

CS498 MP Logic in Computer Science Fall 2020

Madhusudan Parthasarathy (Madhu)

Lectures: Tue, Thu: 11am-12:15pm (Online/Zoom)

Zoom: http://piazza.com/illinois/fall2020/cs498mp

Website: http://courses.engr.illinois.edu/cs498mp3/

Piazza: http://piazza.com/illinois/fall2020/cs498mp Access code: herbrand

Prerequisites:

Mathematical maturity; discrete math (CS173).

Theory of computation (as covered in CS374) is preferred.

Talk to me if you don't have this background.

What's logic?

- Logic is the study of the principles of valid inference and demonstration.
- Logic is the study of the structure of arguments.
- Study of formal inference.
- Logic: Syntax + Semantics + Inference (form) (meaning) (reasoning)
- "Contrariwise," ... "if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic."
 - Tweedledum Through the Looking Glass, Lewis Carroll

Aims of this course

- Primary aims:
 - Mathematical and logical maturity;
 understanding how humans and computers
 reason formally

Formal reasoning and formal arguments

Various ways in which logic is a foundational aspect of computer science

Aims of this course

- More concretely:
 - Fundamentals of mathematical logic
 - Propositional logic and predicate logic
 - Model theory and proof theory
 - Sound and complete proof systems
 - Gödel's completeness and incompleteness theorems
 - Logic and computability
 - Computability ~ Proofs
 - Finite model theory (computational complexity using logic)
 - Automated reasoning
 - Propositional reasoning using SAT solvers
 - Quantifier elimination
 - Decidability using interpretations
 - Decidable theories supported by SMT solvers
 - Decidability of combined theories
 - Complete reasoning using systematic quantifier instantiation
 - Reasoning using induction

- Beginnings
 - Aristotle (~300 B CE)
 - Earliest formal study of logic
 - Rhetoric, syllogism, philosophy, geometry
 - Furthered by Islamic logicians
 - Logic in India
 - Nyaya and Vaisheshika (2 CE)
 - Ontology and epistemiology; obtaining valid knowledge
 - Logic in China
 - Mozi school (~400 B CE)

- Syllogism
 - Every man is mortal
 - Socrates is a man
 - Conclude: Socrates is mortal

- "man", "mortal", "Socrates" not important
 - Every M is D
 - S is an M
 - Conclude: S is D

Forall x. $M(x) \rightarrow D(x)$ M(S)

- The algebraic school
 - George Boole and others (end of 19th century)
 - Algebraic structure of formulas; Boolean algebra

- Frege developed an elaborate formal language
 Quantifiers, "predicate calculus", number-theory -> logic
- Russel's paradox
- Principia Mathematica (Russel-Whitehead)(1910-1913)

- The mathematical school (early 20th century)
 - Dedekind, Peano, Hilbert, Heyton, Zermelo, Tarski
 - Axiomatize branches of math (geometry, arithmetic, set-theory)
 - Zermelo: Axiomatization of set-theory
 - The Hilbert program: formalization of all of mathematics in axiomatic form, with a proof of consistency using "finitary" methods.
 - Godel's theorems:
 - Every FO sentence can be deduced in common deductive systems.
 Godel's completeness theorem
 - Any axiomatization that includes arithmetic must either be unsound or incomplete (i.e. there is a sentence neither provable nor disprovable)
 Godel's incompleteness theorem

- The mathematical school (20th century)
 - Tarski: Logician extraoradinaire (~ 2500 papers!)
 - Completeness, truth, definability, decidability
 - Alonzo Church, and students Kleene and Henkin
 - Church's thesis of computability
 - First-order logic is undecidable

Post WW-II

- model theory
 - Study of mathematical structures (groups, etc.) using logic
- proof theory
 - Study of axiom systems, inference systems, proofs
- computability theory
 - Relationship of logic to computability/complexity
- set theory
 - foundations of mathematics, axiomatic set theory
 - Cohen: independence of continuum hypo and independence of axiom of choice from ZF axioms.
 - constructivism
- applications of logic in computer science
 - applied logic to AI, databases, verification, aided by tools like automated and semi-automated theorem provers, and ML

Logic and computability

- Turing's machines (1941):
 - Formal mechanical notion of computation using "finite" means
 - Church-Turing thesis:
 - All computable languages are Turing-machine computable
 - Gödel's incompleteness result is about non-existence of proofs using diagonalization:
 - A proof system is only a particular form of computation!
 - Existence of a sound and complete proof system shows a theory is recursively enumerable (computed by TM that may not halt on all inputs)
 - A deep connection between logic and computability

Logic and computational complexity

- Fundamental idea (Fagin): Descriptive complexity
 - An algorithmic problem can be logically described.
 - The logic used determines the computational complexity of the problem!
 - Eg. Existential SO ~ NPLeast-fix-point over ordered structures ~ P
 - Field: Finite model theory

Logic in Computer Science

Unusual (and unreasonable!) effectiveness in computer science.

