
University of Illinois, Urbana Champaign
CS/ECE 498AC3/4 Applied Cryptography

Instructor: Dakshita Khurana
Scribe: Aaron Gros
Date: November 10, 2020

LECTURE

22

Two Party Computation 2: Garbled Circuits

In this lecture we will begin by reviewing and expanding on secret sharing, and introducing
garbled circuits. We’ve been discussing how two parties can complete computations without
sharing each other’s data. In the previous lecture we discussed secret sharing as a method
of sharing enough information to do the computation but not reveal each other’s data or
any of the results of layers before the output for nested circuits. In today’s lecture we will
review how secret sharing works and cover an issue with our use of oblivious transfer(OT) in
the way we implemented secret sharing. We will go through how to fix this issue by adding
randomness into the input of the OT that will later be undone. Finally we will propose a
method known as garbled circuits for two-party computation where only one party knows
what the computation is. We will begin with a simple example to gain intuition and then
expand to show how you could build a more complex and useful garbled circuit.

Figure 22.1: Basic interaction for secret sharing.

22.1 Background

In the previous lecture we covered secret sharing and computation. This method is depicted
in Figure 22.1. Both parties(in this case Alice and Bob) compute values that when combined
form their data. In this case Alice computes a0, a1 such that a0 ⊕ a1 = a by computing



random a0 and finding a1 such that the xor is satisfied. Bob does the same with his data to
obtain b0, b1 such that b0 ⊕ b1 = b. The separation is not limited to two values but in this
example it’s two for simplicity’s sake. Once these are computes, Alice shares a1 with Bob
and Bob shares b0 with Alice. From there Alice can compute

(a0 ∧ b0)⊕ (a1 ∧ b0)

and Bob can compute
(a1 ∧ b1)

We Then use an OT as depicted by Figure 22.2 where Alice inputs a0 ∧ 0 and a0 ∧ 1 and
Bob inputs b1 to receive a0 ∧ b1. Then Alice sends Bob (a0 ∧ b0)⊕ (a1 ∧ b0) and Bob sends
Alice (a0 ∧ b1)⊕ ((a1 ∧ b1)). Now both of them can compute

(a0 ∧ b0)⊕ (a1 ∧ b0)⊕ (a0 ∧ b1)⊕ ((a1 ∧ b1)) = (a0 ⊕ a1) ∧ (b0 ⊕ b1)

= a ∧ b

Figure 22.2: Original OT for AND secret sharing.

22.2 Issue with our protocol

In this section we will cover an issue with the implementation of secret sharing we previously
covered and will provide a way to fix this issue. When the OT depicted in Figure 22.2 is
used for secret sharing, Bob receives a0 ∧ b1. This is a problem because he also has a1 ∧ b1
so he can compute

a0 ∧ b1 ⊕ a1 ∧ b1 = (a0 ⊕ a1) ∧ b1

= a ∧ b1

If Bob chooses b1 = 1 he can find out what a is which breaks out requirement that neither
Alice nor Bob be able to find out what the others data is beyond what can be recovered
from the final output.

A solution to this problem would be to slightly modify the inputs of the OT in a reversible
way. To do this, Alice will need to generate a random value r and instead we will use the
OT depicted in Figure 22.3

Alice will input (a0 ∧ 0)⊕ r and (a0 ∧ 1)⊕ r and Bob inputs b1 to receive (a0 ∧ b1)⊕ r.
Then Alice sends Bob (a0∧ b0)⊕ (a1∧ b0)⊕ r and Bob sends Alice (a0∧ b1)⊕ r⊕ ((a1∧ b1)).
Now both of them can compute

(a0 ∧ b0)⊕ (a1 ∧ b0)⊕ r ⊕ (a0 ∧ b1)⊕ r ⊕ ((a1 ∧ b1)) = (a0 ⊕ a1) ∧ (b0 ⊕ b1)

= a ∧ b

22-2



Figure 22.3: New OT for AND secret sharing.

With this method, the XOR with r cancels out in the final computation but Bob isn’t able
to recover a since the output of the OT is now a random value.

22.3 Garbled Circuits

Imagine a situation where Alice has a circuit in mind that she doesn’t want to share with
Bob but she still wants Bob to be able to compute the circuit with his data. However, neither
Alice or Bob wants to share their data with each other. To deal with such a situation we
propose a protocol called a Garbled Circuit.

To describe the garbled circuit protocol, we first begin with a circuit that Alice has in

Figure 22.4: Alice’s Circuit Table.

mind. In this case we will start with a single logic gate depicted in Figure 22.4 to gain
intuition. We turn this logic gate circuit into a logic table again as depicted in Figure 22.4.
Now we will make a new table called the garbled table depicted by Table 22.1 which we
will send to bob. Briefly, for intuition, our objective will be to represent the logic table by
a single column table which will contain each output double encrypted with specific keys
relating to the inputs so that when Bob receives the garbled table he can only decrypt one
row.

