
CS498JH: Introduction to NLP (Fall 2012)
http://cs.illinois.edu/class/cs498jh

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Office Hours: Wednesday, 12:15-1:15pm

Lecture 15:
Dependency
Grammars

CS498JH: Introduction to NLP

Dependency grammar
Word-word dependencies are a component of many
(most/all?) grammar formalims.

Dependency grammar assumes that syntactic
structure consists only of dependencies.

Many variants. Modern DG began with Tesniere (1959).

DG is often used for free word order languages.

DG is purely descriptive (not a generative system
like CFGs etc.), but certain formal equivalences are
known.

2

CS498JH: Introduction to NLP

What is a dependency?
Dependencies are (labeled) asymetrical binary
relations between two lexical items (words).

There is a syntactic relation between a head H and a
dependent D in a construction C if:
- the head H determines the syntactic category of the

construction C.
- the head H determines the semantic category of the

construction C; D gives semantic specification.
- the head H is obligatory. D may be optional.
- the head selects D and determines whether D is obligatory or

not.
- The form of D depends on the head H (agreement)
- The linear position of D depends on the head H.

3 CS498JH: Introduction to NLP

Head-argument (‘exocentric’): eat sushi
Arguments may be obligatory, but can only occur once.
The head alone cannot necessarily replace the construction.

Head-modifier (‘endocentric’): fresh sushi
Modifiers are optional, and can occur more than once.
The head alone can replace the entire construction.

Head-specifier (‘exocentric’; Tesniere’s transfer): the sushi
Between function words (e.g. prepositions, determiners)
and their arguments. Syntactic head ≠ semantic head

Coordination: (Tesniere’s junction): sushi and sashimi
Unclear where the head is.

Different kinds of dependencies

4

CS498JH: Introduction to NLP

Context-free grammars
CFGs capture only nested dependencies

The dependency graph is a tree
The dependencies do not cross

5 CS498JH: Introduction to NLP

Beyond CFGs:
Nonprojective dependencies

Dependencies: tree with crossing branches
Arise in the following constructions

- (Non-local) scrambling (free word order languages)
Die Pizza hat Klaus versprochen zu bringen
- Extraposition (The guy is coming who is wearing a hat)
- Topicalization (Cheeseburgers, I thought he likes)

6

CS498JH: Introduction to NLP

Dependency structures

Dependencies form a graph over the words in a
sentence.

This graph is connected (every word is a node)
and (typically) acyclic (no loops).

Single-head constraint:
Every node has at most one incoming edge.
This implies that the graph is a rooted tree.

7 CS498JH: Introduction to NLP

Dependency trees and the linear
order of words

Dependency trees do not specify the order of words in
a sentence.
(Sometimes additional linear precedence constraints are introduced).

A dependency tree is projective if there are no
crossing links.

Projective DG is weakly equivalent to CFG.

Parsing is more difficult for non-projective DGs

8

CS498JH: Introduction to NLP

Dependency Treebanks

Dependency treebanks exist for many languages:
Czech
Arabic
Turkish
Danish,
Portuguese
Estonian,
....

Phrase-structure treebanks (e.g. the Penn Treebank) can
also be translated into dependency trees
(although there might be noise in the translation)

9 CS498JH: Introduction to NLP

The Prague Dependency Treebank
Three levels of annotation:

morphological: [<2M tokens]
Lemma (dictionary form) + detailed analysis
(15 categories with many possible values = 4,257 tags)
surface-syntactic (“analytical”): [1.5M tokens]
Labeled dependency tree encoding grammatical functions
(subject, object, conjunct, etc.)
semantic (“tectogrammatical”): [0.8M tokens]
Labeled dependency tree for predicate-argument structure,
information structure, coreference (not all words included)
(39 labels: agent, patient, origin, effect, manner, etc....)

10

CS498JH: Introduction to NLP

Examples: analytical level

11 CS498JH: Introduction to NLP

METU-Sabanci Turkish
Treebank
Very small -- about 5000 sentences
Turkish is an agglutinative language with free word
order:

Dependencies are at the morpheme level

12

CS498JH: Introduction to NLP

[this and prev. example from Kemal Oflazer’s talk at Rochester, April 2007]
13 CS498JH: Introduction to NLP

Dependency or phrase structure
annotation?
No clear consensus which is better.
May depend on the language.

It may also depend on the annotation guidelines:
Early phrase-structure treebanks (Penn Treebank)
are not explicit enough (not all nodes have function tags).
Dependency treebanks (e.g. Sabanci) often omit
long-range dependencies.
They also can’t express scope relations.

14

CS498JH: Introduction to NLP

Parsing algorithms for DG
‘Transition-based’ parsers:

learn a sequence of actions to parse sentences
Models:
State = stack of partially processed items + queue of remaining tokens;
Transitions (actions) = add dependency arcs; stack/queue operations

‘Graph-based’ parsers:
learn a model over dependency graphs
Models:
a function (typically sum) of local attachment scores

15 CS498JH: Introduction to NLP

Transition-based parsing
(Nivre et al.)

16

CS498JH: Introduction to NLP

Transition-based parsing
Transition-based shift-reduce parsing processes
the sentence S= w0w1...wn from left to right.
Unlike CKY, it constructs a single tree.

N.B: this only works for projective dependency trees
Notation:

w0 is a special ROOT token.
VS = {w0, w1, ..., wn} is the vocabulary of the sentence
R is a set of dependency relations

The parser uses three data structures:
σ: a stack of words wi ∈ VS

β: a buffer of words wi ∈ VS

A: a set of dependency arcs (wi, r, wj) ∈ VS × R ×VS

17 CS498JH: Introduction to NLP

Parser configurations (σ, β, A)
Stack σ: a list of words that are partially processed

We push and pop words onto σ
σ|w : w is on top of the stack

The buffer β is the remaining input words
We read words from β and push them onto σ
w|β : w is on top of the buffer

The set of arcs A defines the current tree

Initial configuration: ([w0], [w1,, wn], {})
Terminal configuration: (σ, [], A)

18

CS498JH: Introduction to NLP

Parser actions
SHIFT: push the next input word onto the stack
(σ, wi|β, A) ⇒ (σ|wi, β, A)

LEFT-ARCr: attach wi (top of stack) to wj (top of buffer)
If stack and buffer not empty, wi not Root:
(σ|wi, wj|β, A) ⇒ (σ, wj|β, A ∪ {(wj, r, wi)})

RIGHT-ARCr: attach wj (top of buffer) to wj (top of stack)
Move wj back to the buffer.
If stack and buffer not empty:
(σ|wi, wj|β, A) ⇒ (σ, wi|β, A ∪ {(wi, r, wj)})

19

words that are attached to other
words are fully processed

CS498JH: Introduction to NLP

An example sentence & parse

20

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

CS498JH: Introduction to NLP 21

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

