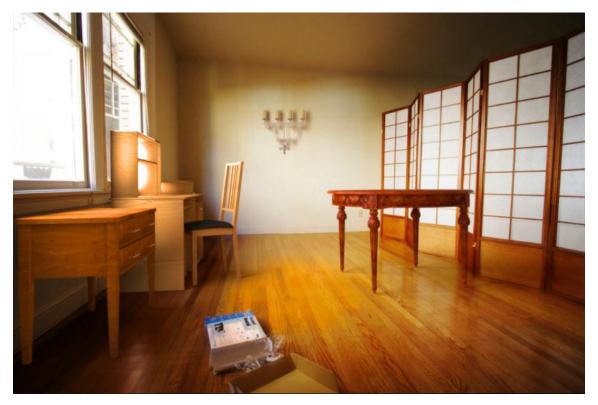
The image as a virtual stage



Computational Photography

Fall 2013

Kevin Karsch

Today

Brief review of last class

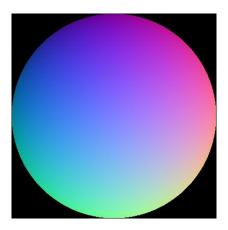
Inserting objects into legacy photos

Using Blender

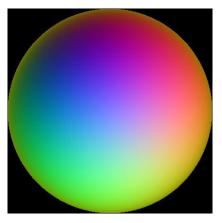
Mirror ball -> equirectangular

Mirror ball -> equirectangular

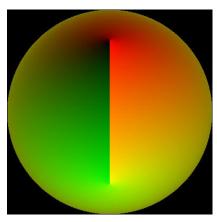
Mirror ball



Normals

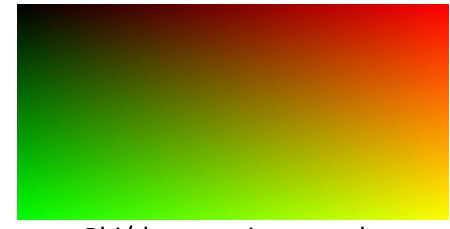


Reflection vectors



Phi/theta of reflection vecs

Equirectangular



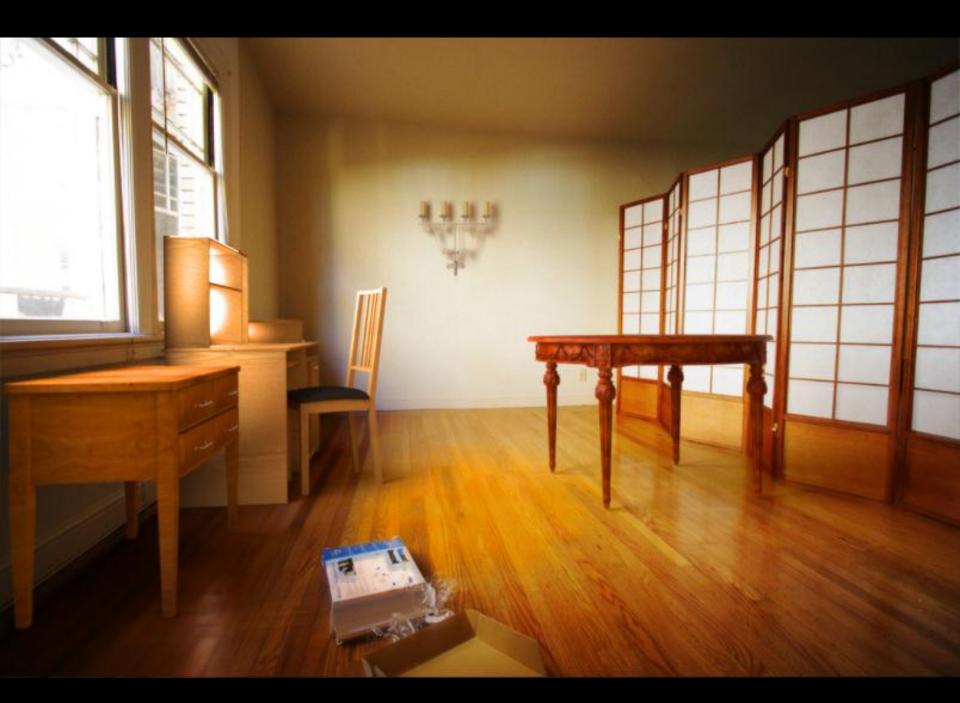
Phi/theta equirectangular domain

Mirror ball -> equirectangular

- Domain transformation in matlab
 - Create an interpolation function F with TriScatteredInterp
 - Compute values for each pixel in new domain

Pseudocode:

```
for i=1:d
    F = TriScatteredInterp(phi_ball, theta_ball, mirrorball(:,:,i));
    latlon(:,:,i) = F(phi_latlon, theta_latlon);
end
```