- Computability and proofs
- Computational complexity and descriptive complexity
- Semantics of programming languages (types, type inference, domains and fixpoints, linear logic, etc.)
- Automatic reasoning, theorem provers (CoQ, PVS).
- Specifications for hardware systems (decidable temporal logics LTL/CTL)
- Logics to prove programs correct (Hoare-logic, pre-post conditions)
 - Huge impact in verifying systems
 - Modern software validation tools rely on decidable logics for abstraction and verification
 - Large number of decidable theories; combining decidable theories; automatic theorem provers (eg. Z3 from MSR).
- Proof-carrying code
- Database theory: Queries are simply formulas! SQL ~ FOL
- Logic Programming

Unusual effectiveness of logic in CS

• E.P. Wigner's Nobel prize talk, 1963:

"On the Unreasonable Effectiveness of Mathematics in the Natural Sciences"

- On the Unusual Effectiveness of Logic in Computer Science
 - Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu

Logic and Al

- Al in the past (till about 2000) was obsessed with logic, but was too early.
- We need to first be able to detect cats in a picture, before understanding more complex thinking!
- Daniel Kahneman's "Thinking, Fast and Slow"
- Advent of Machine Learning --- captures "quick"/intuitive/unexplainable thinking
- But humans think symbolically too!
- How does symbolic thinking happen?
- Interface between symbolic and "neural" thinking is still a mystery.

Logic in Computer Science: Themes

Theme 1. Classical propositional and predicate logic.

(proof systems, axioms, soundness, completeness, compactness, Gödel's theorems)

Theme 2. Decidable logics.

(QE for reals, finite-model property, decidability of Presburger arithmetic, interpretations, combining decision procedures, SAT/SMT solvers, tools for logic)

Theme 3. Finite model theory.

(descriptive complexity, computational complexity, characterizing complexity classes using logic)

Theme 4. Other logics

Higher-order logics, modal and temporal logics, logics for querying (databases), relational logics, etc.

Administrivia

What's "trivia"?

- Greek education system had "trivium" (three ways):
 - Grammar (mechanics of language)
 - Logic (mechanics of thought and analysis)
 - Rhetoric (mechanics of persuasion)

followed by the "quadrivium":

arithmetic, geometry, music, and astronomy

Administrivia

- Textbooks: None!
 - (No text covers the topics we cover)
 - The following can be useful, however:
 - Enderton: A Mathematical Introduction to Logic
 - Melvin Fitting: First-order logic and Automated Theorem Proving
 - 1 copy in Engg lib; placed on reserve
 - Borger, Gradel, Gurevich: The Classical Decision Problem
 - Huth, Ryan: Logic in Computer Science
 - 2 copies (soon) in Engg lib; placed on reserve
- More resources (book chapters, papers, notes) will be handed out in class and made available online on the course page.
- Lecture notes (handwritten) will be posted online too.
- I'm writing lecture notes for some aspects of the course.

Administrivia

- Homework
 - Roughly one homework set every two weeks (assigned on Tuesdays and due the following Tuesday); may be more often.

- Office hours:
 - To be decided. What suits you?

Projects (for 4 credits)

We could have projects:

Starts somewhere mid-term and ends with the semester.

Either

- A project to read a set of papers and present it in class briefly and write a report
- A project that works on a research-ish problem and tries to build a solution
 - (work in groups, work in something that's close to your research, I can work with you, you can even send it for publication if you get good results.)

Exams

- One midterm and a Final Exam
- Written; logistics of proctoring later.

Other tools

 We will probably use Gradescope for homework

And Piazza for discussions.

Sign up for Piazza!

Look out for emails on these topics.

Survey

Email me:

1) What do you expect to learn in this course?

2) What are your general interests?

HXEN ZJEN Y>X