Outline

Schnorr Signatures

Commitments
Schnorr Signatures
Schnorr Signatures

• Signatures from groups
 • Gen outputs \((v_k = g^x, \text{sign key} = x)\)

• Sign \((m, \text{sign key})\) :

• Verify \((\sigma, v_k, m)\) :
Schnorr Signatures

\[\text{sign key} = x \]

\[\text{I know } x! \]

\[\text{vk} = g^x \]

\[x = g^x, \quad R = g^r, \quad h \]

\[R = g^r \]

\[h \]

\[S = r + hx \]

\[g^s = (g^r)(g^x)^h = R \cdot x^h \]

"Alice must know \(x \)"
Schnorr Signatures

\[\text{sign key} = x \]

\[\text{vk} = g^x \]

I know x!

\[\text{Sign}(m, sk) = ?? \]

\[R = g^r, \quad h = H(m || R), \quad S = (r + h \cdot x) \]
Schnorr Signatures

• Signatures from groups
 • Gen outputs \((vk = g^x, \text{ sign key } = x)\)
 • Sign \((m, \text{ sign key}) = R = g^r, h = H(m, R), s = r + hx\). Output \((h, s)\)
 • Verify \((\sigma, vk, m) : \text{ Check if } h = H(m, g^sX^{-h})\)

• Is this secure?
Schnorr Signatures

• Signatures from groups
 • Gen outputs \((vk = g^x, \text{sign key} = x) \)

 • Sign \((m, \text{sign key}) = R = g^r, \ h = H(m,R), \ s = r + hx. \ Output \ (R,s) \)

 • Verify \((\sigma, vk, m) : \) Check if \(g^s = RX^h \) for \(h = H(m,R) \)

• Is this secure?

 A forger can be used to get distinct signatures \((h_1,s_1), (h_2,s_2)\) with same \((m,R)\) (different \(h \), by programming the RO), and that lets us solve for \(x \)
Schnorr Signatures

\[vk = g^x \]

\[(m, R) \]

\[h \]

\[m \]

\[(h, s, R) \]

\[D_h = H(m, R) \]

s.t. verification passes.

Game 1:

\[A \]

\[\frac{m, R}{h_1} \]

Game 2:

\[A \]

\[\frac{mR}{s_2} \]

\[s_2 = r + h_2 \]

(s, s_2, h_1, h_2 are known)
Schnorr Signatures

\[\text{vk} = g^x \]

m
Multi-Signatures

• Multiple signers signing the same message

• Each signer has an (SK,VK) pair

• Resulting signature must be “compact”: size independent of #signers
Multi-Signatures

- Multiple signers signing the same message
 \(x_i \)
 \(y_i \)

- Each signer has an (SK,VK) pair

- Resulting signature must be “compact”: size independent of #signers

- Security requirement: Unforgeability (chosen message security)

- Adversary can collude with all but one signer
Multi-Signatures

• Schnorr: $sk = x$, $vk = X = g^x$
 - Sign $(m, x): R = g^r$, $h = H(m, R)$, $s = r + hx$. Output (R, s)
 - Verify (σ, X, m): Check if $g^s = RX^h$ for $h = H(m, R)$
Multi-Signatures

• **Schnorr**: $sk = x$, $vk = X = g^x$

 • Sign $(m, x) : R = g^r$, $h = H(m, R)$, $s = r + hx$. Output (R, s)

 • Verify $(\sigma, X, m) :$ Check if $g^s = RX^h$ for $h = H(m, R)$

• Multi-signatures:

 • Multiple signers with signing keys $x_1,..,x_n$ and verification keys $X_1,..,X_n$

 can create “aggregated” signature (R, s) such that $g^s = R.X_1^{h_1}...X_n^{h_n}$

$$(s, R)$$

$$g^s = R.X_1^{h_1}X_2^{h_2}...X_n^{h_n}$$
Multi-Signatures

- **Schnorr:** \(sk = x, \; vk = X = g^x \)

 - Sign \((m, \; x) : R = g^r, \; h = H(m, R), \; s = r + hx. \) Output \((R, s)\)

 - Verify \((\sigma, \; X, \; m) : \) Check if \(g^s = RX^h \) for \(h = H(m, R) \)

- **Multi-signatures:**

 - Multiple signers with signing keys \(x_1, \ldots, x_n \) and verification keys \(X_1, \ldots, X_n \)
 can create “aggregated” signature \((R, s)\) such that \(g^s = R.X_1^{-1}X_n^{-n} \)

 - Each party picks \(r_i \) and publishes \(g^{r_i} \). Set \(R = g^{r_1 + \ldots + r_n} \).