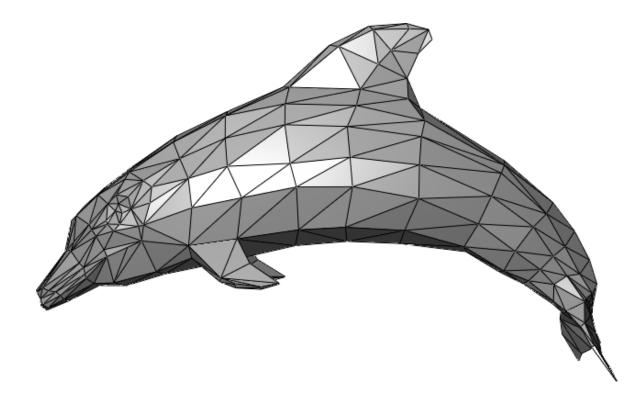


The polygonal mesh

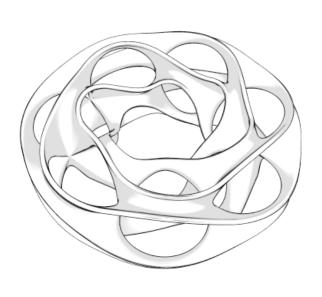
• Discrete representation of a surface

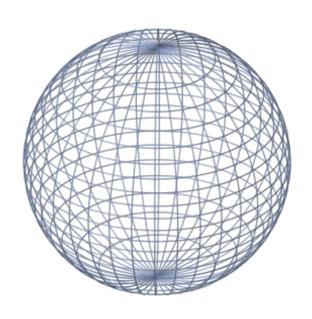
– Represented by vertices -> edges -> polygons

(faces)

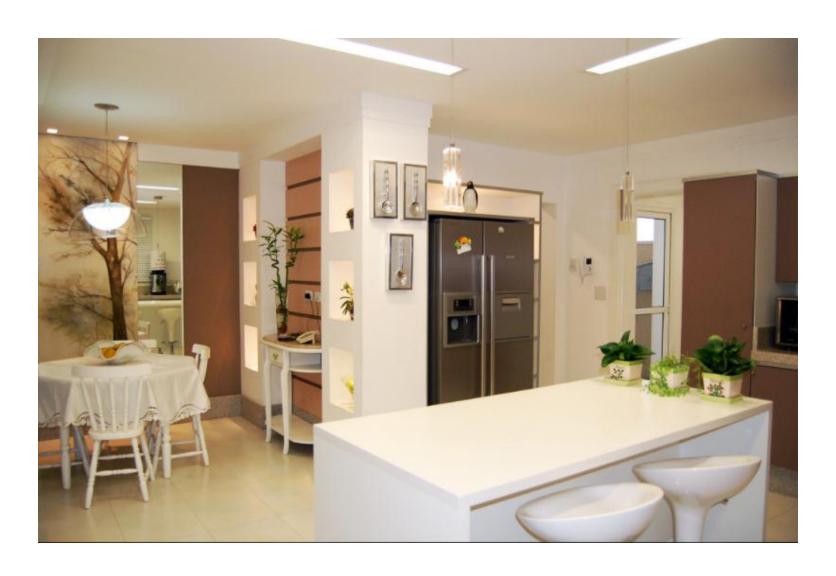


Insert these...





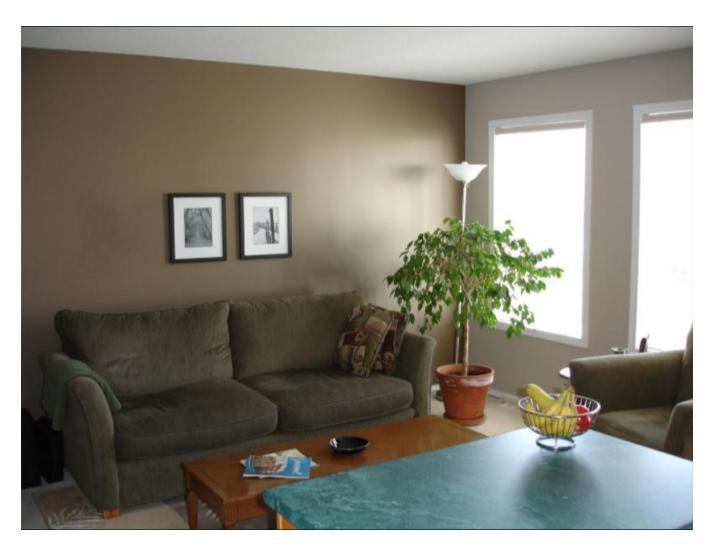
...into this



...into this

Or, remove this

Or, remove this



Problem statement

 From a single image, we want to seamlessly insert objects into and delete objects from an image while automatically handling perspective, occlusion, collision, and lighting.

Useful for...

- Home planning/redecoration
- Movies (visual effects)
- Video games

However...

- Tedious with current modeling tools
 - Blender, Photoshop, etc

 Alternatives require scene measurements and/or multiple photographs

What do we need?

- A 3D representation of the scene
 - Camera parameters (focal length, positioning, etc)
 - Scene geometry
 - Light positions and intensities
- Which requires
 - Projective geometry (vanishing pts, homographies, etc) [Camera, geometry]
 - Segmentation [Geometry]
 - Numerical optimization [Lights]

Overview

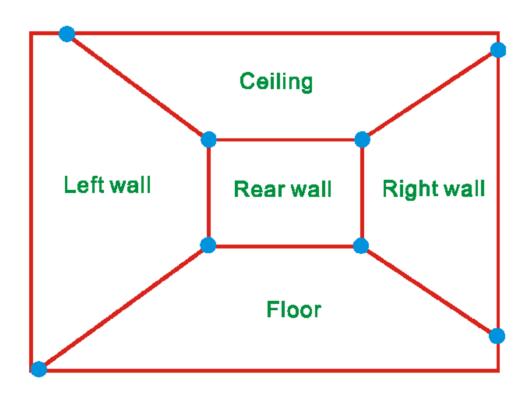
- Inserting objects
 - Perspective
 - Occlusion
 - Relighting
- Recap
- Unsolved problems

What's wrong here?

