Image Warping

Computational Photography
Derek Hoiem, University of Illinois

Reminder: Proj 2 due monday

- Much more difficult than project 1 get started asap if not already (could take >10 hours)
- Must compute SSD cost for every pixel (slow but not horribly slow using filtering method; see tips at end of project page)
- Learn how to debug visual algorithms: imshow, plot, dbstop if error, keyboard and break points are your friends
 - Suggestion: For "quilt_simple", first set upper-left patch to be upper-left patch in source and iteratively find minimum cost patch and overlay --- should reproduce original source image, at least for part of the output
- Remember office hours: Amin on Thurs, Derek on Mon

Resuming from last class... Poisson Blending

A good blend should preserve gradients of source region without changing the background

Method 3: Poisson Blending

A good blend should preserve gradients of source region without changing the background

Treat pixels as variables to be solved

- Minimize squared difference between gradients of foreground region and gradients of target region
- Keep background pixels constant

$$\mathbf{v} = \underset{\mathbf{v}}{\operatorname{argmin}} \sum_{i \in S, j \in N_i \cap S} ((v_i - v_j) - (s_i - s_j))^2 + \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - t_j) - (s_i - s_j))^2$$

Examples

2. Gradient domain processing

$$\mathbf{v} = \underset{\mathbf{v}}{\operatorname{argmin}} \sum_{i \in S, j \in N_i \cap S} ((v_i - v_j) - (s_i - s_j))^2 + \sum_{i \in S, j \in N_i \cap \neg S} ((v_i - t_j) - (s_i - s_j))^2$$

source image

¹ 20	⁵ 20	⁹ 20	¹³ 20
² 20	⁶ 80	¹⁰ 20	¹⁴ 20
³ 20	⁷ 20		¹⁵ 20
⁴ 20	⁸ 20	¹² 20	¹⁶ 20

background image

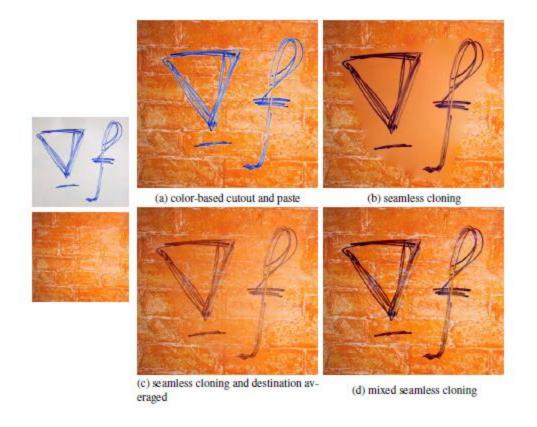
¹ 10	⁵ 10	⁹ 10	¹³ 10
² 10	⁶ 10	¹⁰ 10	¹⁴ 10
³ 10	⁷ 10	¹¹ 10	¹⁵ 10
⁴ 10	⁸ 10	¹² 10	¹⁶ 10

target image

¹ 10	⁵ 10	⁹ 10	¹³ 10
² 10	6 $\mathbf{v_1}$	10 v ₃	¹⁴ 10
³ 10	7 $\mathbf{v_{2}}$		¹⁵ 10
⁴ 10	⁸ 10	¹² 10	¹⁶ 10

Blending with Mixed Gradients

 Use foreground or background gradient with larger magnitude as the guiding gradient



Gradient-domain editing

Many image processing applications can be thought of as trying to manipulate gradients or intensities:

- Contrast enhancement
- Denoising
- Poisson blending
- HDR to RGB
- Color to Gray
- Recoloring
- Texture transfer

