University of Illinois, Urbana Champaign LECTURE
CS/ECE 498AC3/4 Applied Cryptography

Instructor: Dakshita Khurana
Scribe: Jeremy Poynton, Hamilton Silberg
Date: September 3, 2020

Block Ciphers II

In the previous lecture, we introduced block ciphers as a solution to the problems of stream
ciphers. We looked into the definitions of PRFs and PRPs and analyzed the games that
can be played to determine the semantic security of these devices. As a continuation of last
lecture, we will continue to look into the significance of PRFs and PRPs, especially in the
case of using a block cipher as a PRP to create a semantically secure cipher.

Last lecture introduced the DES algorithm with the Feistel network structure, with the
ability to create invertible functions out of uninvertible components. We will investigate
attacks on the DES algorithm and introduce the evolution of DES into further modified
alogrithms to improve security.

Expanding on the example of DES, we will also look at the AES block cipher. AES has
a substitution-permutation network, distinguishing it from DES. Comprising entirely of
many invertible steps, we see the non-linearity we identified as being critical to a secure
cipher implemented within the various steps of the algorithm. Along with going through
its implementation, we will compare its security with DES through their known best attacks.

Finally, we will look into a few modes of operation for block ciphers. These modes each
define a way to use the block cipher to encrypt and decrypt a plaintext which comprises of
many blocks. Each of these modes have different properties which will affect the security
and performance of the overall process. While specifically used for AES, these modes can
be applied to many block ciphers.

4.1 Building a PRF from a PRG

Last lecture we talked about how you can construct a PRG from a PRF by concatenating
the outputs of the PRF with an incrementing counter. The result is a secure PRG because
every output from the PRF is guaranteed to be pseudorandom.

We will now talk about how a PRG can be constructed from a PRF. Similar to how we
concactenated PRF input to create a PRG, we can partition PRG outputs to create a PRF.
That is, given a secure PRG G that doubles the key, we can define a PRF F as:

F(K,z €{0,1}) = G(K)|[z]

As noted, however, this will only work with « € {0, 1}, as it assigns both halves of the output
from the PRG. What happens if we want to extend past that range of x? It turns out, we
can construct a binary tree by feeding each half of the PRG’s output back into the PRG.
This will still be guaranteed pseudorandom because the initial output is pseudorandom.
Now given a binary input x, we can follow the corresponding edge in the graph for each bit
of x. More formally, with z,, representing the nth bit of x:

F(K,z € {0,1}*) = G(G(K)[zo])[a1]

This will allow us to create a tree for any input size of x desired. We can simply add more
layers and recursive calls to the tree. For a tree of depth a, this method will allow us to
cover up to 2% values of x. Example for a three bit size of x:

F(K,z € {0,1}%) = G(G(G(K)[wo]) [w1])[22]

This process can be extended as needed. While inefficient in nature, this construction does
prove a secure PRF because each leaf in the tree is guaranteed to be pseudorandom, as they
are made by feeding pseudorandom previous inputs into the PRG. And thus, the existence
of a secure PRG implies a secure PRF.

4.2 DES attacks

DES is vulnerable to certain brute force attacks with known plaintext. That is, with two sets
of plaintext and their corresponding encryption, we can iterate through the entire keyspace.
If a key is found that encrypts both plaintexts to the correct ciphertexts, there is high prob-
ability that this is the only correct key.

More formally, given two pairs (mq,c1), (ma,c2) where ¢y = E(k1,my), ca = E(ka,m2),
with high probability there is at most one key k such that ¢; = E(k,m1) and co = E(k, mz2)

Because DES uses a key of 56 bits, running this exhaustive key search would take time 256,
With modern computing available, this level of security can be broken quickly with ease.
For example, in a series of challenges in 1999 called DES Challenge III, the key to a DES

encryption was found in just over 22 hours using plain brute force.

Due to the low level of security guaranteed by DES, there have been multiple extensions to
try and increase security against this type of attack.

4.3 Triple-DES

The first intuitive way of increasing security against an exhaustive key search is to increase
the key size. Triple-DES uses a key-size of 168 bit, breaking down to three separate DES

4-2

keys. The method uses a DES encryption followed by a decryption, followed by another
encryption.
3E((k1v k?v k3)7 m) = E(kh D(k27 E(k37 m)))

Tripling the size of the keyspace would increase the time complexity from a key search to
2168 However, due to the algorithm’s vulnerability against meet in the middle attacks, the
effective security it provides is around 2''8. Meet in the middle attacks will be discussed
shortly.

One thing to note in the structure of Triple-DES is that the middle operation is flipped
from encypt to decrypt. This is a unique choice that improves security in situations where
the three keys are not completely independent.

One may consider why Triple-DES is used first before trying Double-DES or 2-DES. It turns
out 2-DES was considered, however, it is particularly vulnerable.

