
Introduction to the Theory of Computation

Mahesh Viswanathan

Fall 2018

We will now review the basic definitions and theorems in the area of computational complexity, which
tries to study various models of computation with the goal of understanding their relative computational
power, and classify computational problems in terms of computational resources they need. Here, we will
primarily consider time and space as the principal resources we will measure for an algorithm.

Recall that the computational problems one studies in the context of theoretical computer science are
usually decision problems. Decision problems are those where given an input, one expects a boolean answer.
Typically, input instances are encoded as strings over some alphabet of symbols. A decision problem par-
titions inputs into those for which the expected answer is “yes”/”true” and those for which the answer is
“no”/”false”. Therefore, a decision problem is often identified with a language, or a collection of strings,
namely, those for which the problem demands a “yes” answer. Similarly, the machines we will define, will
answer “yes”/”accept” or “no”/”reject” on input strings, and we associate a language L(M) with machine
M , which is the collection of all strings it accepts. Given this interpretation of problems and machines, we
will typically say that a machine M solves a problem L (or rather accepts/recognizes) if L = L(M), i.e., M
answers “yes” on exactly the inputs that the problem demands the answer to be “yes”.

The main model of computation that we will consider is that of a Turing machine. However before
introducing this model, let us recall some of the notation on strings and languages that we will use.

Alphabet, Strings, and Languages. An alphabet Σ is a finite set of elements. A (finite) string over Σ
is a (finite) sequence w = a0a1 · · · ak over Σ (i.e., a+ i ∈ Σ, for all i). The length of a string w = a0a1 · · · ak,
denoted |w|, is the number of elements in it, which in this case is k + 1. The unique string of length 0,
called the empty string, will be denoted by ε. For a string w = a0a1 · · · ak, the ith symbol of the string ai
will be denoted as w[i] 1. For strings u = a0a1 · · · ak and v = b0b1 · · · bm, their concatenation is the string
uv = a0a1 · · · akb0b1 · · · bm. The set of all (finite) strings over Σ is denoted by Σ∗; we will sometimes use Σi

to denote the set of strings of length i. A language A is a set of strings, i.e., A ⊆ Σ∗. Given languages A,B,
their concatenation AB = {uv | u ∈ A, v ∈ B}. For a language A, A0 = {ε}, and Ai denotes the i-fold
concatenation of A with itself, i.e., Ai = {u1u2 · · ·ui | ∀j. uj ∈ A}. Finally, the Kleene closure of a language
A, is A∗ =

⋃
i≥0A

i.

1 Turing Machines

We will now recall the definition of a Turing machine. Since we will use this model to define the time and
space bounds during a computation, as well as define computable functions, the most convenient model to
consider is that of a multi-tape Turing machine shown in Figure 1. Such a model has a read-only input
tape, a write-only output tape, and finitely many read/write work tapes. Intuitively, the machine works as
follows. Initially, the input string is written out on the input tape, and all the remaining tapes are blank.
The tape head are scanning the leftmost cell of each tape, which we will refer to as cell 0. This cell contains
a special symbol B in every tape (except the output tape). This is the left end marker, which helps the
machine realize which cell is the leftmost cell. We will assume these cells are never overwritten by any other

1Here we are assuming the the 0th symbol is the “first”.

1

0 0 t t Output Tape

B 0 1 1 0 t t

B 1 0 t 0 0 t

B 0 0 1 t t

} Work Tapes

Input Tape

finite-state
control

Figure 1: Multi-tape Turing machine, with a read-only input tape, finitely many read/write worktapes, and
a write-only output tape.

symbol, and whenever B is read on a particular tape, the tape head of the Turing machine will move right.
At any given step of the Turing machine does the following. Based on the current state of its finite control,
and symbols scanned by each tape head, the machine will change the state of its finite control, write new
symbols on each of the worktapes, and move it’s heads on the input and worktapes either one cell to the left
or one cell to the right. During the step, the machine may also choose to write some symbol on its output
tape. If it writes something on the output tape, then the output tape head moves one cell to the right. If it
does not write anything, then the output tape head does not move. We will assume that the machine has
two special halting states — qacc and qrej — with the property that the machine cannot take any further
steps from these states. These are captured in the formal definition of deterministic Turing machines below.

