefore, in all three cases programs are
finitary equational theories whose equations are Church-Rosser and termi-
nating in the given calculus, and operational semantics is given by reduction
to canonical form. Queries are similar to those of the first order equational
case, i.e., they are sentences of the form:

1. dJxt=2x
2. t=1+

with ¢ and ¢’ terms in the appropriate syntax?2.

The Typed Lambda Calculus

The typed lambda calculus is a categorical logic on CCCat, the category
of cartesian closed categories. The mathematical semantics of a program
P = (%, E) is given by its initial model 1z(s g), where F(%, E) is the free
cartesian closed category generated by P = (X, E) (see [43] 1.10-11 for a de-
tailed description of such theories, called there “typed lambda calculi” and
the F(3, E) construction; note that they assume a weak natural numbers
object in their theories, but this is not an essential requirement). Query
completeness is trivially satisfied. A particularly elegant operational seman-
tics is provided by Curien’s categorical combinators [13].

The ML language [38] is closely related to the typed lambda calculus,
but it is instead based on the polymorphic lambda calculus; expressions in
general do not have one type, but a family of types that are the instances of
a unique type expression involving type variables. Categorical combinators
can be used to provide a simple and efficient ML implementation [12].

22In some cases, for example in Martin-Lof type theory, we can have similar queries for
type expressions, for which there is also a normal form.

49

The Girard-Reynolds Second Order Polymorphic Lambda Calcu-
lus

This calculus, proposed by Girard [20] and discovered independently by
Reynolds [60], is more powerful than the usual polymorphic lambda calcu-
lus; it allows universal quantification of type variables inside type formulas.
There are two possible categorical semantics. One, based on a type of hyper-
doctrines called P L-categories, was given by Seely [64]; the other, called the
“universe model semantics,” is based on relatively cartesian closed categories
and was proposed in [53]. These two categorical semantics are related by a
map of logics that is the identity on the underlying entailment system and
that for each theory T provides a forgetful functor from its universe models
to its PL-category models. The P L-category models provide only names
for the types, but not the types themselves; the universe models, however,
provide type extensions as objects of a category. Again, query completeness
is trivial and the operational semantics is given by reduction of expressions
to normal form.

JFrom the point of view of applications, there are compelling reasons
to extend the second order polymorphic lambda calculus in various ways.
Although all the provably terminating functions can be expressed in the
basic calculus, not all the algorithms for computing a function of this kind
are expressible, and therefore it is more expressive to have full recursion.
Also, to do programming-in-the-large, it is very useful to be able to com-
pute with modules as values, i.e., to assume that Type:Type. Extensions of
the universe model semantics that provide a categorical semantics for the
second order polymorphic lambda calculus with full recursion and/or with
Type:Type are given in [53]; for Type:Type, a categorical semantics was
given in [70]; proof rules for extensions of this kind are given in [8]. The
language Pebble [7] has full recursion, Type:Type as well as other features;
the Quest language [9] is also in this category, and in addition provides
subtypes.

Martin-Lof Type Theory

Martin-Lof type theory [50, 51] provides powerful type constructions with
both universal and existential quantification, equality types, etc. Normal-
ization of expressions is Church-Rosser and terminating both for terms and
for type expressions and provides the operational semantics. The work of
Seely [63] has shown how Martin-Lof type theory can be viewed as a cate-
gorical logic on LCCCat, the category of locally cartesian closed categories.
If equality types are dropped, the categorical semantics can be broadened in
several closely related ways such as contextual categories [10], or relatively
cartesian closed categories [41].

7 Concluding Remarks

The main focus of this paper has been on basic concepts and definitions.
Once the basic framework is set up, general results about logics satisfying
some additional conditions should be investigated. Results of this nature
are obtained in the context of traditional set-theoretic structures by the

50

methods of abstract model theory [2], and several such results have already
been obtained for general institutions by Tarlecki [67, 68] and by Sannella
and Tarlecki [61]. Some of the additional conditions that one may want
to impose have to do with properties of the category of signatures and the
functor of sentences that can have a natural formulation in terms of the
“charters” and “parchments” of Goguen and Burstall [28].