4.4 2-DES

2-DES uses a key size of 112 bits with an encryption followed by an encryption, and is
defined as follows.
2E((k§1, kQ), m) = E(kl, E(kg, m))

If 2-DES was not vulnerable to attack, it would take 2112 time to break via exhaustive
search. This is better than the 2%¢ time in the original DES. However, the meet in the
middle attack makes 2-DES significantly easier to attack. The time of the attack can be
taken down to about 256 1og(2°°), slightly better than the 2°¢ of original DES. The specifics
of this meet in the middle attack are described in the next section.

4.5 Meet in the middle

The meet in the middle attack is an extension of the known plaintext brute force algorithm
described earlier. Meet in the middle describes brute forcing an encryption key and a de-
cryption key and looking for matches. It can be described as working forwards from the
plaintext, and working backwards from the ciphertext, until a match is found. Hence, the
term ”meet in the middle.”

In the context of 2-DES, the attacker takes the plaintext and stores an encrypted interme-
diary text for every possible key. Similarly, the ciphertext is decrypted using every possible
key. If there exists an intermediary text that matches from the encrpytion and decryption,
it is highly likely that those two keys were the keys used for 2-DES.

Using this attack, the entire 112 bit keyspace does not have to be searched. Instead, two
separate 56 bit spaces are searched, and the resulting lists are scanned for matches. As
such, this reduces the time consideration to 2°¢log(2°¢). The extra log is the time needed
to sort through the intermediary texts. It is worth noting that this attack does have a space
requirement to store the intermediary texts.

4-3

Meet in the middle can be extended to Triple-DES also. Like in 2-DES, the ciphertext is
decrypted using every possible key. However, the first two operations are treated as a single
step. That is, an intermediary text is generated for every possible (k1, k2) pair. Then the
intermediary texts are searched for matches. The attacker now must searched through a 212
space and a 256 space, bringing the time complexity to attack Triple-DES to 2''2log 2112
Again, the log term is used for scanning for matches.

Because of the way DES is structured, it is clear that no matter how many encryption
or decrpytion operations are present, a meet in the middle attack would still be possible
with known ciphertexts. That is, a theoretical 4-DES or 5-DES could save time from an
exhaustive key search by storing intermediary texts into tables and looking for matches. At
that point, the problem becomes a trade-off between space and time concerns.

4.6 DESX

DESX is a variant of DES encyption that is less vulnerable to meet in the middle attack
than its multiple DES counterparts. DESX uses a triple keyspace, like Triple-DES, but
instead uses various xor operations with a single DES encryption.

EX((kl,kg,k3),m) =k @ E(kg,m D kg)

The process of using xor before and after an encryption has been coined key whitening, and
DESX was the first scheme to employ this technique. k1 and ko are 64 bit keys, increasing
the key size to 184 bits. However, the effective security of DESX has been determined to
be that of time complexity 220,

4.7 The AES algorithm

The Advanced Encryption Standard or AES algorithm, also known as the Rjindael al-
gorithm, derived from competition to select a standard encryption algorithm. It has a
substitution-permutation network design, which means it interleaves substitution and
permutation functions as its method of non-linearity. Another name used to describe this
type of structure is confusion-diffusion network. One important detail of the AES
algorithm is the multiple key size options. The three levels provide a trade off between per-
formance and security, with performance improvements for smaller keys due to less rounds,
and security improvements for larger keys due to increased key space. These options within
the algorithm allow for more simple user control of security as compared to DES, where a
separate system of 3DES or DESX must be created in order to improve security.

The specific AES structure follows a series of rounds accomplishing this substitution and
permutation. Between each round, a generated round key is XOR’d with the output of the
prior round as the input to the next round. The amount of rounds is determined by the
size of the key, with larger keys causing more rounds. There are 10 rounds for a 128 bit key,
12 for 192, and 14 for a 256 bit one. The key expansion works by expanding the input key
into several round keys through a relatively simple process of shifting and XORing with
specified values. The larger keys will produce larger round keys, but only the first 128 bits
are used as the true round keys.

During the algorithm, the 128 bit input data block is represented by a 4x4 grid of bytes,
in which this layout is particularly relevant for some of the steps in the process. For each
round, the first step is a substitution box (or S-box) transformation where each byte is sub-
stituted with another following a lookup table. This is one of the key points of non-linearity
introduced into the algorithm. The specific lookup table is specified by the AES procedure
and is specially designed to be non-linear. In particular, no inputs will match their output
nor be the exact complement. The result is a one-to-one mapping that is non-linear and
invertible.

After the S-box, there is a shift rows step. Since the data block is represented by the
four-wide-four-tall matrix, each row is cycled independently. Row i is shifted left i times,
where the first row is index 0. This step is also invertible.