See Perez et al. 2003 and GradientShop for many examples

Gradient-domain processing

Saliency-based Sharpening

http://www.gradientshop.com

Gradient-domain processing

Non-photorealistic rendering

http://www.gradientshop.com

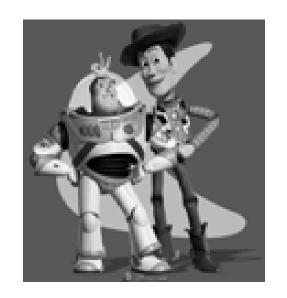
Project 3: Gradient Domain Editing

General concept: Solve for pixels of new image that satisfy constraints on the gradient and the intensity

 Constraints can be from one image (for filtering) or more (for blending)

Project 3: Reconstruction from Gradients

- 1. Preserve x-y gradients
- 2. Preserve intensity of one pixel



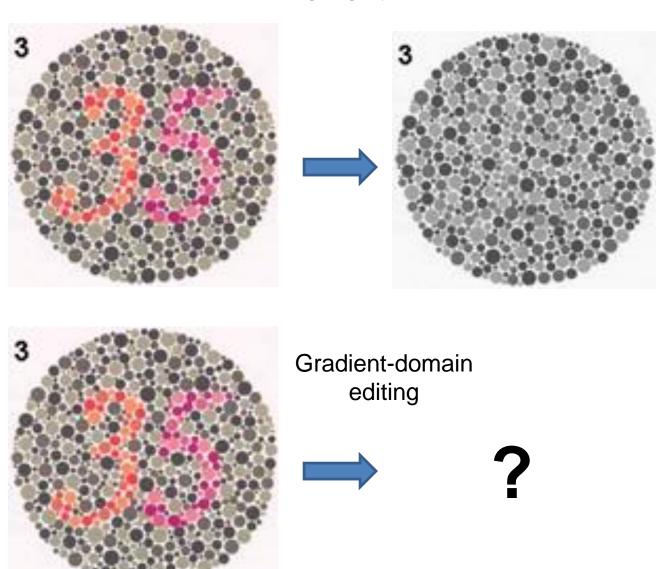
Source pixels: s

Variable pixels: v

- 1. minimize $(v(x+1,y)-v(x,y) (s(x+1,y)-s(x,y))^2$
- 2. minimize $(v(x,y+1)-v(x,y) (s(x,y+1)-s(x,y))^2$
- 3. minimize $(v(1,1)-s(1,1))^2$

Project 3 (extra): Color2Gray

rgb2gray



Project 3 (extra): NPR

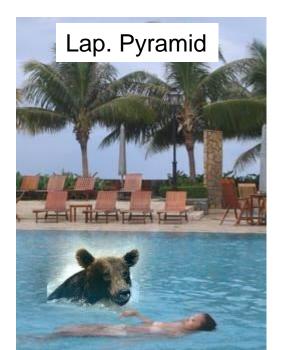
- Preserve gradients on edges
 - e.g., get canny edges with edge(im, 'canny')
- Reduce gradients not on edges
- Preserve original intensity

Summary of last class

- Three ways to blend/composite
 - 1. Alpha compositing
 - Need nice cut (intelligent scissors)
 - Should feather
 - 2. Laplacian pyramid blending
 - Smooth blending at low frequencies, sharp at high frequencies
 - Usually used for stitching
 - 3. Gradient domain editing
 - Also called Poisson Editing
 - Explicit control over what to preserve
 - Changes foreground color (for better or worse)
 - Applicable for many things besides blending

Take-home questions

- 1) I am trying to blend this bear into this pool. What problems will I have if I use:
 - a) Alpha compositing with feathering
 - b) Laplacian pyramid blending
 - c) Poisson editing?



Take-home questions

2) How would you make a sharpening filter using gradient domain processing? What are the constraints on the gradients and the intensities?