The satisfaction relation between sentences and models can be seen as
a characteristic function taking the value true or false. B. Mayoh [52] sug-
gested interesting applications in which one would like to broaden the no-
tion of “truth value” and proposed a generalization of institutions called
galleries. Goguen and Burstall [28] gave a nice categorical formulation of
institutions as a pair of functors together with an extranatural transforma-
tion or “wedge” [47] involving the truth value category 2 with objects true
and false and only one nonidentity morphism from false to true; they then
suggested a notion of a generalized institution that can be obtained replac-
ing 2 by a category V of truth values in their categorical formulation. They
argued that Mayoh’s galleries could, after some modifications, be seen as
generalized institutions. A substantial portion of the present theory could
have been developed in the more general setup of a truth value category
other than 2, and the implications of that possibility are an interesting
topic of future research. However, having the notion of a proof calculus
available may decrease the need for the extra generality. What is needed
is a study of examples to see how naturally they can be expressed in the
different frameworks. The ideas of Poigné [58], who has proposed another
way of generalizing institutions should also be taken into account.

The study of mappings between the different logical structures should
be further developed. Those mappings consist of a functor relating the two
categories of theories and of one or more natural transformations; for each of
those transformations one could in principle choose between a “forward” and
a “backward” direction. However, not all possible combinations may behave
well or have interesting examples. I have presented particular choices that
seemed natural, had interesting examples and permitted defining a notion
of logical substructure. However, such choices should not exclude other
possibilities that may be equally useful. More experience with examples is
needed to ascertain what choices should be favored; computer science can
provide a rich source of examples and applications.

Computer science applications have provided the original stimulus for
the development of the theory; with the basic concepts now in place, one of
the main tasks ahead is to bring the abstract concepts to bear on specific
problem areas within computer science. For logic programming, Section 6
has given just the beginnings of an application, but several other impor-
tant issues, such as compilation, or the use of mappings between logics to
design new programming languages with more powerful features have not
been discussed. Type theory and concurrency are also areas where many
applications are possible; the paper [53] gives a particular type theory appli-
cation, and the joint paper [49] with N. Marti-Oliet gives an application to
concurrency. Applications to other computer science areas such as artificial
intelligence and automated deduction also seem very natural. I hope that
other researchers will find the methods useful and will undertake many of
those applications themselves.

ol

References

1]

[12]

[13]

[14]

[15]

L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational
proofs. In Proceedings of the Symposium on Logic in Computer Science,
pages 346-357. IEEE, June 1986.

J. Barwise and S. Feferman (eds.). Model-Theoretic Logics. Springer-
Verlag, 1985.

K. J. Barwise. Axioms for abstract model theory. Ann. Math. Logic,
7:221-265, 1974.

Jean Bénabou. Structures algébriques dans les catégories. Cahiers de
Topologie et Géometrie Différentielle, 10:1-126, 1968.

Jan Bergstra and John Tucker. Characterization of computable data
types by means of a finite equational specification method. In J. W.
de Bakker and J. van Leeuwen, editors, Automata, Languages and Pro-
gramming, Seventh Colloguium, pages 76-90. Springer-Verlag, 1980.
LNCS, Volume 81.

A. Boileau and A. Joyal. La logique des topos. J. Symbol. Logic, 46(1):6—
16, 1981.

R. Burstall and B. Lampson. A kernel language for abstract data types
and modules. In G. Kahn, D.B. MacQueen, and G.D. Plotkin, editors,
Semantics of Data Types, pages 1-50. Springer LNCS 173, 1984.

Luca Cardelli. A polymorphic A-calculus with Type:Type. Technical
Report 10, DEC System Research Center, Palo Alto, CA, 1986.

Luca Cardelli. A Quest Preview. Technical report, DEC System Re-
search Center, Palo Alto, Ca, 1988.

J. Cartmell. Generalised algebraic theories and contextual categories.
Annals Pure Appl. Logic, 32:209-243, 1986.

A. Colmerauer, H. Kanoui, and M. van Caneghem. Etude et réalisation
d’un systéeme Prolog. Technical report, Groupe d’Intelligence Artifi-
cielle, U.E.R. de Luminy, Université d’Aix-Marseille II, 1979.