That's better, sort of...

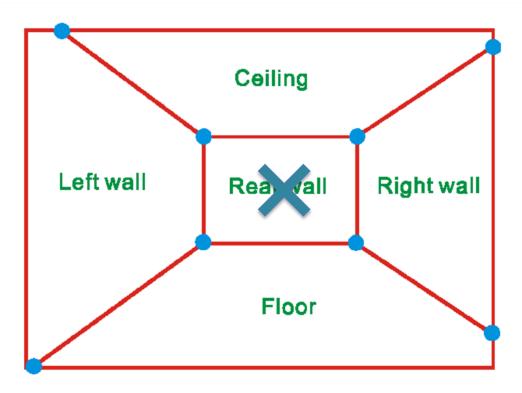
Single view reconstruction

Many scenes can be represented as an axis-aligned box volume



Single view reconstruction

Many scenes can be represented as an axis-aligned box volume



Ideal example

Ideal example

$$K = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$e_i = (1, 0, 0)^T, e_j = (0, 1, 0)^T, e_k = (0, 0, 1)^T$$

 $v_i = KRe_i, v_j = KRe_j, v_k = KRe_k$
 $(KR)^{-1}v_i = e^i, (KR)^{-1}v_j = e^j, (KR)^{-1}v_k = e^k$

$$\begin{aligned} e_i^T e_j &= e_j^T e_k = e_i^T e_k = 0 \\ v_i^T K^{-T} R R^{-1} K^{-1} v_j &= v_j^T K^{-T} R R^{-1} K^{-1} v_k = v_i^T K^{-T} R R^{-1} K^{-1} v_k = 0 \\ v_i^T K^{-T} K^{-1} v_j &= v_j^T K^{-T} K^{-1} v_k = v_i^T K^{-T} K^{-1} v_k = 0 \end{aligned}$$

Given 3 orthogonal VPs (at least two finite),
 can compute projection operator

 $e_i = (1, 0, 0)^T, e_i = (0, 1, 0)^T, e_k = (0, 0, 1)^T$

$$v_{i} = KRe_{i}, v_{j} = KRe_{j}, v_{k} = KRe_{k}$$

$$(KR)^{-1}v_{i} = e^{i}, (KR)^{-1}v_{j} = e^{j}, (KR)^{-1}v_{k} = e^{k}$$

$$e_{i}^{T}e_{j} = e_{j}^{T}e_{k} = e_{i}^{T}e_{k} = 0$$

$$v_{i}^{T}K^{-T}RR^{-1}K^{-1}v_{j} = v_{j}^{T}K^{-T}RR^{-1}K^{-1}v_{k} = v_{i}^{T}K^{-T}RR^{-1}K^{-1}v_{k} = 0$$

$$v_{i}^{T}K^{-T}K^{-1}v_{j} = v_{i}^{T}K^{-T}K^{-1}v_{k} = v_{i}^{T}K^{-T}K^{-1}v_{k} = 0$$

$$e_{i} = (1,0,0)^{T}, e_{j} = (0,1,0)^{T}, e_{k} = (0,0,1)^{T}$$

$$v_{i} = KRe_{i}, v_{j} = KRe_{j}, v_{k} = KRe_{k}$$

$$(KR)^{-1}v_{i} = e^{i}, (KR)^{-1}v_{j} = e^{j}, (KR)^{-1}v_{k} = e^{k}$$

$$\begin{aligned} e_i^T e_j &= e_j^T e_k = e_i^T e_k = 0 \\ v_i^T K^{-T} R R^{-1} K^{-1} v_j &= v_j^T K^{-T} R R^{-1} K^{-1} v_k = v_i^T K^{-T} R R^{-1} K^{-1} v_k = 0 \\ v_i^T K^{-T} K^{-1} v_j &= v_j^T K^{-T} K^{-1} v_k = v_i^T K^{-T} K^{-1} v_k = 0 \end{aligned}$$

$$e_{i} = (1, 0, 0)^{T}, e_{j} = (0, 1, 0)^{T}, e_{k} = (0, 0, 1)^{T}$$

$$v_{i} = KRe_{i}, v_{j} = KRe_{j}, v_{k} = KRe_{k}$$

$$(KR)^{-1}v_{i} = e^{i}, (KR)^{-1}v_{j} = e^{j}, (KR)^{-1}v_{k} = e^{k}$$

$$e_i^T e_j = e_j^T e_k = e_i^T e_k = 0$$

$$v_i^T K^{-T} R R^{-1} K^{-1} v_j = v_j^T K^{-T} R R^{-1} K^{-1} v_k = v_i^T K^{-T} R R^{-1} K^{-1} v_k = 0$$

$$v_i^T K^{-T} K^{-1} v_j = v_j^T K^{-T} K^{-1} v_k = v_i^T K^{-T} K^{-1} v_k = 0$$

