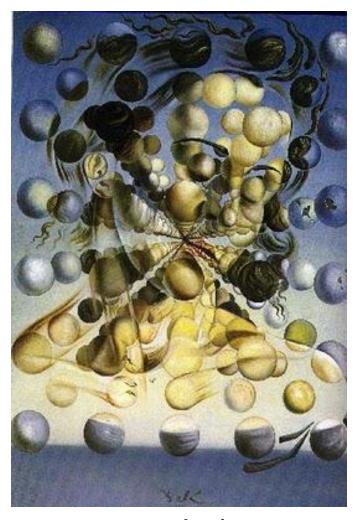
Interest Points



Galatea of the Spheres Salvador Dali

Computational Photography
Derek Hoiem, University of Illinois

Today's class

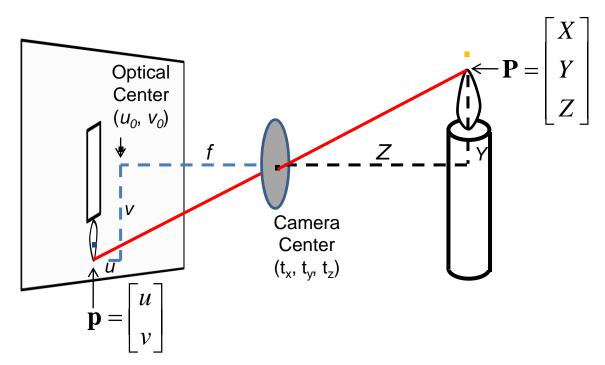
Review of "Modeling the Physical World"

Interest points

Pinhole camera model

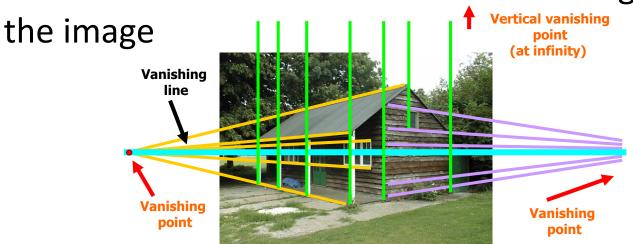
- Linear projection from 3D to 2D
 - Be familiar with projection matrix (focal length, principal point, etc.)