G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract
machine. Science of Computer Programming, 8:173-202, 1987.

Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms
and Functional Programming. Pitman, London, 1986.

Valeria C.V. de Paiva. The Dialectica Categories. PhD thesis, Mathe-
matics Department, University of Cambridge, 1988.

Nachum Dershowitz and David A. Plaisted. Equational programming.
In J. Richards, editor, Machine Intelligence 11: The logic and acquisi-
tion of knowledge, pages 21-56. Oxford University Press, 1988.

92

[16]

[21]

[22]

H.-D. Ebbinghaus. Extended logics: The general framework. In J. Bar-
wise and S. Feferman, editors, Model-Theoretic Logics, pages 25-76.
Springer Verlag, 1985.

J. Fiadeiro and A. Sernadas. Structuring theories on consequence. In
D. Sannella and A. Tarlecki, editors, Recent Trends in Data Type Spec-
ification, pages 44-72. Springer LNCS 332, 1988.

Laurent Fribourg. Oriented equational clauses as a programming lan-
guage. Journal of Logic Programming, 1(2):179-210, 1984.

Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and José
Meseguer. Principles of OBJ2. In Brian Reid, editor, Proceedings of
12th ACM Symposium on Principles of Programming Languages, pages
52-66. ACM, 1985.

Jean-Yves Girard. Interprétation Fonctionelle et Elimination des
Coupures dans U’Arithmétique d’ordre Supérieure. PhD thesis, Univ.
Paris VII, 1972.

Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1—
102, 1987.

Jean-Yves Girard. Towards a geometry of interaction. In J.W. Gray
and A. Scedrov, editors, Proc. AMS Summer Research Conference on
Categories in Computer Science and Logic, Boulder, Colorado, June
1987, pages 69-108. American Mathematical Society, 1989.

Joseph Goguen. Abstract errors for abstract data types. In Peter
Neuhold, editor, Proceedings of First IFIP Working Conference on
Formal Description of Programming Concepts, pages 21.1-21.32. MIT,
1977. Also published in Formal Description of Programming Concepts,
Peter Neuhold, Ed., North-Holland, pages 491-522, 1979.

Joseph Goguen. Some design principles and theory for OBJ-0, a lan-
guage for expressing and executing algebraic specifications of programs.
In Edward Blum, Manfred Paul, and Satsoru Takasu, editors, Proceed-
ings, Mathematical Studies of Information Processing, pages 425—473.
Springer-Verlag, 1979. LNCS, Volume 75; Proceedings of a Workshop
held August 1978.

Joseph Goguen. One, none, a hundred thousand specification languages.
In H.-J. Kugler, editor, Information Processing ’86, pages 995-1003.
Elsevier, 1986. Proceedings of 1986 IFIP Congress.

Joseph Goguen and Rod Burstall. Introducing institutions. In Edmund
Clarke and Dexter Kozen, editors, Logics of Programs, pages 221-256.
Springer-Verlag, 1984. LNCS, Volume 164.

Joseph Goguen and Rod Burstall. Institutions: Abstract model the-
ory for computer science. Technical Report CSLI-85-30, Center for the
Study of Language and Information, Stanford University, 1985. Also
submitted for publication.

93

[28]

[31]

[33]

Joseph Goguen and Rod Burstall. A study in the foundations of
programming methodology: Specifications, institutions, charters and
parchments. In David Pitt, Samson Abramsky, Axel Poigné, and David
Rydeheard, editors, Proceedings, Conference on Category Theory and
Computer Programming, pages 313-333. Springer-Verlag, 1986. LNCS,
Volume 240; also, Report Number CSLI-86-54, Center for the Study of
Language and Information, Stanford University, June 1986.

Joseph Goguen, Claude Kirchner, Hélene Kirchner, Aristide Mégrelis,
José Meseguer, and Timothy Winkler. An introduction to OBJ3. In
Jean-Pierre Jouannaud and Stephane Kaplan, editors, Proceedings,
Conference on Conditional Term Rewriting, Orsay, France, July 8-10,
1987, pages 258-263. Springer LNCS 308, 1988.