 - Set \(h_i = H(m, R, X_i, L) \), where \(L = (X_1, \ldots, X_n) \)

\[
\text{Verify:} \quad s = r_i + (x_i \cdot h_i) + (\text{other terms})
\]

\[
\text{Sign:} \quad h_i = H(m, R, X_i, X_1, \ldots, X_n)
\]
Multi-Signatures

• Schnorr: \(sk = x, \; vk = X = g^x \)

 • Sign \((m, x)\): \(R = g^r, \; h = H(m, R), \; s = r + hx. \) Output \((R, s)\)

 • Verify \((\sigma, X, m)\): Check if \(g^s = RX^h \) for \(h = H(m, R) \)

• Multi-signatures:

 • Multiple signers with signing keys \(x_1, ..., x_n \) and verification keys \(X_1, ..., X_n \)
 can create “aggregated” signature \((R, s)\) such that \(g^s = R.X_1^{h_1}...X_n^{h_n} \)

 • Each party picks \(r_i \) and publishes \(g^{r_i} \). Set \(R = g^{r_1 + ... + r_n} \).

 • Set \(h_i = H(m, R, X_i, L) \), where \(L = (X_1, ..., X_n) \)

 • Then, sequentially \(s_i = s_{i-1} + r_i + h_i x_i \) (starting with \(s_0 = 0 \)).

 • So that final signature \(s_n = r + h_1 x_1 + ... + h_n x_n \) where \(R = g^r \).
Commitments
Commitments
Commitments
Commitments

"Commit":

"Decommit":

"Secret":

Com. string
Commitments

- Hiding

\[\forall m_0, m_1, \quad \text{com}(m_0; r) \approx \text{com}(m_1; r) \]

- Binding

\[\forall \text{ string } c \in \{0, 1\}^*, \quad \Pr \left[\exists (k_1, m_1) \left(\text{Decommit}(c, k_1, m_1) = 1 \right) \land \left(\text{Decommit}(c, k_2, m_2) = 1 \right) \right] = \text{negl} \]

\[\Pr(\text{Adv can find } (k_1, m_1, k_2, m_2) \text{ s.t. } (\text{Decom}(c, k_1, m_1) = 1) \land (\text{Decom}(c, k_2, m_2) = 1)) = \text{negl}. \]
Examples

1. Is \((g, g^x)\) a commitment to \(x\)?

 Not

2. \(Ct = E(k, m)\) for a symmetric key encryption \(E\)

 Not commitment

 because not binding

 (Recall: one-time pad \(E(k, m) = k \oplus m\)).

Decommit:

\[C, m, y = E(k, m) \]

\[m', k' \]

\[m' = m \oplus 1, \quad k' = k \oplus 1. \]
Examples

In practice, we use:

- To commit to message M, choose random, fixed-length r, send $H(r || M)$
- To open commitment, send r, M
- Receiver cannot fully recover M.

- Sender cannot find another M' to open.

To commit to M, pick large r. $\text{com}(M, r)^2$ SHA$(M || r)$ (computational binding).
Pedersen Commitments

• Public parameters: (p,g,h)
 • p: large prime (1024 bit)
 • g: generator
 • h: g^a for hidden a

• Protocol
 • To commit to x, C chooses random r and sends $(g^x h^r)$ to R.
 • To open, C sends x and r to R.

• Benefits:
 • One can prove many things about the committed value without opening it
Pedersen Commitments

• Unconditionally hiding
 • Given a commitment c, every value x is equally likely to be the value committed in c.
 • For example, given x, r, and any x’, there exists r’ such that \(g^x h^r = g^{x’} h^{r’} \), in fact \(r = (x - x’) a^{-1} + r \mod q \).
Pedersen Commitments

• Computationally binding
 • Suppose committer sent \(g^x h^r \mod p \) for some \((x, r)\)
 • Now it finds \(x' \neq x \) and \(r' \) such that \(c = g^{x'} h^{r'} \).

 • This means that the sender ‘‘knows’’ \(\log_g(h) = (x' - x) \cdot (r - r')^{-1} \).

 • This means: assuming DL is hard, the sender cannot open the commitment with another value.
Prove Knowledge of Discrete Log without revealing it?

\[vk = g^x \]

sign key = x

PROVE: I know x!
Prove Knowledge of Discrete Log without revealing it?

PROVE: I know x!

$vk = g^x$

sign key = x