$$x = K[R \ t]X$$

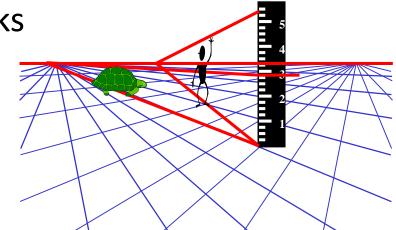


Vanishing points and metrology

Parallel lines in 3D intersect at a vanishing point in



Can measure relative object heights using vanishing point tricks

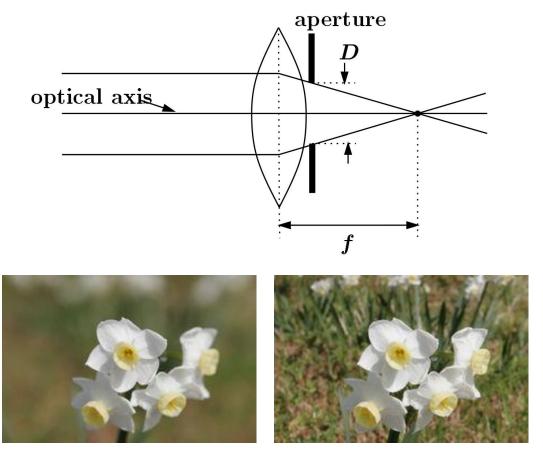


Single-view 3D Reconstruction

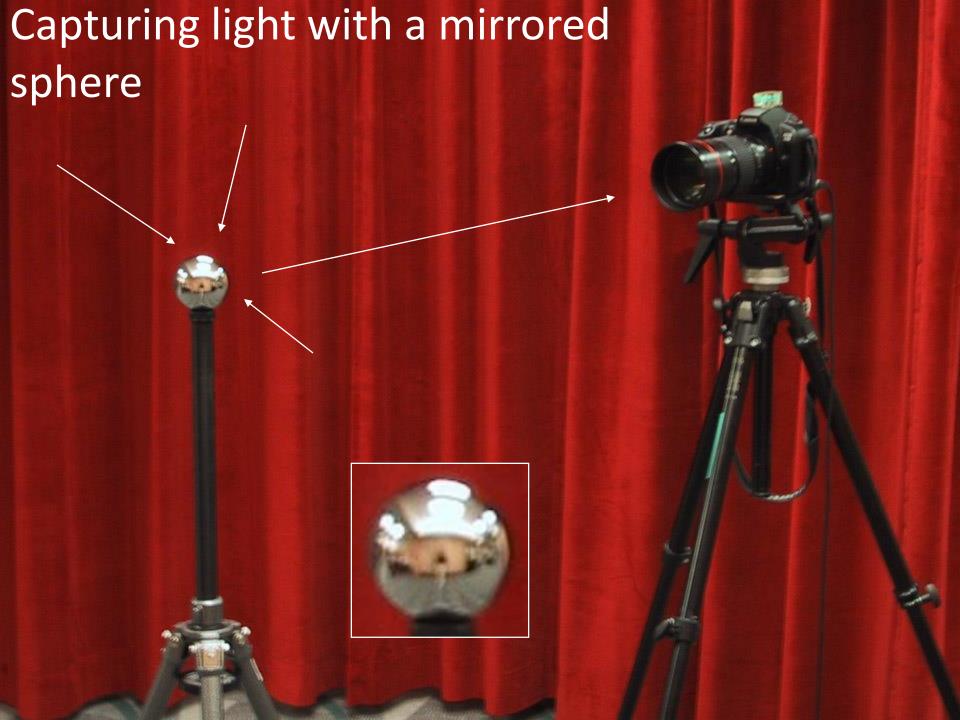
- Technically impossible to go from 2D to 3D, but we can do it with simplifying models
 - Need some interaction or recognition algorithms
 - Uses basic VP tricks and projective geometry

Lens, aperture, focal length

 Aperture size and focal length control amount of exposure needed, depth of field, field of view

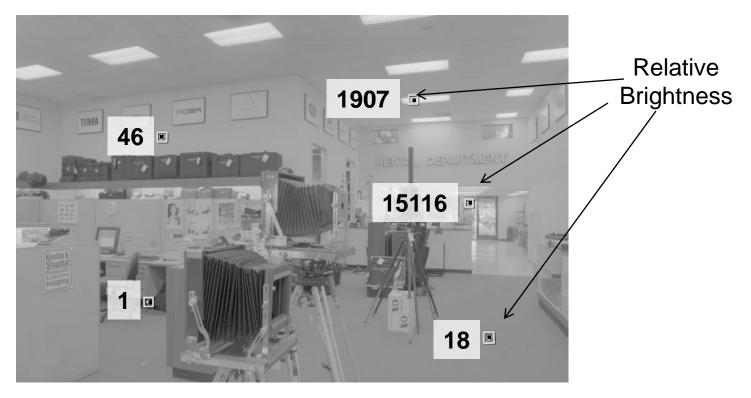


Good explanation: http://www.cambridgeincolour.com/tutorials/depth-of-field.htm



One small snag

- How do we deal with light sources? Sun, lights, etc?
 - They are much, much brighter than the rest of the environment



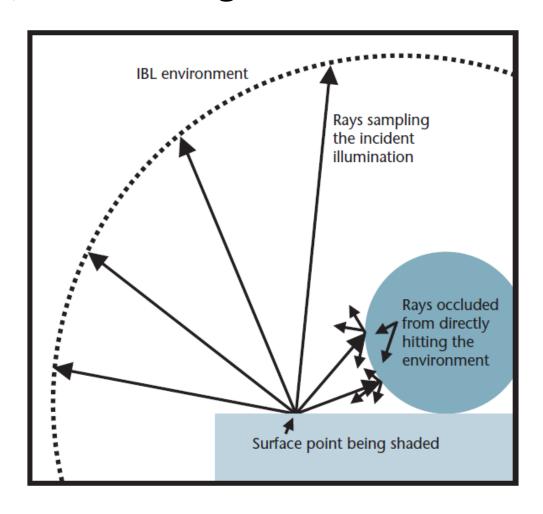
Use High Dynamic Range photography

Key ideas for Image-based Lighting

 Capturing HDR images: needed so that light probes capture full range of radiance

Key ideas for Image-based Lighting

 Relighting: environment map acts as light source, substituting for distant scene



Next section of topics

Correspondence

- How do we find matching patches in two images?
- How can we automatically align two images of the same scene?
- How do we find images with similar content?
- How do we tell if two pictures are of the same person's face?
- How can we detect objects from a particular category?