Joseph Goguen, Claude Kirchner, and José Meseguer. Concurrent term
rewriting as a model of computation. In R. Keller and J. Fasel, editors,
Proc. Workshop on Graph Reduction, Santa Fe, New Mezxico, pages
53-93. Springer LNCS 279, 1987.

Joseph Goguen and José Meseguer. Equality, types, modules and gener-
ics for logic programming. In S.-A. Téarnlund, editor, Proc. 2nd Intl.
Logic Programming Conf., Uppsala, July 2-6, 1984, pages 115-125. Up-
psala University, 1984.

Joseph Goguen and José Meseguer. Completeness of many-sorted equa-
tional logic. Houston Journal of Mathematics, 11(3):307-334, 1985. Pre-
liminary versions have appeared in: SIGPLAN Notices, July 1981, Vol-
ume 16, Number 7, pages 24-37; SRI Computer Science Laboratory
Technical Report CSL-135, May 1982; and Report CSLI-84-15, Cen-
ter for the Study of Language and Information, Stanford University,
September 1984.

Joseph Goguen and José Meseguer. Eqlog: Equality, types, and generic
modules for logic programming. In Douglas DeGroot and Gary Lind-
strom, editors, Logic Programming: Functions, Relations and FEqua-
tions, pages 295-363. Prentice-Hall, 1986.

Joseph Goguen and José Meseguer. Models and equality for logical pro-
gramming. In H. Ehrig, G. Levi, R. Kowalski, and U. Montanari, edi-
tors, Proceedings TAPSOFT’87, volume 250 of Lecture Notes in Com-
puter Science, pages 1-22. Springer-Verlag, 1987.

Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105:217-273, 1992.

Joseph Goguen, José Meseguer, Sany Leinwand, Timothy Winkler, and
Hitoshi Aida. The rewrite rule machine. Technical Report SRI-CSL-89-
6, SRI International, Computer Science Laboratory, March 1989.

Joseph Goguen, James Thatcher, and Eric Wagner. An initial alge-
bra approach to the specification, correctness and implementation of
abstract data types. Technical Report RC 6487, IBM T. J. Watson

o4

[41]

[42]

Research Center, October 1976. Appears in Current Trends in Pro-
gramming Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978,
pages 80-149.

Robert Harper, David MacQueen, and Robin Milner. Standard ML.
Technical Report ECS-LFCS-86-2, Dept. of Computer Science, Univer-
sity of Edinburgh, 1986.

Christoph M. Hoffmann and Michael O’Donnell. Programming with
equations. Transactions on Programming Languages and Systems,
1(4):83-112, 1982.

Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel
and Robert Kowalski, editors, Proceedings, Fifth Conference on Auto-
mated Deduction, pages 318-334. Springer-Verlag, 1980. LNCS, Volume
87.

J.M.E. Hyland and A. Pitts. The theory of constructions: Categori-
cal semantics and topos-theoretic models. In J.W. Gray and A. Sce-
drov, editors, Proc. AMS Summer Research Conference on Categories
in Computer Science and Logic, Boulder, Colorado, June 1987, pages
137-199. American Mathematical Society, 1988.

Robert Kowalski. Logic for problem solving. Technical Report DCL
Memo 75, Department of Artificial Intelligence, University of Edin-
burgh, 1974. Also, a book in the Artificial Intelligence Series, North-
Holland Press, 1979.

J. Lambek and P.J. Scott. Introduction to Higher Order Categorical
Logic. Cambridge Univ. Press, 1986.

Joachim Lambek. Deductive systems and categories II. In Category
Theory, Homology Theory and their Applications I, pages 76-122.
Springer Lecture Notes in Mathematics No. 86, 1969.

F. William Lawvere. Functorial semantics of algebraic theories. Pro-
ceedings, National Academy of Sciences, 50:869-873, 1963. Summary
of Ph.D. Thesis, Columbia University.

F.W. Lawvere. Adjointness in foundations. Dialectica, 23(3/4):281-296,
1969.