$$e_i = (1, 0, 0)^T, e_j = (0, 1, 0)^T, e_k = (0, 0, 1)^T$$

 $v_i = KRe_i, v_j = KRe_j, v_k = KRe_k$
 $(KR)^{-1}v_i = e^i, (KR)^{-1}v_j = e^j, (KR)^{-1}v_k = e^k$

$$e_i^T e_j = e_j^T e_k = e_i^T e_k = 0$$

$$v_i^T K^{-T} R R^{-1} K^{-1} v_j = v_j^T K^{-T} R R^{-1} K^{-1} v_k = v_i^T K^{-T} R R^{-1} K^{-1} v_k = 0$$

$$v_i^T K^{-T} K^{-1} v_j = v_j^T K^{-T} K^{-1} v_k = v_i^T K^{-T} K^{-1} v_k = 0$$

$$e_i = (1, 0, 0)^T, e_j = (0, 1, 0)^T, e_k = (0, 0, 1)^T$$

 $v_i = KRe_i, v_j = KRe_j, v_k = KRe_k$
 $(KR)^{-1}v_i = e^i, (KR)^{-1}v_j = e^j, (KR)^{-1}v_k = e^k$

$$e_i^T e_j = e_j^T e_k = e_i^T e_k = 0$$

$$v_i^T K^{-T} R R^{-1} K^{-1} v_j = v_j^T K^{-T} R R^{-1} K^{-1} v_k = v_i^T K^{-T} R R^{-1} K^{-1} v_k = 0$$

$$v_i^T K^{-T} K^{-1} v_j = v_i^T K^{-T} K^{-1} v_k = v_i^T K^{-T} K^{-1} v_k = 0$$

$$R = \begin{bmatrix} R_{1c} & R_{2c} & R_{3c} \end{bmatrix}$$

$$\lambda v_i = KRe_i \qquad e_i = [1, 0, 0]^T$$

$$R_{ic} = \lambda K^{-1} v_i$$

Projecting to image space

 Given K, R, and a position in 3D (v_object), we can find its corresponding 2D image location:

$$v_{image} = KRv_{object}$$

What about the reverse?

 Given K, R, and a 2D position on the image (v_image), what do we know about its 3D location?

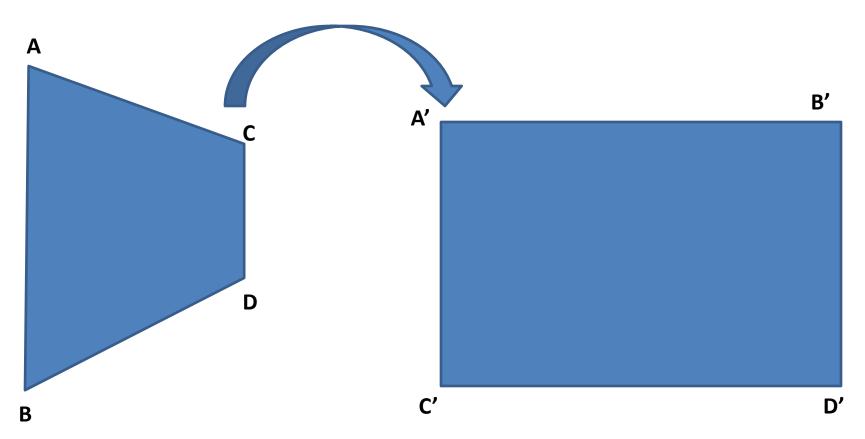
What about the reverse?

 Given K, R, and a 2D position on the image (v_image), what do we know about its 3D location?

$$\lambda v_{object} = (KR)^{-1} v_{image}$$

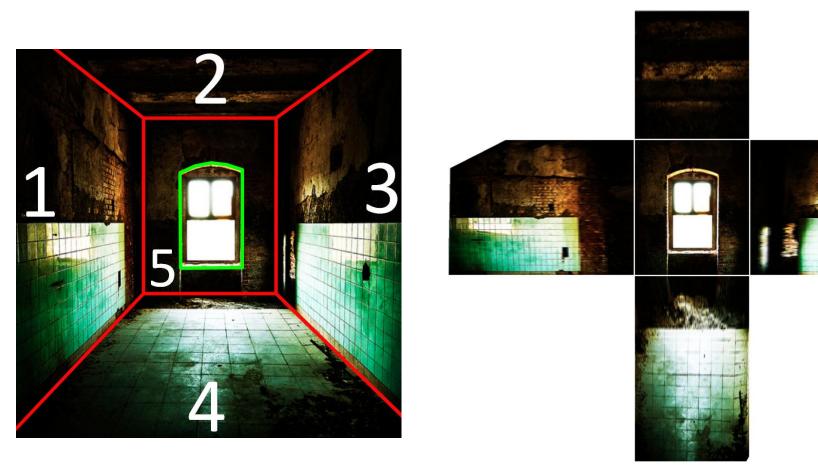
- Implies a line along which the 3D point lies
- Allows for image space interactions to be localized in 3D!