Applications

- Photo stitching
- Object recognition
- 3D Reconstruction
- Tracking

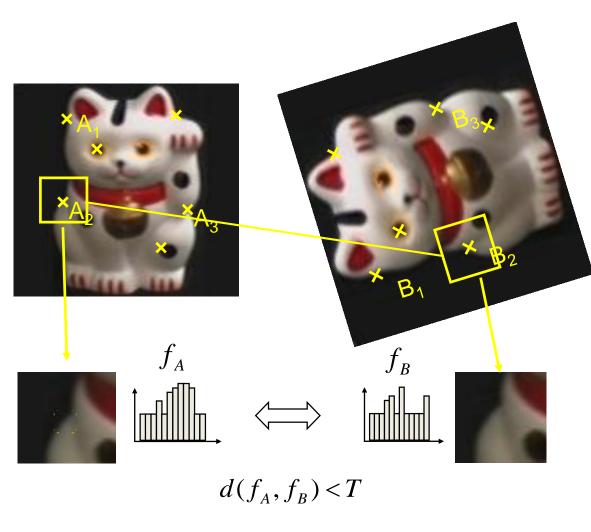
How can we align two pictures?

Case of global transformation

How can we align two pictures?

- Global matching?
 - But what if
 - Not just translation change, but rotation and scale?
 - Only small pieces of the pictures match?

Today: Keypoint Matching



- 1. Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

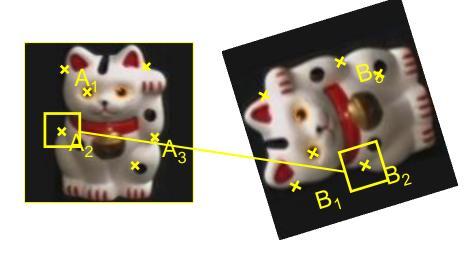
Question

 Why not just take every patch in the original image and find best match in second image?

Goals for Keypoints

Detect points that are repeatable and distinctive

Key trade-offs



Localization

More Points

Robust to occlusion
Works with less texture

More Repeatable

Robust detection Precise localization

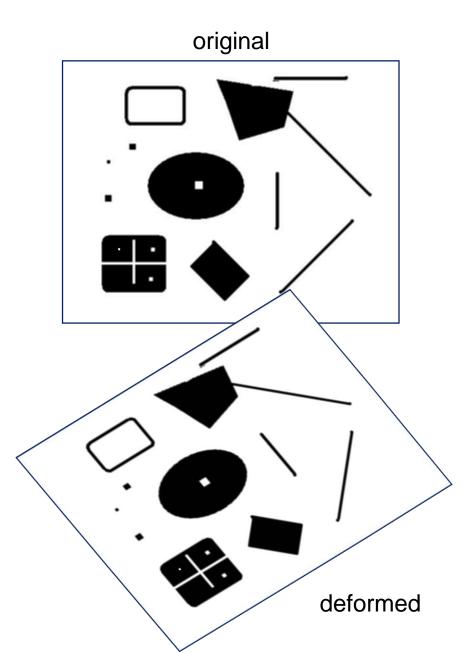
Description

More Robust

Deal with expected variations Maximize correct matches More Selective
Minimize wrong matches

Keypoint localization

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?



Choosing interest points

Where would you tell your friend to meet you?

