Outline

Commitments

Zero Knowledge
Commitments
Pedersen Commitments

- Public parameters: \((p, g, h)\)
 - \(p\): large prime (1024 bit)
 - \(g\): generator
 - \(h\): \(g^a\) for hidden \(a\)

- Protocol
 - To commit to \(x\), \(C\) chooses random \(r\) and sends \((g^x h^r)\) to \(R\).
 - To open, \(C\) sends \(x\) and \(r\) to \(R\).

- Benefits:
 - One can prove many things about the committed value without opening it
Pedersen Commitments

• Unconditionally hiding
 • Given a commitment c, every value x is equally likely to be the value committed in c.
 • For example, given x, r, and any x', there exists r' such that $g^x h^r = g^{x'} h^{r'}$, in fact $r' = (x-x') a^{-1} + r \mod q$.

Given c, not even an adv. with unbounded run-time can find x.

\[g^x h^r = g^x (g^a)^r = g^{x+ar} \]

For an arbitrary x', \exists $r' = (x-x') + r \mod q$ s.t. $g^{x'+ar} \cdot g$
Pedersen Commitments

• Computationally binding

 • Suppose committer sent $g^x h^r \mod p$ for some (x, r)

 • Now it finds $x' \neq x$ and r' such that $c = g^{x'} h^{r'}$.

 • This means that the sender `knows’’ $\log_g(h) = (x' - x) \cdot (r - r')^{-1}$.

 • This means: assuming DL is hard, the sender cannot open the commitment to a different value.
Application: Coin Tossing

- Alice and Bob want to decide on something by tossing a coin over a phone. How to do this securely?

- Solution: Alice commits to a random bit \(b_A \leftarrow \{0, 1\} \), and sends \(\text{Com}(b_A; r) \) to Bob.

- Bob selects a random bit \(b_B \leftarrow \{0, 1\} \) and sends it to Alice.

- Alice decommits \(b_A \).

- Alice and Bob output \(b_A \oplus b_B \).
Zero-Knowledge
Real World

NP Statement \(x \)
Witness that \(x \) is true

\[\text{com}(t; r): \text{Prove } t > 0 \text{ w/o revealing } t. \]
\(x \in \text{NP language } L \)
if \(\exists w \) s.t.
\(R_L(x, w) = 1 \)
where \(R_L \) is an efficiently computable relation.

\[L = \{ c : f(t, r) \text{ s.t. } t > 0 \text{ and } c = \text{com}(t; r) \} \]
Real World

Prover

NP Statement x
Witness that x is true

Verifier

Didn't learn witness

Outputs
view

: cannot output secrets about statement (e.g., "t" in our prev. example)
Real World

Prover

NP Statement \(x \)

Verifier

Didn't learn witness

Ideal World (Proof)

Simulator

NP Statement \(x \)

No witness

Witness that \(x \) is true

Outputs view

Any information in this view
Real World

Prover

NP Statement \(x \)

Witness that \(x \) is true

Verifier

Outputs view

Ideal World (Proof)

Simulator

NP Statement \(x \)

No witness

Verifier

Didn't learn witness

Output view
Real World

Prover

Verifier

Witness that \(x \) is true

Outputs view

Ideal World (Proof)

Simulator

Verifier

NP Statement \(x \)

Didn't learn witness

NP Statement \(x \)

Didn't learn witness

Outputs similar view

Trying to assert:

\[
\begin{align*}
\lambda \in (t, r) & \quad \exists c : c = com(t, r) \text{ s.t. } t > D \\
\end{align*}
\]
Real proof hides all predicates of witness that are hard to compute given just x.

Real World

Verifier

Simulator

Verifier

Ideal World (Proof)

Outputs similar view

Can't distinguish the two views of V. $orall$ p.p.t. $D, \Pr[D(\text{real world view of } V) = 1] - \Pr[D(\text{ideal world view of } V) = 1] = \text{negl.}$
Graph Isomorphism
Graph Isomorphism

Prover

$X = (A, B)$

Verifier

$\eta : 1 \rightarrow a$

$5 \rightarrow g$

$\text{Knows } \eta \text{ s.t. } A = \eta (B)$
Graph Isomorphism

Prover

\[X = (A, B) \]

Verifier

\[G = \varphi(A) \]

"Soundness"

Has soundness error \[\frac{1}{2} \].
Graph Isomorphism

Prover

\[X = (A, B) \]

\(A = \eta(B) \)

\(G = \varphi(A) \)

\(G \subseteq \mathbb{C} \)

\(\Pi_1(A) = G \), \(\Pi_2(B) = G \)

\(A = \Pi_1^{-1}(G) = \Pi_1^{-1}(\Pi_2(B)) \)

\(\Pi_1^{-1}(\Pi_2(.)) \) is \(\eta \).

Verifier

\(G \)

\(c = A \) or \(B \)

\(\Pi \cdot \Pi(c) = G \)

\((G, c, \Pi \cdot \Pi(c)) = G \)
Graph Isomorphism

Simulator

\[X = (A, B) \]

Verifier

Knows \(c \) in advance

When Sim guesses \(A \) then \(c \neq B \)

(end vice versa)

This cannot happen because \(G \) hides \((A/B) \).

If \(A \) and \(B \) are isomorphic,

then \(\text{dist}(\varphi(A)) = \varphi(B) \)

for random \(\varphi \)

Does not know \(\pi \)!

\[\pi \text{ s.t. } \pi(c) \neq G \]

if \(c \neq \text{guess} \) we are done! \(\pi \neq \varphi \).
Graph Isomorphism

Simulator
\[\mathcal{X} = (A, B) \]

Verifier

Doesn't know \(\eta \).

Runtime of Simulator
\[O(n \cdot k) \]

K knows c in advance

\[k = 256 \]
Graph Isomorphism

Simulator

\[X = (A, B) \]

Knows \(c \) in advance

\[G = \varphi(c) \]

Verifier

\[c = A \text{ or } B \]
3-coloring

Color all vertices with only three colors (R, G, B) such that no edge should connect two vertices of the same color.
3-coloring

Prover

Verifier
3-coloring

Prover

Verifier
3-coloring

Prover

Verifier
3-coloring

Prover

Verifier
3-coloring

Simulator

Verifier
3-coloring

Simulator

Verifier
3-coloring

Simulator

Verifier