Homographies



(Projective warping from one domain to another)

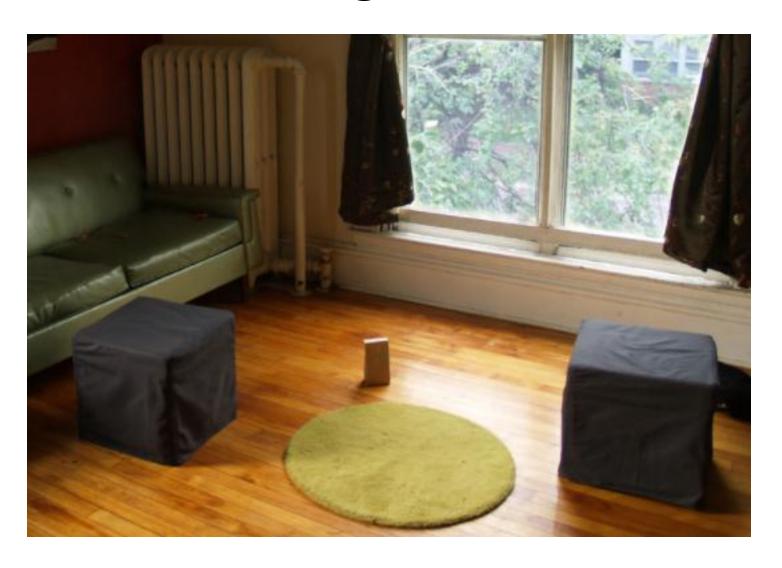
Image Rectification



Overview

- Inserting objects
 - Perspective & collision
 - Occlusion
 - Relighting
 - Animation
- Removing objects
- Recap + Unsolved problems

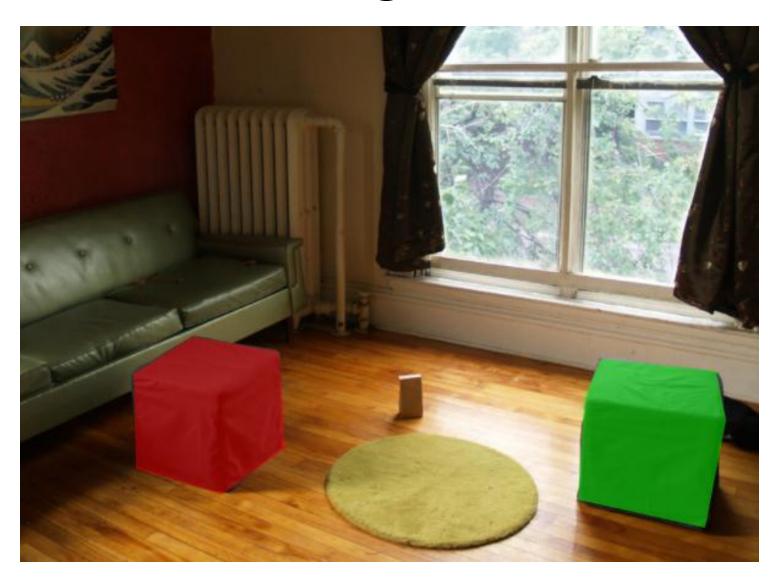
Modeling occlusions



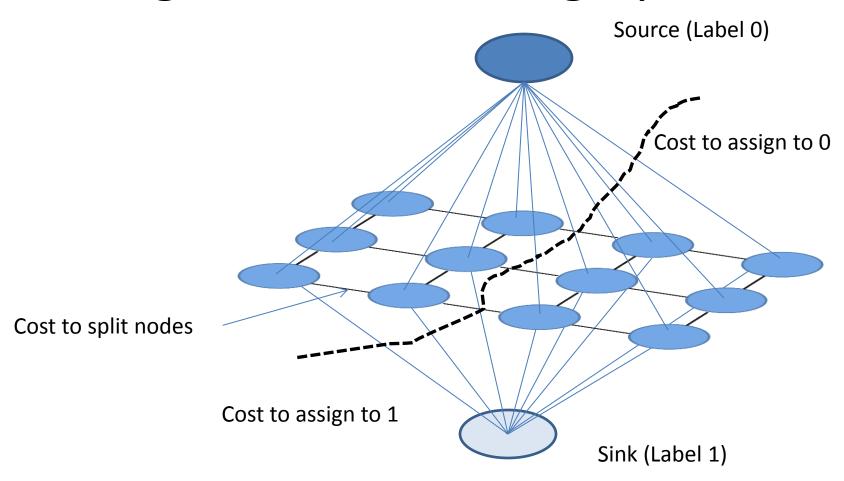
User-defined boundary

- Tedious/inaccurate
- How can we make this better?

Refined segmentation

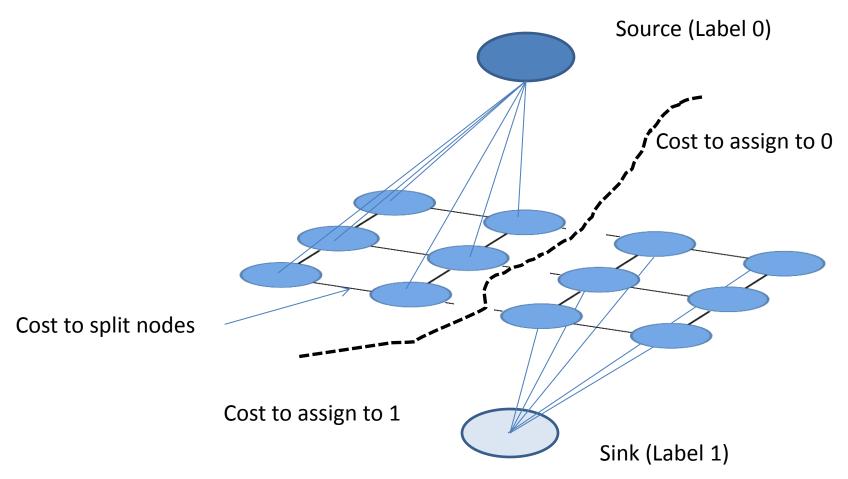


Segmentation with graph cuts



$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) \sum_{i, j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