Choosing interest points

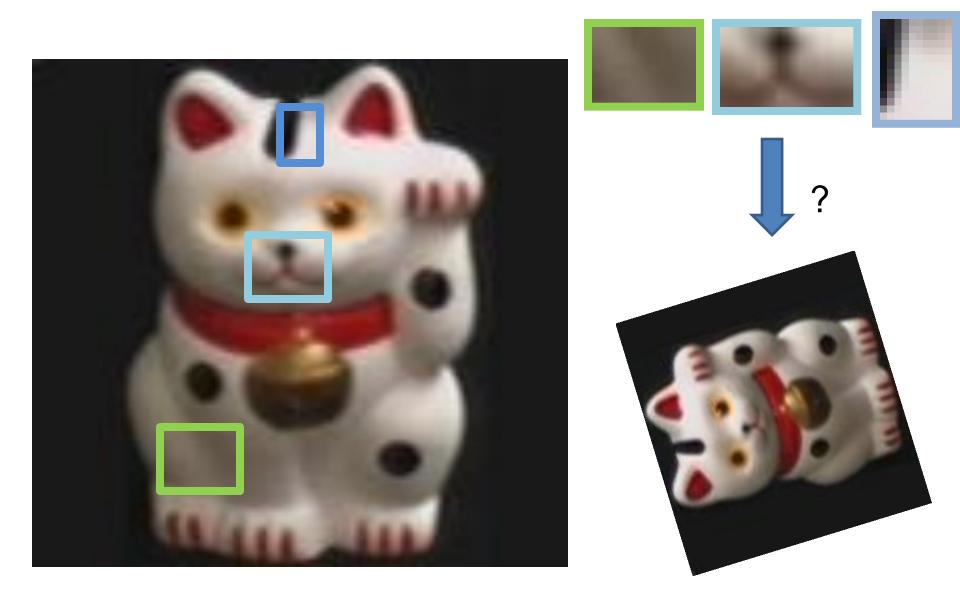
Where would you tell your friend to meet you?

Choosing interest points

Corners

Peaks/Valleys

Which patches are easier to match?



Many Existing Detectors Available

Hessian & Harris

Laplacian, DoG

Harris-/Hessian-Laplace

Harris-/Hessian-Affine

EBR and IBR

MSER

Salient Regions

Others...

[Beaudet '78], [Harris '88]

[Lindeberg '98], [Lowe 1999]

[Mikolajczyk & Schmid '01]

[Mikolajczyk & Schmid '04]

[Tuytelaars & Van Gool '04]

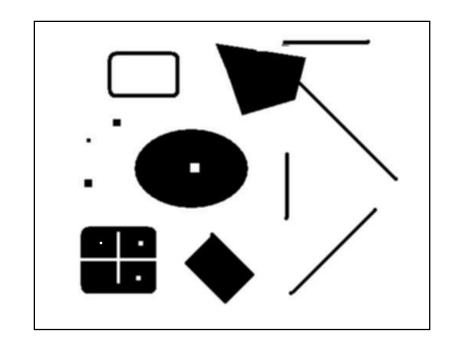
[Matas '02]

[Kadir & Brady '01]

Harris Detector [Harris88]

Second moment matrix

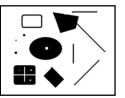
$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$



Intuition: Search for local neighborhoods where the image gradient has two main directions (eigenvectors).

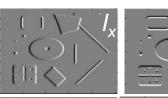
Harris Detector [Harris88]

Second moment matrix



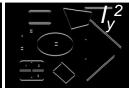
$$\mu(\sigma_{I}, \sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
 1. Image derivative

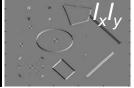
derivatives



$$\det M = \lambda_1 \lambda_2$$
$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

2. Square of derivatives





3. Gaussian filter $g(\sigma_i)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] =$$

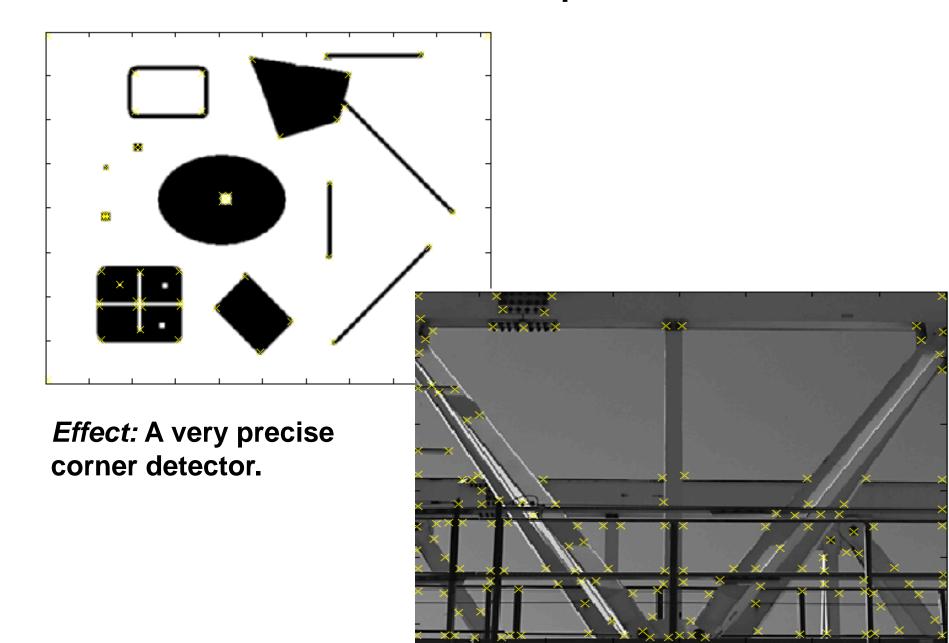
$$g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Matlab code for Harris Detector