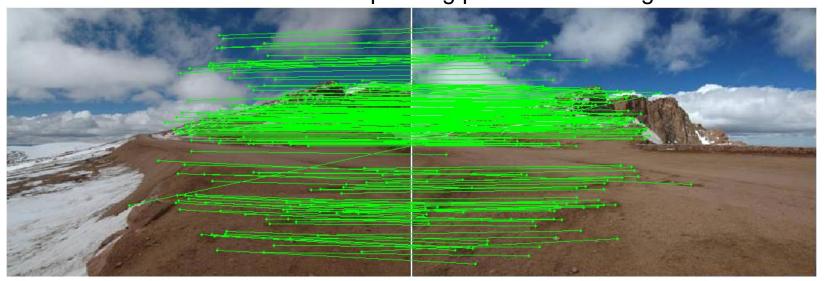
Next two classes

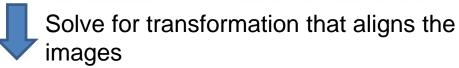
- Today
 - Global coordinate transformations
 - Image alignment

- Tuesday
 - Interpolation and texture mapping
 - Meshes and triangulation
 - Shape morphing

Photo stitching: projective alignment

Find corresponding points in two images





Capturing light fields

Estimate light via projection from spherical surface onto image

Morphing

Blend from one object to other with a series of local transformations

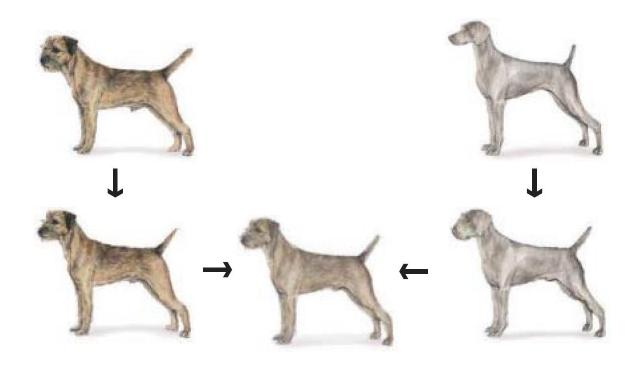


Image Transformations

image filtering: change range of image

$$g(x) = T(f(x))$$

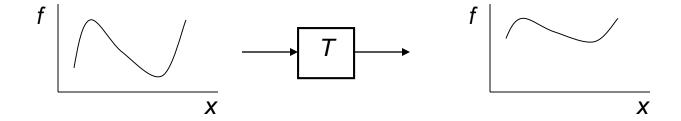


image warping: change domain of image

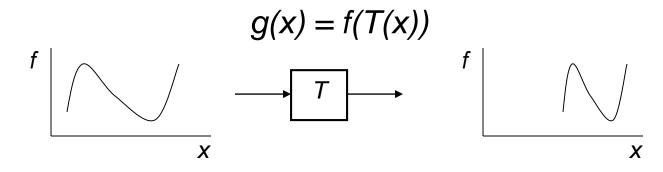


Image Transformations

image filtering: change range of image

$$g(x) = T(f(x))$$

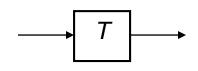
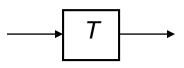
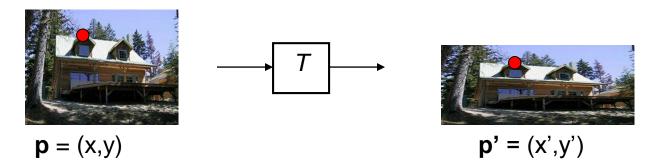


image warping: change domain of image

$$g(x) = f(T(x))$$



Parametric (global) warping



Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$p' = Mp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Parametric (global) warping

