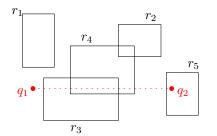
Assignment 5 (due April 27 Friday 2pm (in class))

You may work in a group of at most 3 students. Carefully read https://courses.engr.illinois.edu/cs498tc3/policies.html and https://courses.engr.illinois.edu/cs498tc3/integrity.html.

- 1. [12 pts] Given a simple polygon P with n vertices and a convex polygon R with a constant number of vertices, we want to determine whether R can be placed inside P by translation, i.e., whether there exists a translated copy of R that is contained in P. Show that this problem can be solved in $O(n \log^2 n)$ time. [Hint: use a known approach from class. Another hint: consider the complement of P.]
- 2. $[8 \ pts]$ Consider the following problem: store a set S of n (axis-aligned) rectangles in 2D so that for a given query horizontal line segment $\overline{q_1q_2}$, we can quickly report all rectangles $r \in S$ that $\overline{q_1q_2}$ completely cuts across (i.e., $\overline{q_1q_2}$ intersects both the left and right side of r). Give an efficient data structure for this problem.

[Hint: reduce the problem to orthogonal range searching. How many dimensions?]



 $\overline{q_1q_2}$ completely cuts across r_3 and r_4 (but not r_5)

- 3. $[25 ext{ pts}]$ Recall that in d dimensions, the L_1 -distance (or Manhattan distance) between two points $p = (p_1, \ldots, p_d)$ and $q = (q_1, \ldots, q_d)$ is defined as $|p_1 q_1| + \cdots + |p_d q_d|$. Our problem is to store a set P of n points in \mathbb{R}^d so that given a query point q, we can find an L_1 -nearest neighbor of q, i.e., a point $p \in P$ with the smallest L_1 -distance to q.
 - (a) [7 pts] Consider the problem for d=2 in the special case when all query points q lie on the y-axis (x=0). Show that this special case can be solved by a data structure with O(n) space and $O(\log n)$ query time. [Hint: sort points according to y-coordinates, and maintain the minimum of some function over prefixes/suffixes...]
 - (b) [12 pts] Now solve the general problem for d = 2 using $O(n \log n)$ space and $O(\log^2 n)$ query time. [Note: do not use Voronoi diagrams; instead, adopt an approach based on range trees, using part (a) as a subroutine. For example, if q is to the left of x = 0 and P_{right} is to the right of x = 0, how can we compute the L_1 -nearest neighbor of q in P_{right} ?]
 - (c) [6 pts] Generalize part (b) to obtain a data structure for any constant d with $O(n \log^{d-1} n)$ space and $O(\log^d n)$ query time.