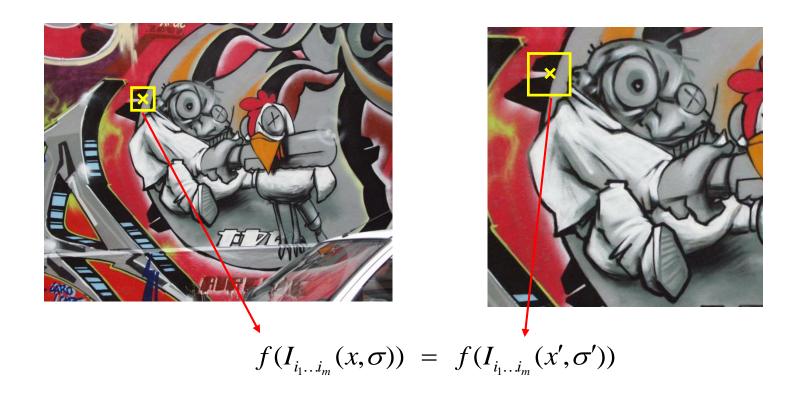
```
function [ptx, pty] = detectKeypoints(im, alpha, N)
% get harris function
qfil = fspecial('qaussian', [7 7], 1); % smoothing filter
imblur = imfilter(im, qfil); % smooth image
[Ix, Iy] = gradient(imblur); % compute gradient
Ixx = imfilter(Ix.*Ix, qfil); % compute smoothed x-gradient sq
Iyy = imfilter(Iy.*Iy, qfil); % compute smoothed y-gradient sq
Ixy = imfilter(Ix.*Iy, qfil);
har = Ixx.*Iyy - Ixy.*Ixy - alpha*(Ixx+Iyy).^2; % cornerness
% get local maxima within 7x7 window
maxv = ordfilt2(har, 49, ones(7)); % sorts values in each window
maxv2 = ordfilt2(har, 48, ones(7));
ind = find(maxv==har & maxv~=maxv2);
% get top N points
[sv, sind] = sort(har(ind), 'descend');
sind = ind(sind);
[pty, ptx] = ind2sub(size(im), sind(1:min(N, numel(sind))));
```

Harris Detector – Responses [Harris88]



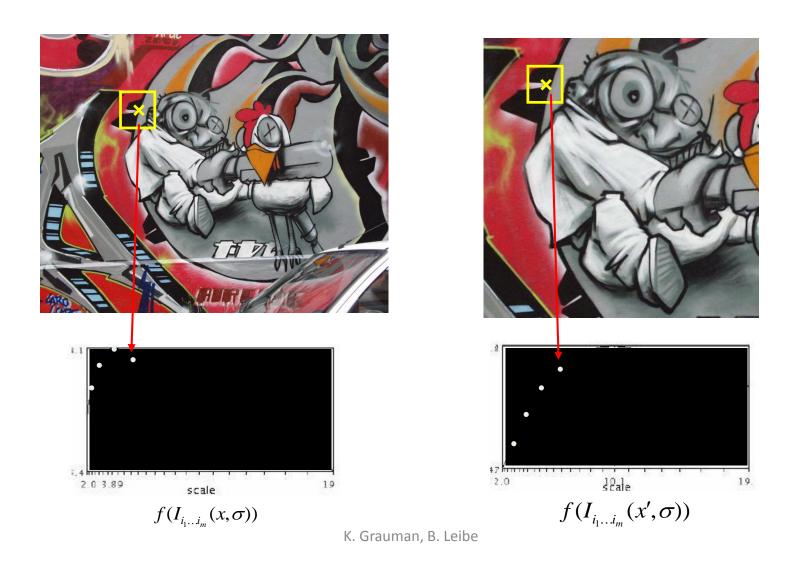
Harris Detector – Responses [Harris88]