Definition 1. A deterministic Turing machine with k-worktapes is a tuple M = (Q,Σ,Γ, δ, q0, qacc, qrej,t,B)
where

• Q is a finite set of control states

• Σ is a finite set of input symbols

• Γ ⊇ Σ is a finite set of tape symbols. We assume that {t,B} ⊆ Γ \ Σ.

• q0 ∈ Q is the initial state

• qacc ∈ Q is the accept state

• qrej ∈ Q is the reject state, with qrej 6= qacc, and

• δ : (Q \ {qacc, qrej}) × Γk+1 → Q × {−1,+1} × (Γ × {−1,+1})k × (Γ ∪ {ε}) is the transition function;
here lft indicates moving the head one position to the left and +1 indicates moving the head one
position to the right. We will assume that if δ(p, γ0, γ1, . . . γk) = (q, d0, γ

′
1, d1, γ

′
2, d2, . . . γ

′
k, dk, o), for

any i ∈ {0, 1, . . . k}, if γi = B then γ′i = B and di = +1.

We will now formally describe how the Turing machine computes. For this we begin by first indentifying
information about the Turing machine that is necessary to determine it’s future evolution. This is captued
by the notion of a configuration. A single step of a Turing machine depends on all the factors that determine
which transition is taken. This clearly includes the control state, and the symbols being read on the input
tape and each of the worktapes. However this is not enough. The contents of the worktape change, and
what is stored influences what will be read in a future step. Thus we need to know what is stored in each
cell of such tapes. Since the input tape is read-only, its contents remain static and so we don’t need to carry
around its contents. We also need to know the position of each tape head, because that determines what is
read in this step, how the contents of a tape will change based on the current step, and what will be read
in the future as the heads move. Because of all of these observations, a configuration of a Turing machine is

2

taken to be the control state, the position of the input head, the contents of each worktape, and the position
of each worktape head. The worktape contents and head position is often represented as a single string
where a special marker indicates the head position. These are captured formally by the definition below.

Definition 2 (Configurations). A configuration c of a Turing machine M = (Q,Σ,Γ, δ, q0, qacc, qrej,t,B)
is a member of the set Q × N × (Γ∗{∗}ΓΓ∗ tω ×N)k 2, where we assume that ∗ 6∈ Γ indicates the position
of the head. For example, a configuration c = (q, i, u1 ∗ a1v1tω, u2 ∗ a2v2tω, h2) is the configuration of a
2-worktape Turing machine, whose control state is currently q, the input head is scanning cell i, worktape i
(i ∈ {1, 2}) contains ui to left of the head, head is scanning symbol ai and vitω are the contents of cells to
the right of the head.

The initial configuration (the configuration of the Turing machine when it starts) is (q0, 0, ∗Btω, . . . , ∗B
tω). An accepting configuration is a member of the set {qacc} × N × (Γ∗{∗}ΓΓ∗tω)k. In other words, it is
a configuration whose control state is qacc. A halting configuration is a configuration whose control state is
either qacc or qrej, i.e., it is a member of the set {qacc, qrej} × N× (Γ∗{∗}ΓΓ∗tω)k.