Examples of parametric warps:

translation

aspect

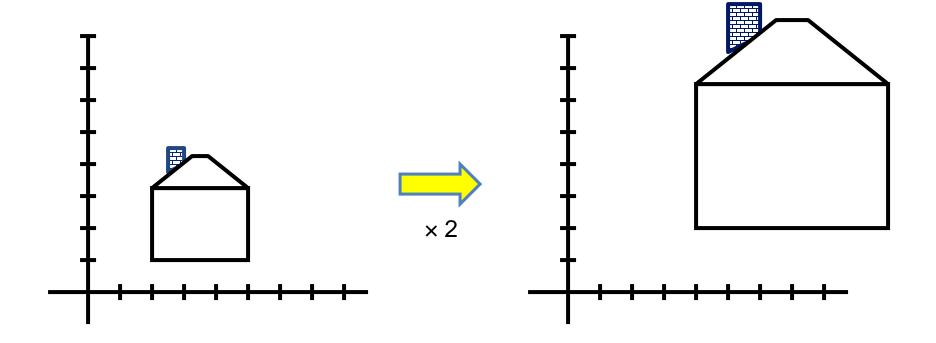
affine

perspective

cylindrical

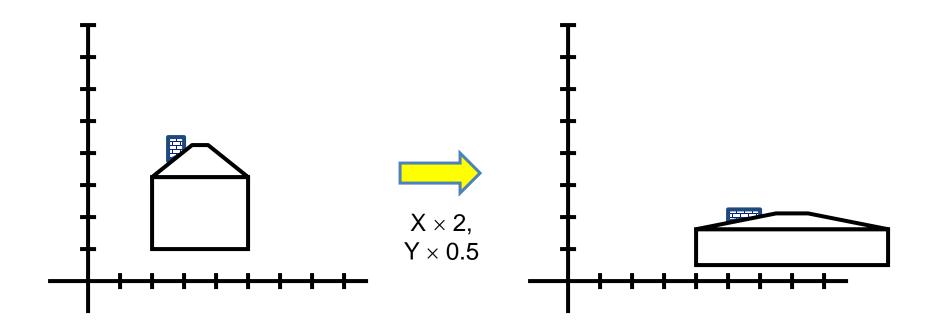
Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:



Scaling

• *Non-uniform scaling*: different scalars per component:



Scaling

Scaling operation:

$$x' = ax$$

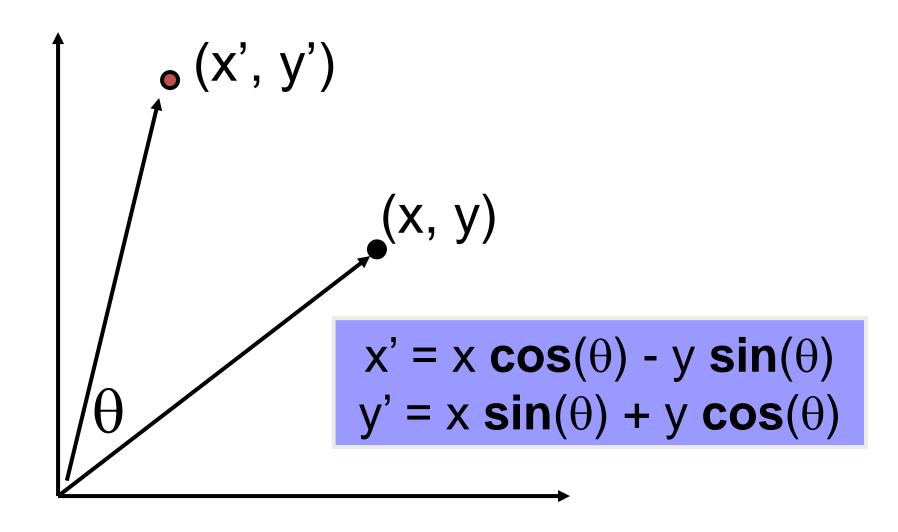
$$y' = by$$

• Or, in matrix form:

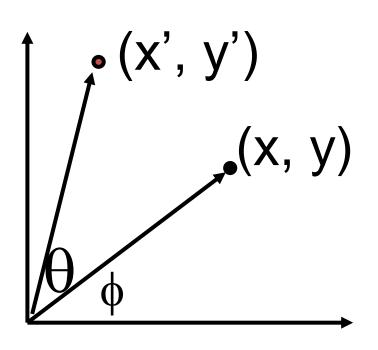
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

What is the transformation from (x', y') to (x, y)?