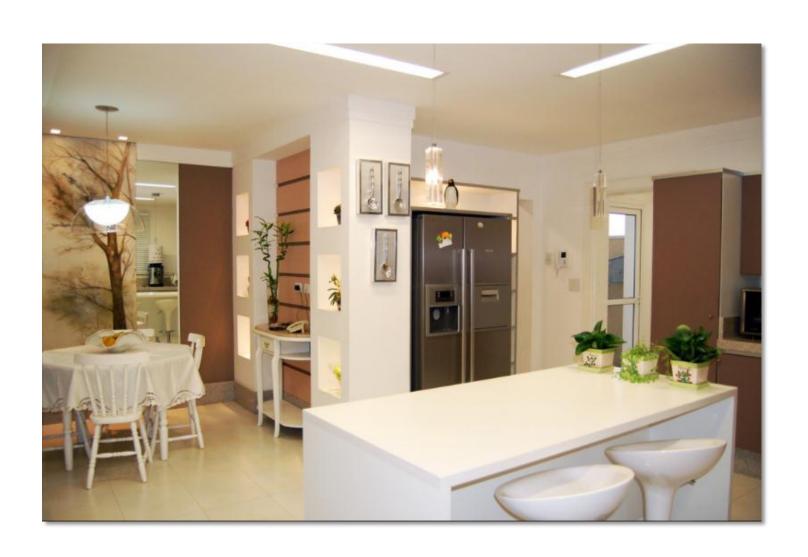
Segmentation with graph cuts



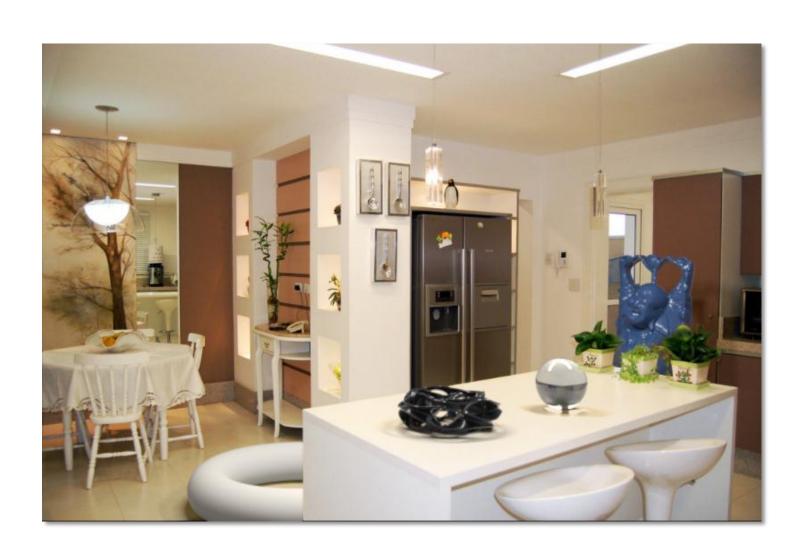
$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) \sum_{i, j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

- Create NxN matrix describing neighboring pixel similarity (Laplacian matrix, L)
- Extract "smallest" eigenvectors of L
- Segmentation defined by linear combination of eigenvectors
 - Scribbles as constraints

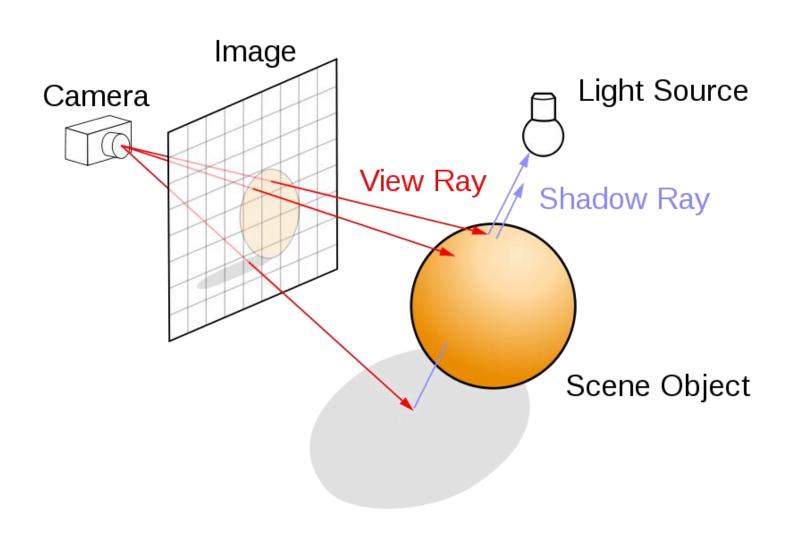
Segmentations as "billboards"