Having defined configurations, we can formally define how configurations change in a single step of the
Turing machine. We begin by defining a function that updates the worktape. For a worktape u ∗ avtω,
upd(u ∗ avtω, b, d) is the resulting worktape when b is written and the head is moved in direction d. This
can be formmaly defined as

upd(u ∗ avtω, b, d) =

 ub ∗ ttω if d = +1 and v = ε
ub ∗ cv′tω if d = +1 and v = cv′

u′ ∗ cbvtω if d = −1 and u = u′c

Recall also that for a finite string w ∈ Γ∗, w[i] denotes the ith symbol in the string. We can extend this
notion to tape contents that are sequences of the form wtω as follows.

w tω [i] =

{
w[i] if i < |w|
t otherwise

Definition 3 (Computation Step). Consider configurations c1 = (q1, i1, u1 ∗ a1v1, . . . uk ∗ akvk) and c2 =
(q2, i2, t1, . . . tk) of Turing machine M = (Q,Σ,Γ, δ, q0, qacc, qrej,t,B). Let the input string be w. We say

c1
o7−→ c2 (machine M moves from configuration c1 to c2 in one step and writes o on the output tape) if

the following conditions hold. Let δ(q1, w tω [i1], a1, . . . ak) = (p, d0, b1, d1, . . . bk, dk). Then,

• q2 = p, and i2 = i1 + d1,

• for each i, ti = upd(ui ∗ aivi, bi, di)

When the output symbol written during a step is not important, we will write c(1) 7−→ c(2) to indicate
a step from c(1) to c(2).

Having defined how the configuration of a Turing machine changes in each step, we can define the result
of a computation on an input.

Definition 4 (Computation). A computation of Turing machine M on input w, is a sequence of configura-
tions c1,c2, . . .cm such that c1 is the initial configuration of M , and for each i, ci 7−→ ci+1.

Definition 5 (Acceptance). An input w is accepted by Turing machine M if there is a computation
c1,c2, . . .cm such that cm is an accepting configuration.

The language recognized/accepted by M is L(M) = {w | w is accepted by M}. We say that a language
A ⊆ Σ∗ is accepted/recognized by M if L(M) = A.

2tω is an infinite sequence of blank symbols. Recall that almost all cells contain t, and so the tape contents is a string of
the form utω , where u is initial portion of the tape containing some non-blank symbols.

3

Definition 6 (Halting). A Turing machine M is said halt on input w if there is a computation c1,c2, . . .cm

such that cm is a halting configuration.

The Turing machine model we introduced with an output tape can be used to compute (partial) functions
as follows.

Definition 7 (Function Computation). The partial function computed by a Turing machine M , denoted

fM , is as follows. If on input w, M has a halting computation c1
o17−→ c2

o27−→ · · · om−17−→ cm then fM (w) is
defined and equal to o1o2 · · · om−1. On inputs w such that M does not halt, fM (w) is undefined.

We say that a (partial) function g is computable if there is a Turing machine M such that for every w,
g(w) is defined if and only if fM (w) is defined, and whenever g(w) is defined, g(w) = fM (w).

Most of the time we will be considering Turing machines that accept or recognize languages, rather than
those that compute functions. In this context, the symbols written on the output tape don’t matter, and so
we will often ignore the output tape when describing transitions and computations of such machines.

2 Church-Turing Thesis

The Turing machine model introduced in the previous section, is a cannonical model to capture mechanical
computation. The Church-Turing thesis embodies this statement by saying that anything solvable using a
mechanical procedure can be solved using a Turing machine. Our belief in the Church-Turing thesis is based
on decades of research in alternate models of computation, which all have turned out to be computationally
equivalent to Turing machines. Some of these models include the following.

• Non-Turing machine models: Random Access Machines, λ-calculus, type 0 grammars, first-order rea-
soning, π calculus, . . .

• Enhanced Turing machine models: Turing machines with multiple 2-way infinite tapes, nondetermin-
istic Turing machines, probabilistic Turing machines, quantum Turing machines, . . .

• Restricted Turing machine models: Single tape Turing machines, Queue machines, 2-stack machines,
2-counter machines, . . .

We will choose to highlight two of these results, that will play a role in our future discussions. The first is
the observation that a one worktape Turing machine is computationally as powerful as the multi-worktape
model introduced in Definition 1.