2-D Rotation



2-D Rotation



Polar coordinates...

$$x = r \cos (\phi)$$

 $y = r \sin (\phi)$
 $x' = r \cos (\phi + \theta)$
 $y' = r \sin (\phi + \theta)$

Trig Identity...

 $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- -x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^T$

What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$\begin{aligned}
\mathbf{x}' &= \mathbf{s}_{x} * \mathbf{x} \\
\mathbf{y}' &= \mathbf{s}_{y} * \mathbf{y}
\end{aligned}
\begin{bmatrix}
\mathbf{x}' \\
\mathbf{y}'
\end{bmatrix} = \begin{bmatrix}
\mathbf{s}_{x} & 0 \\
0 & \mathbf{s}_{y}
\end{bmatrix} \begin{bmatrix}
\mathbf{x} \\
\mathbf{y}
\end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos\Theta * x - \sin\Theta * y$$

$$y' = \sin\Theta * x + \cos\Theta * y$$

$$x' = \cos\Theta * x - \sin\Theta * y y' = \sin\Theta * x + \cos\Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + k_x * y$$
$$y' = k_y * x + y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & k_x \\ k_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} a & b & x \\ c & d & y \end{vmatrix}$

Homogeneous Coordinates

Q: How can we represent translation in matrix form?

$$x' = x + t_x$$

$$y' = y + t_y$$

Homogeneous Coordinates

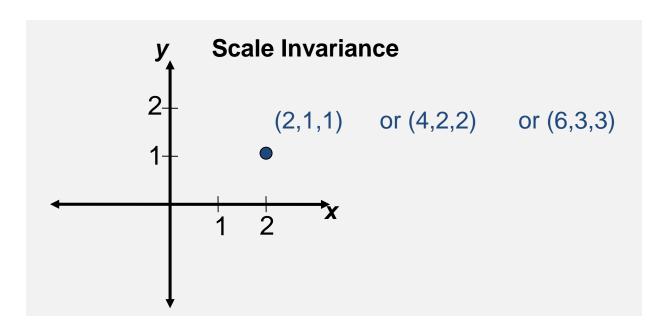
Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector

Homogeneous Coordinates

2D Points → Homogeneous Coordinates

- Append 1 to every 2D point: (x y) → (x y 1)
 Homogeneous coordinates → 2D Points
- Divide by third coordinate (x y w) → (x/w y/w)
 Special properties
- Scale invariant: (x y w) = k * (x y w)
- (x, y, 0) represents a point at infinity
- (0, 0, 0) is not allowed



Homogeneous Coordinates

Q: How can we represent translation in matrix

form?
$$x' = x + t_x$$

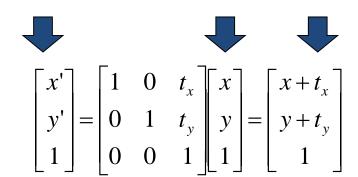
 $y' = y + t_y$

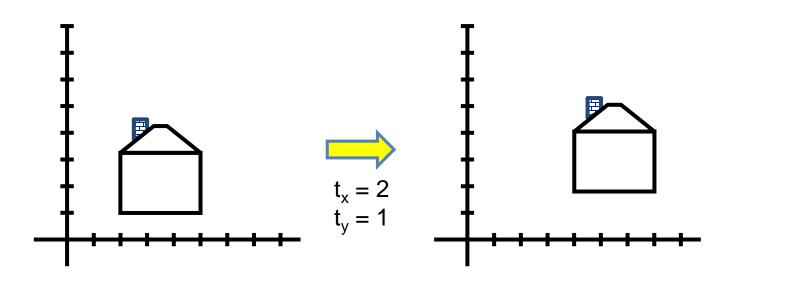
A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Translation Example

Homogeneous Coordinates





Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shear

Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{y}}) \qquad \mathsf{R}(\Theta) \qquad \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

Does the order of multiplication matter?