Ekw1,0(Ekw2,0(Kw5,0))
Ekw1,0

(Ekw2,1
(Kw5,0))

Ekw1,1
(Ekw2,0

(Kw5,0))
Ekw1,1(Ekw2,1(Kw5,1))

Table 22.1: Alice’s Garbled Table

22-3



To create this table, Alice will generate two keys for each input and output. We will
label these Kw1,0,Kw1,1,Kw2,0,Kw2,1,Kw5,0,Kw5,1 for inputs w1, w2 and output w5, re-
spectively. Kw1,0 corresponds to w1 input 0 and Kw1,1 corresponds to w1 input 1 and so on
for the w2 and w5 keys. To perform the encryption, we set the w5 keys as the message to
encrypt and first encrypt with the w2 keys and then the w1 keys following the logic table as
a guide. The order between w1 and w2 is arbitrary but should be kept the same throughout
the entire process. Beginning with the topmost row of the logic gate, we will encrypt Kw5,0

with Kw2,0 and encrypt the result with Kw1,0. This process will the repeated for the other
rows following Table 22.1.

Once the garbled table is complete, Alice sends Bob the garbled table, a mapping for
which output key corresponds to which output(Kw5,0 → 0,Kw5,1 → 1), and the key corre-
sponding with Alice’s input(i.e. Kw1,a). With Alice’s key, Bob will be able to remove one
layer of encryption of two of the rows in the garbled table. To receive the key corresponding
to Bob’s input we will use an OT where Alice inputs both of Bob’s keys Kw2,0,Kw2,1, and
Bob inputs his data b. This allows Bob to receive Kw2,b without Alice finding out what his
b is. Finally, Bob will use Kw2,b to decrypt only the row corresponding to both Alice’s and
Bob’s input. Once he receives the output key, Bob can use the mapping to find out what
the output was.

Three quick notes:

• We set the keys corresponding to the output w5 be the output of the decryption instead
of the output of the logic gate to generalize to when several logic gates are chained
together and decrypting the output of the logic gate would be leaking information.

• Similarly, we send all four row values instead of just the two corresponding with Alice’s
input to generalize for when multiple logic gates are chained together or for when Bob
has both inputs.

• The type of encryption used here is authenticated encryption so both Bob and Alice
will know if Bob used the right keys for the right encryptions.

An important issue to address is that if the garbled table is passed as it is, Bob could
know which row corresponds to which input which would leak information. Therefore, Alice
has to randomly permute the rows before sending the table to Bob.

22.4 Multi Layered Garbled Circuits

In the last section we covered how garbled circuits look like for a circuit with just a single
logic gate, in this section we will cover how to use garbled circuits with logic gates chained
together.

In this example, Alice’s circuit is depicted by Figure 22.5. Similarly to single logic gate
example we will create a garbled table, however, in this case we will create one for each logic
gate. To do so we will begin by generating two keys for each input of every logic gate, and
two keys for the final output. Then we will generate the three garbled tables as shown in
Table 22.2.

22-4



Figure 22.5: Alice’s multi layered circuit.

Garbled Table G1

Ekw1,0(Ekw2,0(Kw5,0))
Ekw1,0

(Ekw2,1
(Kw5,0))

Ekw1,1(Ekw2,0(Kw5,0))
Ekw1,1(Ekw2,1(Kw5,1))

Garbled Table G2

Ekw3,0(Ekw4,0(Kw6,0))
Ekw3,0

(Ekw4,1
(Kw6,1))

Ekw3,1(Ekw4,0(Kw6,1))
Ekw3,1(Ekw4,1(Kw6,0))

Garbled Table G3

Ekw5,0(Ekw6,0(Kw7,0))
Ekw5,0

(Ekw6,1
(Kw7,1))

Ekw5,1(Ekw6,0(Kw7,1))
Ekw5,1(Ekw6,1(Kw7,0))

Table 22.2: Alice’s multi layered circuit garbled tables

Note that the keys for w5 and w6 are used as the message encrypted for circuits G1 and
G2 and then used as keys for G3.

Once the garbled tables are created we can send them to Bob, along with the mapping
of the final output(Kw7,0 → 0,Kw7,1 → 1), and they keys for w1 and w3 corresponding to
Alice’s data(i.e. Kw1,a and Kw3,A). Then we will use two OTs as described in the single
logic gate example but this time to share the key for w2 and w4 corresponding to Bob’s data.

Now, Bob has the keys to decrypt one row of G1 and one row of G2. The result from
these decryptions can then be used to decrypt a row of G3 and get the final output of the
circuit using the map.

Note that Bob only knows the key for w5 and w6 but not the actual value the keys
correspond to. This is imortant because the garbled circuit isn’t leaking information.

Acknowledgement

These scribe notes were prepared by editing a light modification of the template designed
by Alexander Sherstov.

22-5


	Background
	Issue with our protocol
	Garbled Circuits
	Multi Layered Garbled Circuits