Theorem 8. For any k worktape Turing machine M , there is a Turing machine with a single worktape
single(M) such that L(M) = L(single(M)) and fM = fsingle(M)

3.

Proof of Theorem 8 can be found in any standard textbook and its precise details are skipped. The
idea behind the proof is as follows. The single worktape machine single(M) will simulate the steps of the
k-worktape machine M on any input. But in order to simulate M , single(M) needs to keep track of M ’s
configuration at each step. That means keeping track of M ’s state, its worktape contents, and its tape head.
This single(M) accomplishes by storing M ’s state in its own state, and the contents of all k worktapes of M
(including the head positions) on the single worktape of single(M). In general, cell i of the single worktape,
stores cell (i÷ k) + 1 of tape i mod k; here i÷m denotes the quotient when i is divided by m and i mod m
denotes the remainder. Then to simulate a single step of M , single(M) will make multiple passes over its
single worktape, to first identify the symbols on each tape read by M to determine the transition to take,
and then update the contents of the tape according to the transition.

The second result relates to the nondeterministic Turing machines. The Turing machine model introduced
in Definition 1 is deterministic, in the sense that at any given time during the computation of the machine,

3For partial functions f and g, we write f = g to indicate that f and g have the same domains (i.e., they are defined for
exactly the same elements), and further when f(x) is defined, f(x) = g(x).

4

there is at most on possible transition the machine can take. Nondeterminism, on the other hand, is the
computational paradigm where the computing device, at each step, may have multiple possible transitions
to choose from. As a consequence, on a given input the machine may have multiple computations, and the
machine is said to accept an input, if any one of these computations leads to an accepting configuration.
Formally, we can define a nondeterministic Turing machine as follows.

Definition 9. A nondeterministic Turing machine with k-worktapes (and one input tape 4) is a tuple
M = (Q,Σ,Γ, δ, q0, qacc, qrej,t,B), where Q,Σ,Γ, q0, qacc, qrej,t,B are just like that for deterministic Turing
machine, and

δ : (Q \ {qacc, qrej})× Γk+1 → 2Q×{−1,+1}×(Γ×{−1,+1})k

is the transition function. The transition function, given current state and symbols read on the input and
worktapes, returns a set of possible next states, direction to move the input head, and symbols to be written
and direction to move the head in for each worktape.

The definition of configurations, initial configuration, accepting and halting configurations is the same
as in Definition 2. The definitions of computation step (Definition 3), computation (Definition 4), and
acceptance and language recognized (Definition 5) are also the same. Hence we skip defining these formally.

Every deterministic Turing machine is a special kind of nondeterministic machine, namely, one which
has the property that at each time step there is at most one transition enable. One of the important results
concerning nondeterministic Turing machines is that the converse is also true, i.e., nondeterministic Turing
machines are not more powerful than deterministic Turing machines.

Theorem 10. For every nondeterministic Turing machine N , there is a deterministic Turing machine
det(N) such that L(N) = L(det(N)).

A detailed proof of Theorem 10 is skipped. It can be found in any standard textbook in theory of
computation. The broad idea behind the result is the observation that once the length of computation,
and the nondeterministic choices at each step are fixed, a deterministic machine can simulate N for that
length, on those choices. Thus, the deterministic Turing machine det(N) simulates N for increasingly longer
computations, and for each length, det(N) will cycle through all possible nondeterministic choices at each
step. If any of these computations is accepting for N , then det(N) will halt and accept.

3 Recursive and Recursively Enumerable Languages

The Church-Turing thesis establishes the cannonicity of the Turing machine as a model of mechanical com-
putation. The collection of problems solvable on Turing machines is, therefore, worthy of study. It worth
noting that when a Turing machine M is run on an input string w there are 3 possible outcomes — M
may (halt and) accept w, M may (halt and) reject w, or M may not halt on w (and therefore not accept).
Depending on how a Turing machine behaves we can define two different classes of problems solvable on a
Turing machine.