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective Transformations

Projective transformations are combos of

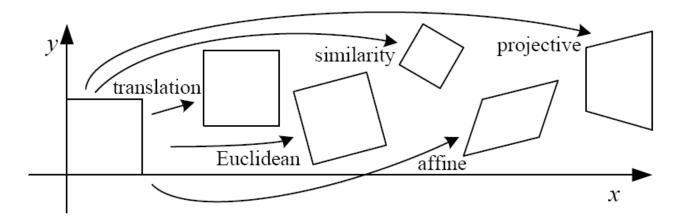
- Affine transformations, and
- Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

2D image transformations

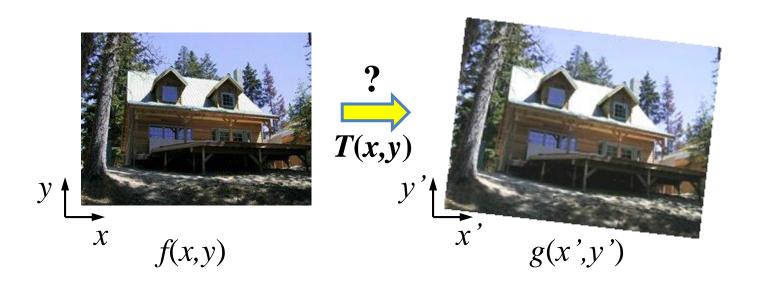


Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} egin{bmatrix} oldsymbol{I} oldsymbol{t} oldsymbol{t} oldsymbol{t} \end{bmatrix}_{2 imes 3}$		_	
rigid (Euclidean)	$igg[egin{array}{c c} igg[oldsymbol{R} & oldsymbol{t} \end{array}igg]_{2 imes 3}$		_	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$		_	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$		_	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$			

These transformations are a nested set of groups

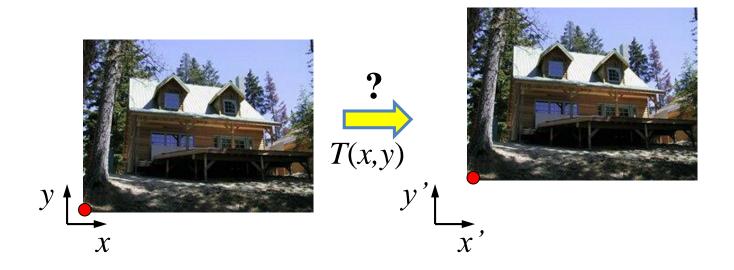
• Closed under composition and inverse is a member

Recovering Transformations



- What if we know f and g and want to recover the transform T?
 - willing to let user provide correspondences
 - How many do we need?

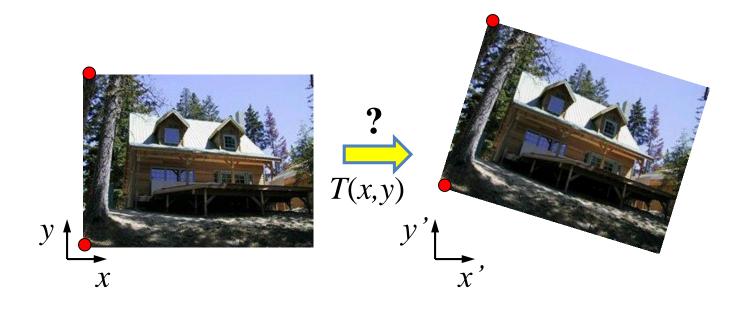
Translation: # correspondences?



- How many Degrees of Freedom?
- How many correspondences needed for translation?
- What is the transformation matrix?

