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LECTURE

13

Schnorr Signatures, Commitments

In previous lecture we developed the concept of digital signatures, which consists of three
algorithms: key generation, message signing and message verification. While this schema
functions similar to MAC Authentication process, digital signature make use of signing key,
sk, in signing process and verification key, pk, in Message Verification process. Digital sig-
natures are widely used to authenticate software updates, authenticate email using domain
keys identified mail (DKIM), and creating certificates to authenticate users using certifica-
tion process.
In this lecture, we move forward and take a look at a new protocol, Schnorr’s Signature,
which achieves security against adversary attacks under the discrete log assumption. We
will see why this protocol is secure and can be used to sign a message my multiple signers.
Lastly, we will end this lecture by discussing Commitment Scheme, that allows one party
to commit to a chosen value (or chosen message) while keeping it hidden to public, with the
ability to reveal the committed value at a later time.

13.1 Schnorr’s Identification Protocol

Schnorr’s Identification was developed by Claus Schnorr and this protocol is known for its
simplicity as well as its intractability of certain discrete log problems. Lets say Alice wants
to convince Bob that she knows a message, m. The easiest way to achieve this is by using
H(m) := gm where H(m) is a one-way function. However, this protocol, as discussed in
previous lecture, is secure against direct attacks but vulnerable to eavesdropping attacks.
Using Schnorr Identification Alice can convince Bob that she knows message, m, without
sending the value to Bob. For this protocol, let G be a cyclic group of prime order q, with
generator, g, in which the discrete log problem is assumed to be hard. Typically a Schnorr
group is used.
Here is how the protocol works in action. Let C be a subset of Zq.

• The key generation algorithm G runs as follows:

α ← Zq, u ← gα



The verification key is vk := u, and the secret key is sk := α.

• The protocol between Alice and Bob runs as follows, where the Alice is chooses sk =
α, and the verifier Bob is chooses vk = u:

1. Alice computes αt ← Zq, ut ← gαt , and sends ut to Alice

2. Bob computes c ← C, and sends c to Alice

3. Bob checks if gαt = ut * uc; if so Bob outputs accept; otherwise, Bob outputs
reject

If Bob accepts the message, or gαt = ut * uc, then Bob accepts the conversation and this
protocol satisfies the requirement for identification on the receiver.

13.2 Schnorr’s Signature

Having understood how Schnorr Identification works we can use the same protocol as a
signature scheme. We will make use of a secure random oracle model under the discrete log
assumption in order to get random values.
Similar to Schnorr’s Identification we will let G be a cyclic group of prime order q, with
generator, g, in which the discrete log problem is assumed to be hard. Typically a Schnorr
group is used. In addition we will make user of a secure hash function: M X G → C, which
will behave as a random oracle where M is a message space of the signature. Here is how
the signature scheme works in action.

• The key generation algorithm G runs as follows:

α ← Zq, u ← gα

The public key is pk := u, and the secret key is sk := α.

• To sign the message, m, using the secret key sk, it follows:

S(sk, m): = αt ← Zq, ut ← gαt , c ← H(m ,ut), αz ← αt + αc
output σ : = (ut,αz).

• To verify a signature σ = (ut, αz) on a message , m, using the public key pk = u, the
signature verification algorithm Bob computes c ← H(m, ut), and outputs accept if
gαz = ut*u

c,and outputs reject, otherwise.

The Schnorr Signature basically computes a signature on message m of type (ut, αz)
and the verifier Bob computer c ← H(m ,ut) where the hash function plays the role of the
verifier in this protocol.
Now is this scheme secure? This scheme is secure because any forger can use two distinct
signatures, (σ1, sk1) (σ2, sk2) using the same message, m and ut, in order to solve for αt.
Lets see how this works
Given a forger F, who has access to verification key:= gα and signs a message m. F gener-
ates a forgery for some (c, ut, αz) such that the verification passes for the given sign. We
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will try to show if F manages forge a signature by learning α we contradict the discrete
log assumption that given gα we can’t find α. For this we will create two distinct games,
Game0 and Game1 such that:
Game0:

• The forger sends (m,ut) and receives c1 form the random Oracle model

• The forger now uses c1 to sign message m, and send a valid signature, σ1 → (c, ut,
αz1).

Game1:

• The forger sends (m,ut) and receives c2 form the random Oracle model

• The forger now uses c2 to sign message m, and send a valid signature, σ2 → (c, ut,
αz2).

Now the forger has access to two signatures of same message such that σ1 = αt + αc1
and σ1 = αt + αc2. Now we have two equations and two unknowns thus forger can easily
compute the value of αt which contradicts the discrete log assumption

13.3 Multi-Signature using Schnorr

In multi-signature scheme we have many signers signing the same message where each signer
has a signing and a verification key, (sk, vk). If there are n signers, instead of having n
different long signature we want to figure out a more compact signature which is secure.
Schnorr Signature can be efficiently used for multi-signature scheme. Lets a take a look:

• The key generation algorithm G runs as follows:

Each signer has α ← Zq, u ← gα

Therefore for n signers there αn signing keys and un verification keys

• Each signer chooses a random αi and publishes gαi such that ut ← gα1+α2..αn , c ←
H(m,ut,ui, L) where L is a set of all verification keys.

• We calculate each signature sequentially such that αz ← αz−1 αti + αici

• The final signature is αz ← αt + α1c1 + ....αncn

13.4 Commitments

In the second part of the lecture we move towards a more generalized approach to build a
more elaborate type of proof systems. We discussed about Commitments which is basi-
cally a locked box, where Alice can put her message m inside and send the box to Bob. At
some later point of time Alice sends a key to Bob which allows Bob to open the box and
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read the message m. This interaction between Alice and Bob is known as a Commitment
Scheme which consists of two algorithm: Commit and Decommit. In the commit stage
Alice interacts with Bob to transfer the locked message to Bob. Similarly in the Decommit
phase Alice interacts with Bob to send the key for Bob to unlock the message.
Properties of Commitment Scheme:
Hiding: The commit phase must be hiding. Let denote com(m, r) as a commit function to
a message m and randomness r such that for any message, m0 and m1 the commit function
is indistinguishable
Binding: For every string c, the probability that a PPT commiter F can decommiting a
string c, with key k0 and message m0 and decommiting a string c, with key k1 and message
m1 is negligible. Therefore,

Pr[ (k1,m1), (k0,m); decommit(c,k1,m1) =1 ) or decommit(c,k1,m1) =1] is negligible

In order to design a secure commitment message, m, we see to pick a random r of fixed-
length and send H(r*m). We cannot send H(m) because this violates a hiding property of
commitment since given an m, an adversary can easily check the hash of the message to
retrieve the commitment. In order to open a commitment, we need to send r and m.
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