Definition 11. A language A is recursively enumerable/semi-decidable if there is a Turing machine M such
that A = L(M).

A language A is recursive/decidable if there is a Turing machineM that halts on all inputs and A = L(M).

Observe that when a problem A is recursive/decidable, it has a special algorithm that solves it and
in addition always halts, i.e., on inputs not in A, this specialized algorithm explicitly rejects. Thus, by
definition, every recusive language is also recursively enumerable.

Proposition 12. If A recursive then A is recursively enumerable.

4We assume there is no output tape for a nondeterministic Turing machine since such machines are used for function
computation.

5

We will denote the collection of recursive languages as REC and the collection of all recursively enumerable
languages as RE; thus, Proposition 12 can be seen as saying that REC ⊆ RE. The collection of recursive
and recursively enumerable languages enjoy some closure properties that are worth recalling.

Theorem 13. REC is closed under all Boolean operations while RE is closed under monotone Boolean
operations. That is,

• If A,B ∈ RE, then A ∪B and A ∩B are also in RE.

• If A,B ∈ REC, then A, A ∪B, and A ∩B are all in REC.

Proof. We will focus on the two most interesting observations in Theorem 13; the rest we leave as an exercise
to the reader. The first observation we will prove is the closure of RE under union. Let us assume MA and
MB are Turing machines recognizing A and B, respectively. The computational problem A ∪B asks one to
determine if a given input string w belongs to either A or B. We could determine membership in A and B
by running MA and MB , respectively, but we need to be careful about how we run MA and MB . Suppose
we choose to first run MA on w and then run MB on w, then we could run into problems. For example,
consider the situation where MA does not halt on w, but w ∈ B. Then, running MA followed by MB will
never run MB and therefore never accept, eventhough w ∈ A ∪ B. Switching the order of running MA and
MB also does not help. What one needs to instead do is, to run MA and MB simultaneously on w. How
does one MA and MB at the same time? There are many ways to achieve this. One way is to initially run
one step of MA and then one step of MB on w from the initial configuration. If either them accept, the
algorithm for A∪B accepts. If not, it will run MA for two steps, and MB for two steps, again starting from
the respective initial configurations. Again, the algorithm for A ∪ B accepts if either simulation accepts. If
not the computations of MA and MB are increased by one more step, and this process continue, until at
some point one of them accepts.

The second result we would like to focus on is the observation that REC is closed under complementation.
Let A ∈ REC and let M be a Turing machine that halts on all inputs and L(M) = A. The algorthm M for
A, runs M on input w, and if M accepts it rejects and if M rejects then it accepts. Notice that L(M) = A
only because M halts on all inputs — if M does on halt on (say) w, then w ∈ A but M would never acceot
w!

The following theorem is a useful way to prove that a problem is decidable.

Theorem 14. A is recursive if and only if A and A are recurisvely enumerable.

Proof. If A ∈ REC then A ∈ REC by Theorem 13. Then both A and A are recursively enumerable by
Proposition 12.

Conversely, suppose A and A are recognized by MA and MA respectively. The recursively algorithm M
for A, on a given input w, will run both MA and MA simultaneously (as in the proof of Theorem 13), and
accept if either MA accepts or MA rejects. Notice, that any given input w belongs to either A or A, and
therefore at least one out of MA and MA is guaranteed to halt on each input. Therefore M will always
halt.

Encodings. Every object (graphs, programs, Turing machines, etc.) can be encoded as a binary string.
The details of the encoding scheme itself are not important, but it should be simple enough that the data
associated with the object should be easily recoverable by reading the binary encoding. For example, one
should be able to reconstruct the vertices and edges of a graph from its encoding, or one should be able
to reconstruct the states, transitions, etc. of a Turing machine from its encoding. For a list of objects
O1, O2, . . . On, we will use 〈O1, O2, . . . On〉 to denote their binary encoding. In particular, for a Turing
machine M , 〈M〉 is its encoding as binary string. Conversely, for a binary string x, Mx denotes the Turing
machine whose encoding is the string x.