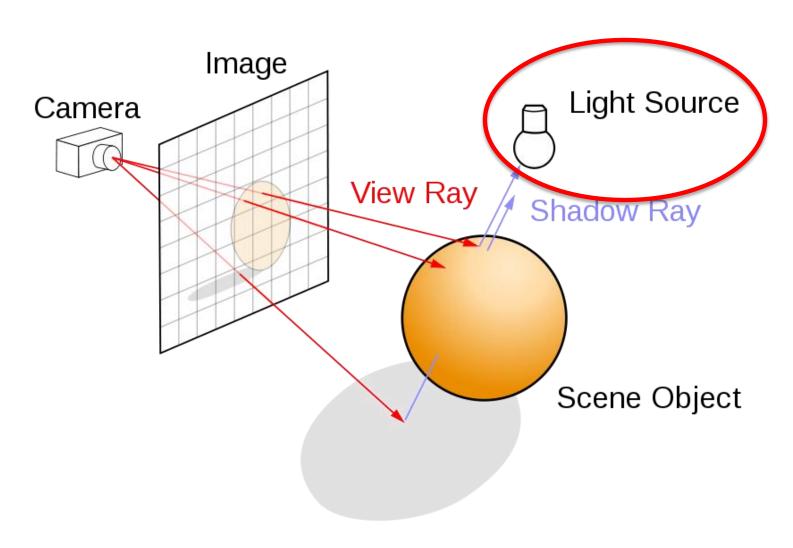
Segmentations as "billboards"



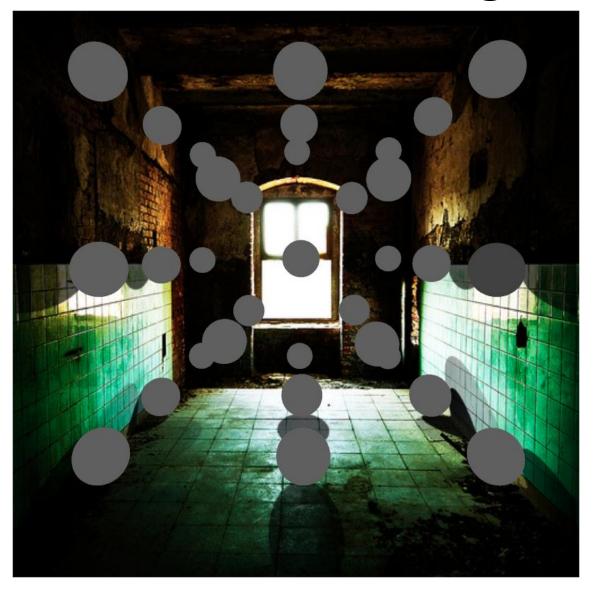
Rendering via ray tracing



Rendering via ray tracing



Insertion without relighting



...with relighting

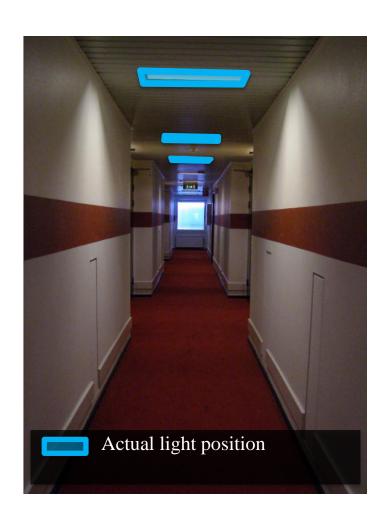
Understanding light: our approach

- Hypothesize physical light sources in the scene
 - Physical CG representations of light sources found in the real world (area lights, etc)

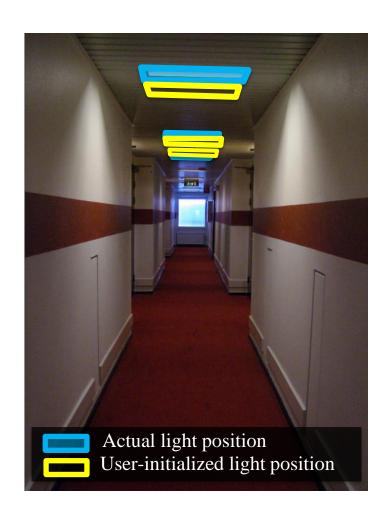
- Visible sources in image marked by user
 - Refined to best match geometry and materials
- User annotates light shafts; direction vector
 - Shafts automatically matted and refined