Saunders MacLane. Categories for the Working Mathematician.
Springer-Verlag, 1971.

J.A. Makowski. Why Horn formulas matter in computer science: Ini-
tial structures and generic examples. Technical Report 329, C.S. Dept,
Technion, July 1984.

Narciso Marti-Oliet and José Meseguer. From Petri nets to linear logic.
In D.H. Pitt et al., editor, Category Theory and Computer Science,
pages 313-340. Springer LNCS 389, 1989. Final version in Mathematical
Structures in Computer Science, 1:69-101, 1991.

95

[50]

P. Martin-Lof. An Intuitionistic Theory of Types: Predicative Part. In
H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium’73, pages
73-118. Noth-Holland, 1973.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

Brian H. Mayoh. Galleries and institutions. Technical Report DAIMI
PB-191, Computer Science Dept., Aarhus University, 1985.

José Meseguer. Relating Models of Polymorphism. In Proc. POPL’89,
pages 228-241. ACM, 1989.

José Meseguer and Joseph Goguen. Initiality, induction and com-
putability. In Maurice Nivat and John Reynolds, editors, Algebraic
Methods in Semantics, pages 459-541. Cambridge University Press,
1985.

Michael J. O’Donnell. Computing in Systems Described by Equations.
Springer-Verlag LNCS 58, 1977.

Michael J. O’Donnell. Fquational Logic as a Programming Language.
MIT Press, 1985.

Gordon D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Computer Science Dept., Aarhus Uni-
versity, 1981.

A. Poigné. Foundations are rich institutions, but institutions are poor
foundations. In H. Ehrig et al., editors, Categorical Methods in Com-
puter Science with Aspects from Topology, volume 393 of LNCS, pages
82-101. Springer-Verlag, 19809.

Dag Prawitz. Natural Deduction. Almqvist and Wiksell, Stockholm,
1965.

J.C. Reynolds. Towards a Theory of Type Structure. In B. Robinet,
editor, Programming Symposium, pages 408-425. Springer LNCS 19,
1974.

Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary
institution. Information and Computation, 76:165-210, 1988.

D. Scott. Completeness and axiomatizability in many-valued logic. In
L. Henkin et al., editor, Proc. Tarski Symp., pages 411-435. AMS, 1974.

R.A.G. Seely. Locally cartesian closed categories and type theory. Math.
Proc. Camb. Phil. Soc., 95:33-48, 1984.

R.A.G. Seely. Categorical semantics for higher order polymorphic
lambda calculus. J. Symbol. Logic, 52(4):969-989, 1987.

R.A.G. Seely. Linear logic, *-autonomous categories and cofree coal-
gebras. In JJW. Gray and A. Scedrov, editors, Proc. AMS Summer
Research Conference on Categories in Computer Science and Logic,
Boulder, Colorado, June 1987, pages 371-382. AMS, 1989.

o6

[66]
[67]

[68]

[69]

[70]

[71]

[72]

73]

Joseph R. Shoenfield. Degrees of Unsolvability. North-Holland, 1971.

Andrzej Tarlecki. On the Existence of Free Models in Abstract Alge-
braic Institutions. Theoretical Computer Science, 37:269-304, 1985.

Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions.
Journal of Computer and System Sciences, 33:333—-360, 1986.

A. Tarski. On some fundamental concepts of metamathematics. In
Logic, Semantics, Metamathematics, pages 30-37. Oxford U.P., 1956.

P. Taylor. Recursive Domains, Indexed Category Theory and Polymor-
phism. PhD thesis, Mathematics Department, University of Cambridge,
1987.

Maarten H. van Emden and Robert A. Kowalski. The semantics of
predicate logic as a programming language. Journal of the Association
for Computing Machinery, 23(4):733-742, 1976.

Maarten H. van Emden and Keitaro Yukawa. Equational logic program-
ming. Technical Report CS-86-05, University of Waterloo, March 1986.

H. Volger. Completeness theorem for logical categories. In F.W. Law-
vere, C. Maurer, and G.C. Wraith, editors, Model Theory and Topos.
Springer Lecture Notes in Mathematics No. 445, 1975.

o7