Once we establish an encoding scheme, we can construct a Universal Turing machine, which is an inter-
preter that given an encoding of a Turing machine M and an input w, can simulate the execution of M on

6

the input string w. This is an extremely important observation that establishes the recursive enumerability
of the membership problem for Turing machines.

Theorem 15. There is a Turing machine U (called the universal Turing machine) that recognizes the
language MP = {〈M,w〉 | w ∈ L(M)}. In other words, MP ∈ RE.

All decision problems/languages are not recursively enumerable. Using Cantor’s diagonalization tech-
nique, one can establish the following result.

Theorem 16. The language K = {x | x 6∈ L(Mx)} is not recursively enumerable.

Proof. The proof of Theorem 16 relies on a diagonalization argument to show that the language of every
Turing machine differs from K, and therefore K is not recusrively enumerable.

Consider an arbitrary Turing machine Mx whose encoding as a binary string is x. We will show that
L(Mx) 6= K, thereby proving the theorem. Observe that if x ∈ L(Mx) then by definition x 6∈ K and if
x 6∈ L(Mx) then again by definition x ∈ K. Therefore x ∈ (K \ L(Mx)) ∪ (L(Mx) \ K) 6= ∅.

4 Reductions

Theorem 16 is the first result that establishes that there are problems that are computationally difficult.
Further results on the computational hardness of problems are usually established using the notion of reduc-
tions. Reductions demonstrate how one problem can be converted into another in such a way that a solution
to the second problem can be used to solve the first. Formally, it is defined as follows.

Definition 17. A (many-one/mapping) reduction from A to B is a computable (total) function f : Σ∗ → Σ∗

sush that for any input string w,
w ∈ A if and only if f(w) ∈ B

In this case, we say A is (many-one/mapping) reducible to B and we denote it by A ≤m B.

Since many-one/mapping reductions are the only form of reduction we will stufy, we will drop the
adjective “many-one” and “mapping” and simply call these reductions. Let us look at a couple of examples
of reductions.

Example 18. Let us consider the complement of MP, i.e., MP = {〈M,w〉 |w 6∈ L(M)}. One can show that
K ≤m MP as follows. The reduction f is the following function: f(x) = 〈x, x〉.

To prove that f is a reduction, we need to argue two things. First that f is computable, i.e., we need
to come up with a Turing machine Mf that always halts and produces the string f(x) on input x. In this
example, to construct f(x), we simply need to “copy” the string x which clearly is a computable function.
Second we need to argue that x ∈ K iff f(x) ∈ MP. This can be argues as follows: x ∈ K iff x 6∈ L(Mx)
(definition of K) iff 〈x, x〉 ∈ MP (definition of MP) iff f(x) ∈ MP (definition of f).

Example 19. Consider the problem

HP = {〈M,w〉 |M does not halt on w}.

We will prove that K ≤m HP.
Given a binary string x, let us consider the following program Hx.

Hx(w)
result = Mx(x)
if (result = accept)

return accept (* on input w *)

else

while true do

7

Proof.

Algorithm for Problem A

Reduction f
Algorithm for

Problem B

w f(w)
yes

no

Figure 2: Schematic argument for Theorem 20.

In other words, the program Hx on input w, ignores its input and runs the program Mx on x. If Mx

halts and accepts x then Hx halts and accepts w. Otherwise, Hx does not halt. Thus, the program Hx halts
on some (all) inputs if and only if x ∈ L(Mx).

Let us now describe the reduction from K to HP: f(x) = 〈Hx, x〉. Observe first that f satisfies the
properties of a reduction because x ∈ K iff x 6∈ L(Mx) iff Hx does not halt on x (and all input strings) iff
〈Hx, x〉 ∈ HP. To establish that f is a reduction, we also need to argue that f is computable. On input
string x, we need a program that produces the source code for Hx (given above) and copies the string x after
the source code. This is clearly computable.