Lighting estimation

Lighting estimation

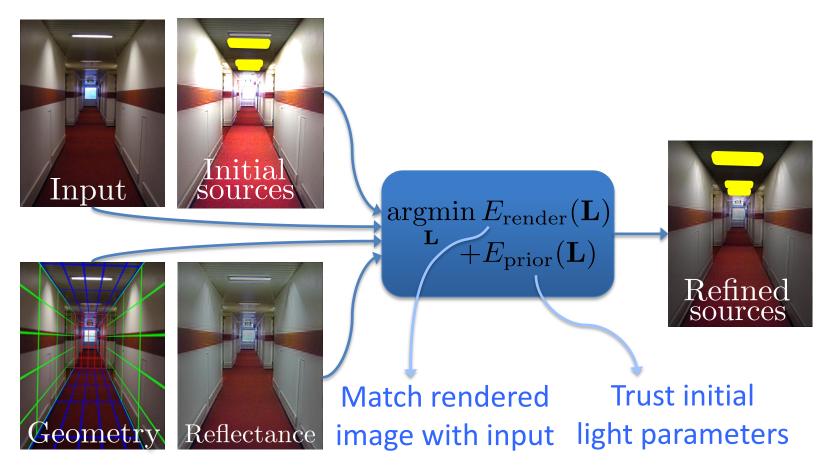


Lighting estimation



Light refinement

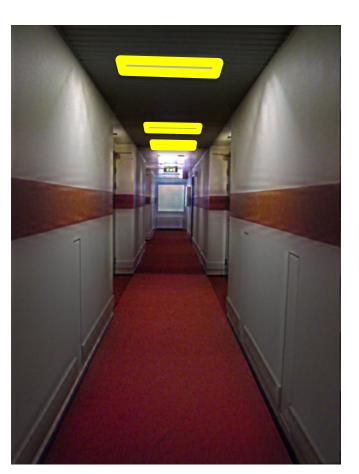
Match original image to rendered image

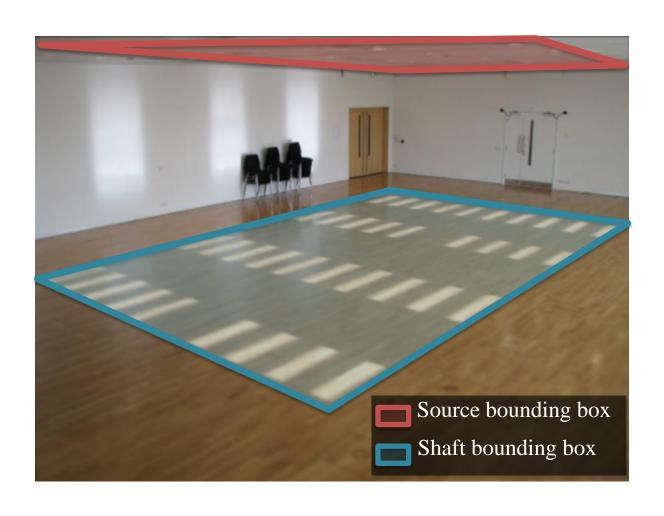


Initial light parameters



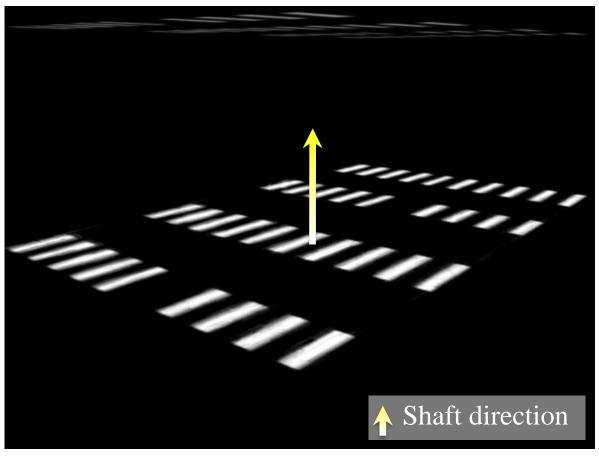
Refined light parameters



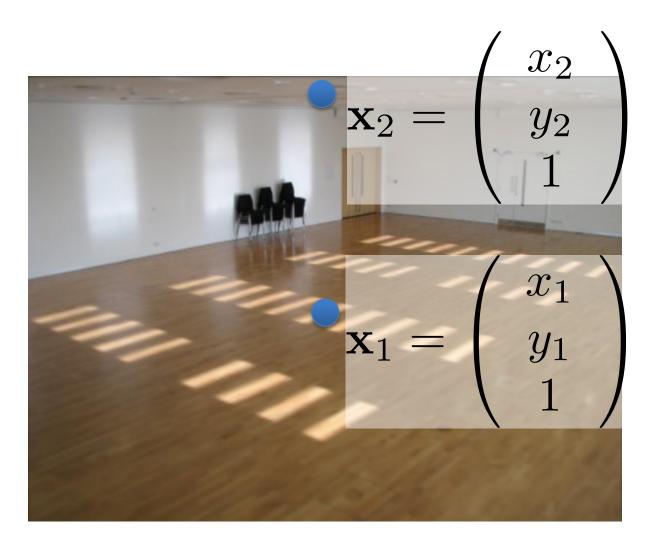


Shadow matting via Guo et al. [2011]

Can we find the direction of the shaft in 3D?



Example on board



Light shaft result

Light shaft result

Inserting objects

- Representation of geometry, materials and lights compatible with 3D modeling software
- Two methods of insertion/interaction
 - Novice: image space editing
 - Professional: 3D modeling tools (e.g. Maya)
- Scene rendered with physically based renderer (e.g. LuxRender, Blender's Cycles)

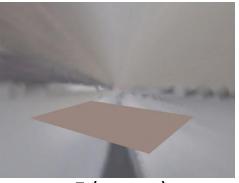
Final composite

Additive differential technique [Debevec 1998]
 composite = M.*R + (1-M).*I + (1-M).*(R-E).*c

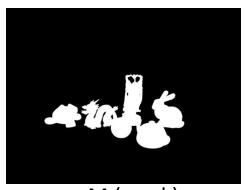
I (background)

composite

R (rendered)



E (empty)



M (mask)

Blender demos

Putting it all together

<u>Video</u>

Unsolved problems

- Can we "do better" with
 - Multiple images?
 - Videos?
 - Depth?
- Better scene understanding?
- How to insert image fragments (Poisson Blending style)?