S0,0 $So0,1 S0,2 50,3 S0,0 S0,1 S0,2 50,3

. $1,0 S1,1 S1,2 51,3 S1,1 S1,2 S1,3 S51,0
ShiftRows | ’ ’ < = ' ' ' '

52,0 $S2;1 S22 8523 $2,2 823 S2,0 S21

$3,0 S3,1 83,2 833 $3,3 53,0 83,1 832

The final step of the round is the mix columns step. Here each column is independently
mixed using its four elements. A specified matrix describes the weights to use. The matrix
multiplication that occurs here is within GF(2®), where each byte represents a polynomial
where 2, 2!, 22...27 may either be present or absent. The resulting output of this operation
becomes the input for the next round of the cipher once the round key is XOR’d. A small
detail of AES is that mix columns is not applied to the final round. This was done to make

the encryption and decryption process more similar. [1]

1 1 2 3 S0,c¢ 80,c T 81,c + 23270 + 381,0
1 2 3 1 % Sl,e| _ |S0,c + 281,6 + 38270 + S1,c
2 3 1 1 S2.¢ 280’6 + 381’6 + S2.¢ + S1,c
3 1 1 2 $3,c 380,c + S1,c + 82, + 251 ¢

At the end of the algorithm, we are left with a ciphertext of 128 bits, using our key of 128,
192, or 256 bits. AES has been a standard for many years, and has undergone significant
cryptanalysis for attacks and vulnerabilities.

4.8 Attacks on AES

AES is empirically stronger when using DES or 3DES as a comparison point. While the key
space for AES can be significantly larger (22°6 > 256) the best general key recovery attack
for AES1ag is in 2!22, which is slightly better than searching the entire key space, compared
to the general key recovery attack on 3DES, which is 2'18, a significantly smaller value than
the entire key space of 2168,

There are better attacks, however the input they require is quite specialized. Due to the

key expansion being simple relative to the rest of the algorithm, there exists an attack on
a set of keys related in specific ways where the keys can be found in only 2% time. This

4-5

however does not affect the overall security of AES given proper implementation, as keys
used should otherwise not be related in this manner. Generally speaking, the AES encrypt
function is treated as a CPA secure PRP, converting an input to an output of the same size.

4.9 Block cipher modes of operation

Given we have AES acting as our secure PRP, we want to create semantically secure encryp-
tion. Recall semantically secure encryption, where for two given messages m0,ml € 0,1"
and PRP € and key k < 0,1™, E(k, m0) =~ E(k, m1).

Consider the simplest approach of applying AES to a given message: break the message
into the necessary blocks and for each block m; find ¢; = AES(k, m;) using the key k, and
concatenate the ¢;. This method is known as electronic code book, or ECB. This method
is not semantically secure, and in fact can be shown to be discovered different from random
by a very simple adversary leveraging a property of ECB: if m; = m;, then ¢; = ¢;.

ExAMPLE 4.1. Consider the CPA game, where we have PRP £ : £ x M — C and key
k<« {0,1}™

The adversary will supply us with ordered inputs x;.

In game 0 we supply the adversary A with £(k, z;), while in game 1 we supply a random
output in {0,1}".

Suppose x; = al||la where a matches the size of the PRP block size. If we are following
ECB mode for our PRP, then in game 0 our output will be £(k,a)||E(k,a), which will be
readily distinguishable from a randomly generated output, and thus a PPT adversary can
reliably win the CPA game, showing ECB to not be semantically secure.

Familiar problems are present, reminiscent of the basic substitution ciphers. Important in-
formation about the data can be extracted through frequency analysis or the likes, clearly
information available that we want hidden.

Improvements can be made with adding a bit of variety to the blocks. One method of doing
this is utilizing a PRF as block cipher with a counter. This method is called deterministic
counter mode.

Given PRF F: K x M — M
DEFINITION 4.2. Epgrorr(k,m) =mo @ F(k,0)||mi & F(k,1)||...|/mr & F(k, L)

This mode fixes our issue with matching input blocks having matching output blocks. How-
ever, this methodology runs into similar problems as the stream cipher : this key should
only be used once. Since the generated string to XOR the message with is the same given
the same key, this opens up any additionally uses of the key to a basic attack. Given mes-
sages mg and myq, if they are encrypted with key k and PRG G made from a string of PRF
outputs from the counter, we will see that m0 & G(k) = ¢o and m; ® G(k) = ¢;. Thus,
co B c1 = mg @ myq, resulting in security concerns if we allow adversaries to query the key
more than once. Looking forward, we will use different modes of operation to try to fix our
current problem of security for reused keys.

4-6

4.10 Conclusion

In this lecture we continued our journey through block ciphers, looking at specific examples
in practice of DES and AES and how they relate to the discussion of core security structures
such as PRPs. We looked at the implementations of these algorithms to get a stronger sense
of what is important for a cipher with our desired attributes, and in some cases how some
properties of the algorithm can remove semantic security. We also introduced modes of
operations for block ciphers and their implications, and how depending on how a secure
PRP is applied can make or break a secure encryption. Looking forward to future lectures,
we will cover further modes of operation that achieve different properties, such as key reuse
and better performance in machines through the option of parallelization of the encryption
and decryption algorithms.

Acknowledgement

These scribe notes were prepared by editing a light modification of the template designed
by Alexander Sherstov.

References

[1] D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography. Cambridge
University Press, 0.5 edition, 2020.

4-7

	Building a PRF from a PRG
	DES attacks
	Triple-DES
	2-DES
	Meet in the middle
	DESX
	The AES algorithm
	Attacks on AES
	Block cipher modes of operation
	Conclusion