Reductions are a way for one to compare the computational difficulty of problems — if A reduces to B
then A is at most as difficult as B, or B is at least as difficult as A. This is formally captured in the following
proposition.

Theorem 20. If A ≤m B and B is recursively enumerable (recursive) then A is recursively enumerable
(recursive).

Let f be a reduction from A to B that is computed by Turing machine Mf , and let MB be a Turing
machine that recognizes B. The algorithm for A is schematically shown in Figure 2 — on input w, compute
f(w) using Mf and run MB on f(w). Notice that this algorithm always halts if MB always halts. Thus, if
B is recursive then A is also recursive.

Theorem 20 can be seen to informally say “if A reduces to B and B is computationally easy then A
is computationally easy”. It is often used in the contrapositive sense, it is useful to explicitly state this
observation.

Corollary 21. If A ≤m B and A is not recursively enumerable (undecidable) then B is not recursively
enumerable (undecidable).

We can use the above corollary to argue the computational hardness of some problems.

Theorem 22. MP is not recursively enumerable. Therefore, MP is undecidable.

Proof. Example 18 establishes that K ≤m MP. Together with Theorem ?? and Corollary 21, we can
conclude that MP is not recursively enumerable. Finally, since MP is not recursively enumerable, Theorem 14
establishes that MP is not decidable/recursive.

Since MP ∈ RE (Theorem 15) and MP 6∈ RE (Theorem 22), we have a witness to the fact that RE is not
closed under complementation. Just like Theorem 22, we could establish similar properties for the halting
problem.

Theorem 23. HP is not recursively enumerable. Therefore, HP = {〈M,w〉 |M halts on w} is undecidable.

Proof. Follows from Example 19 and the argument in the proof of Theorem 22.

8

Reductions are transitive and hence a pre-order ; thus, the use of ≤ to denote them is justified.

Theorem 24. The following properties hold for reductions.

• If A ≤m B then A ≤m B.

• If A ≤m B and B ≤m C then A ≤m C.

Proof. If f is a reduction from A to B, then one can argue that f is also a reduction from A to B. And, if f
is a reduction from A to B and g a reduction from B to C then g◦f is a reductino from A to C. Establishing
these observations to prove the theorem is left as an exercise.

Having found a lens to compare the computational difficulty of two problems (namely, reductions), one
can use them to argue that a problem is at least as difficult as a whole collection of problems, or something
is the “hardest” problem in a collection. This leads us to notions of hardness and completeness.

Definition 25. A language A is RE-hard if for every B ∈ RE, B ≤m A.
A language A is RE-complete if A is RE-hard and A ∈ RE.

Thus, an RE-complete problem is the hardest problem that is recursively enumerable, while an RE-hard
problem is something that is at least as hard as any other RE problem. Are there examples of such problems?
It turns out that MP, HP, and K are all RE-complete. We establish this for MP in the following theorem.

Theorem 26. MP is RE-complete.

Proof. Membership in RE has been established in Theorem 15. So all we need to prove is the hardness. Let
B be any recursively enumerable language, and let M be a Turing machine recognizing B. The reduction
from B to MP is as follows: f(w) = 〈M,w〉. It is easy to see that w ∈ B iff w ∈ L(M) (since M recognizes B)
iff 〈M,w〉 ∈ MP (definition of MP) iff f(w) ∈ MP (definition of f). It is also easy to see that f is computable
— in order to compute f(w), all we need to do is prepend the source code of M .

Establishing RE-hardness of a problem is sufficient to guarantee it’s undecidability.

Theorem 27. If A is RE-hard then A is undecidable.

Proof. If A is RE-hard then since MP ∈ RE, we have MP ≤m A. Since MP is undecidable (Theorem 22),
by properties of a reduction (Corollary 21) A is undecidable.

9