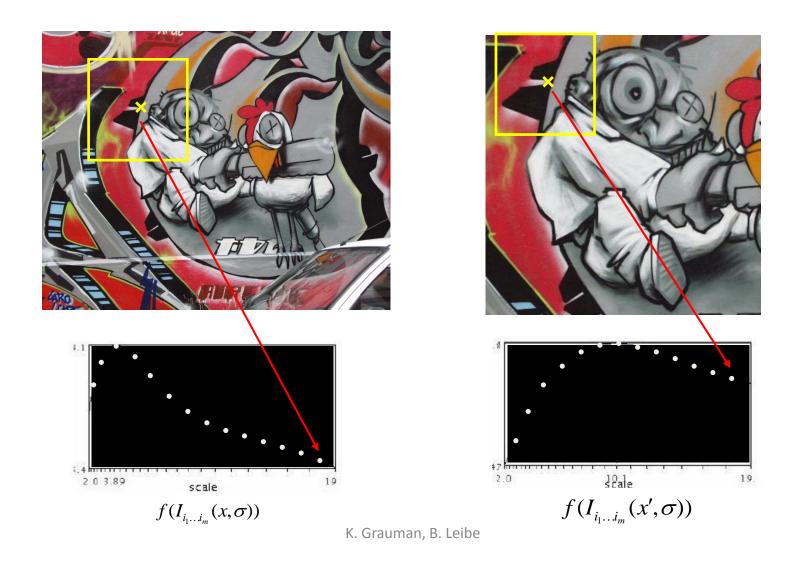
So far: can localize in x-y, but not scale

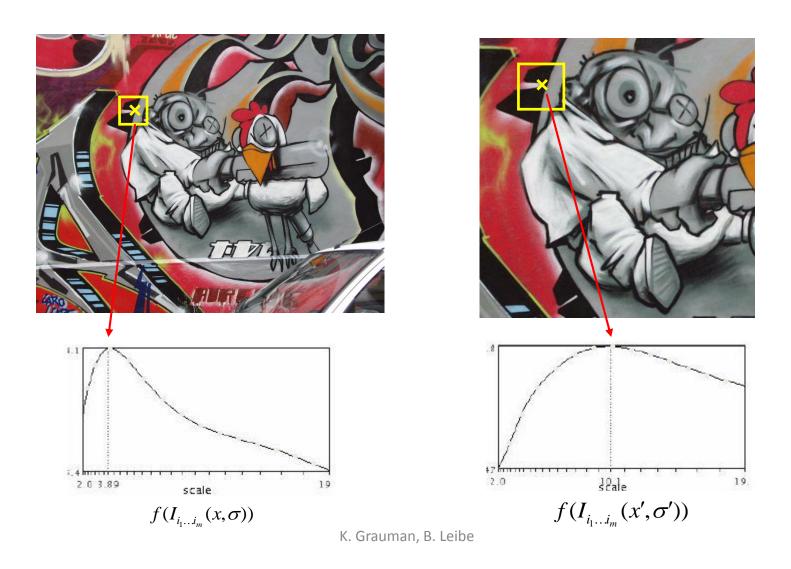


How to find corresponding patch sizes?



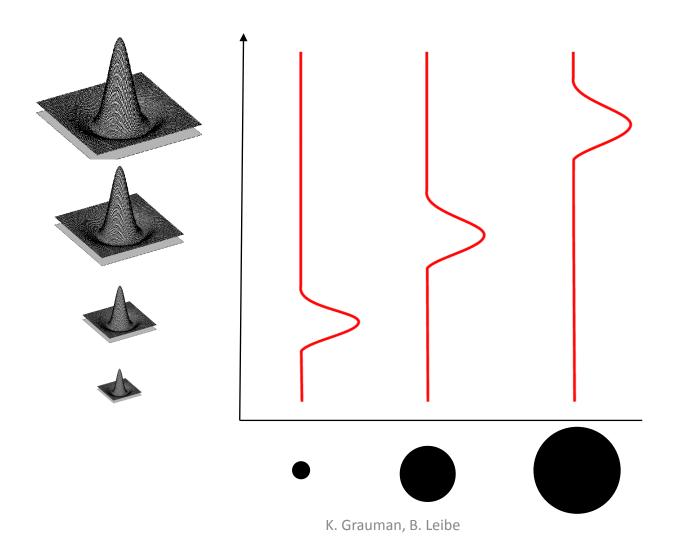




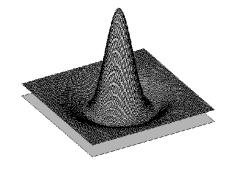


What Is A Useful Signature Function?