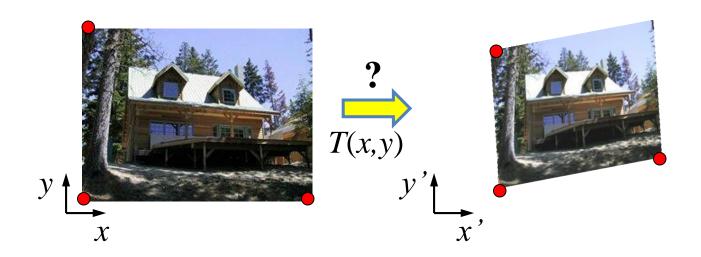
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & p'_x - p_x \\ 0 & 1 & p'_y - p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Euclidian: # correspondences?



- How many DOF?
- How many correspondences needed for translation+rotation?

Affine: # correspondences?

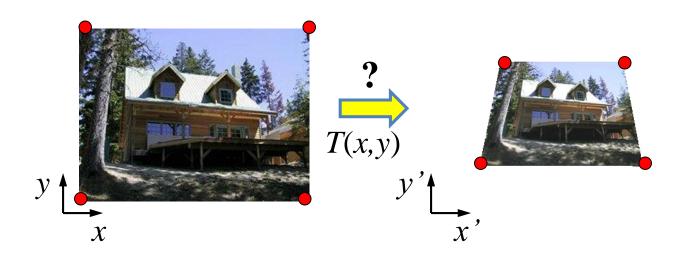


- How many DOF?
- How many correspondences needed for affine?

Affine transformation estimation

- Math
- Matlab demo

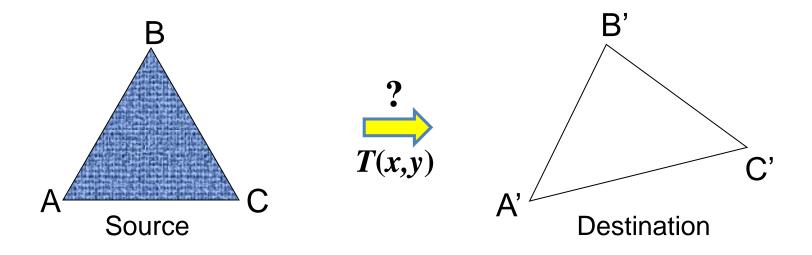
Projective: # correspondences?



- How many DOF?
- How many correspondences needed for projective?

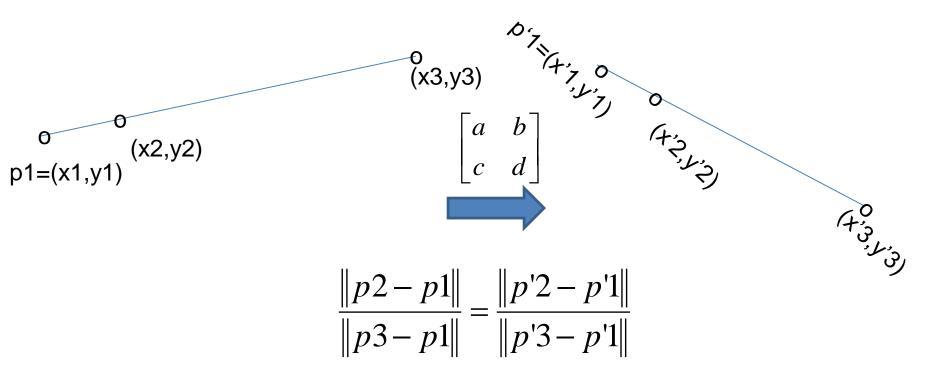
Take-home Question

1) Suppose we have two triangles: ABC and A'B'C'. What transformation will map A to A', B to B', and C to C'? How can we get the parameters?



Take-home Question

2) Show that distance ratios along a line are preserved under 2d linear transformations.



Hint: Write down x2 in terms of x1 and x3, given that the three points are co-linear

Next class: texture mapping and morphing