• Difference of Gaussian = "blob" detector



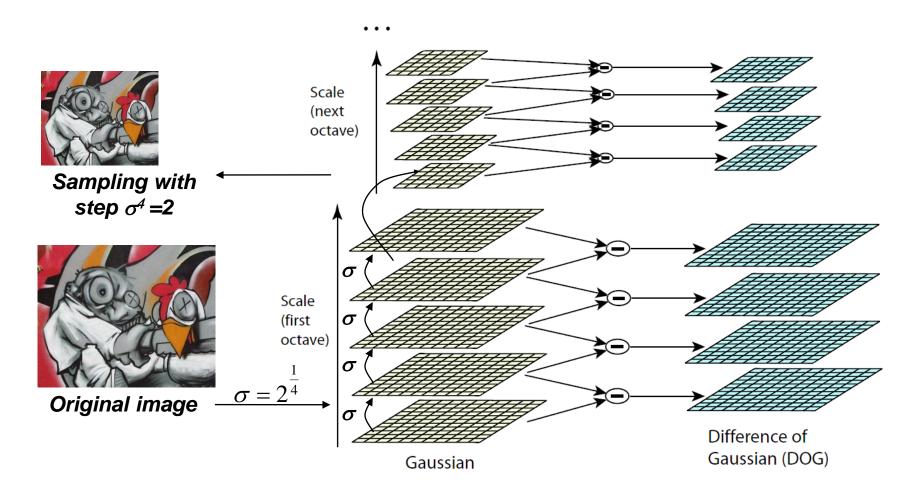
Difference-of-Gaussian (DoG)



K. Grauman, B. Leibe

DoG – Efficient Computation

Computation in Gaussian scale pyramid



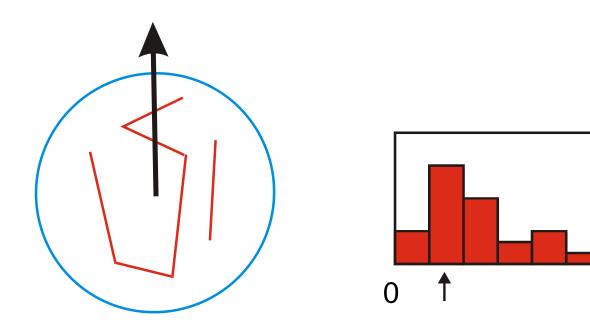
Results: Lowe's DoG

Orientation Normalization

Compute orientation histogram

[Lowe, SIFT, 1999]

- Select dominant orientation
- Normalize: rotate to fixed orientation



Available at a web site near you...

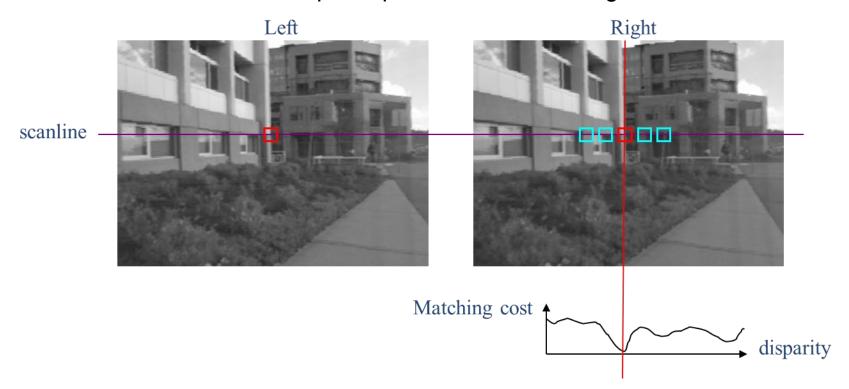
- For most local feature detectors, executables are available online:
 - http://robots.ox.ac.uk/~vgg/research/affine
 - http://www.cs.ubc.ca/~lowe/keypoints/
 - http://www.vision.ee.ethz.ch/~surf

How do we describe the keypoint?

Descriptors for local matching

 Image patch (plain intensities or gradientbased features)

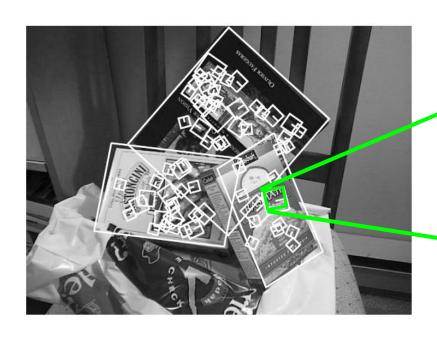
Example of patch-based matching for stereo

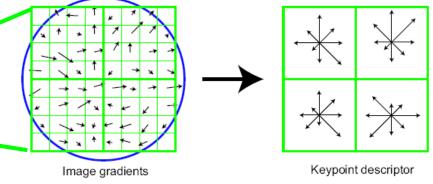


Local descriptors for matching different views/times

- The ideal descriptor should be
 - Robust to expected deformation
 - Distinctive
 - Compact
 - Efficient to compute
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Local Descriptors: SIFT Descriptor





Histogram of oriented gradients

- Captures important texture information
- Robust to small translations / affine deformations

[Lowe, ICCV 1999]

Details of Lowe's SIFT algorithm

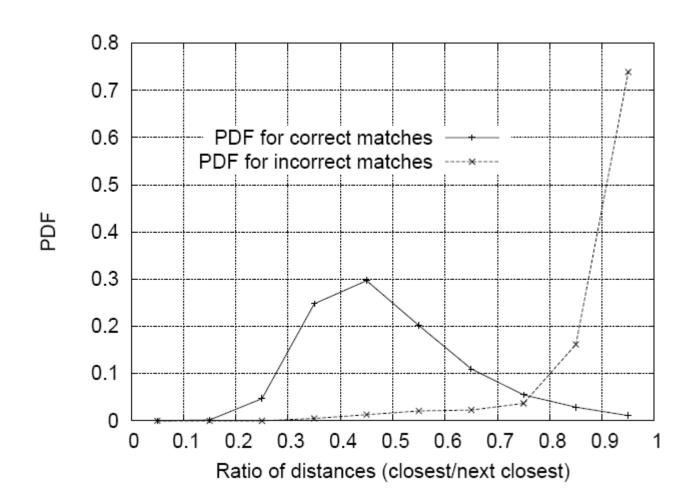
- Run DoG detector
 - Find maxima in location/scale space
 - Remove edge points
- Find all major orientations

 $\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}$ $\frac{\text{Tr}(\mathbf{H})^2}{\text{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$

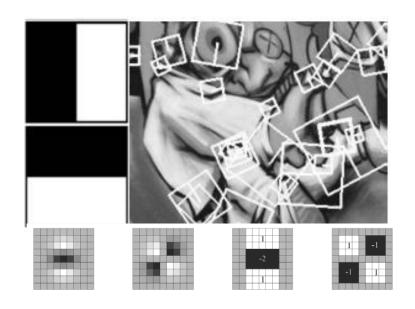
- Bin orientations into 36 bin histogram
 - Weight by gradient magnitude
 - Weight by distance to center (Gaussian-weighted mean)
- Return orientations within 0.8 of peak
 - Use parabola for better orientation fit
- For each (x,y,scale,orientation), create descriptor:
 - Sample 16x16 gradient mag. and rel. orientation
 - Bin 4x4 samples into 4x4 histograms
 - Threshold values to max of 0.2, divide by L2 norm
 - Final descriptor: 4x4x8 normalized histograms

Matching SIFT Descriptors

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor



Local Descriptors: SURF



Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images

⇒ 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img) http://www.vision.ee.ethz.ch/~surf

What to use when?

Detectors

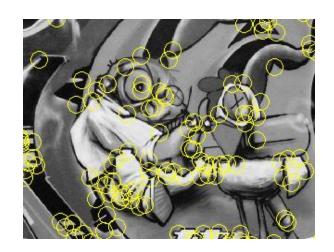
- Harris gives very precise localization but doesn't predict scale
 - Good for some tracking applications
- DOG (difference of Gaussian) provides ok localization and scale
 - Good for multi-scale or long-range matching

Descriptors

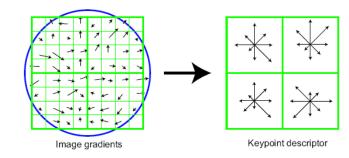
- Intensity patch: suitable for precise local search
- SIFT: good for long-range matching, general descriptor

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs
 - Harris, DoG



- Descriptors: robust and selective
 - SIFT: spatial histograms of gradient orientation



Next time: Panoramic Stitching

