
CS 498ABD: Algorithms for Big Data

Graph Sketching, Matchings
Lecture 23
Nov 17, 2022

Chandra (UIUC) CS498ABD 1 Fall 2022 1 / 31

Part I

Graph sketching for connectivity

Chandra (UIUC) CS498ABD 2 Fall 2022 2 / 31

Graph sketching

We saw previously that linear sketching on vectors x allows for
several powerful applications including ability to handle deletions

Graph streaming with deletions: each token in stream is of the form
(e,∆) where e is an edge and ∆ ∈ {−1, 1}.

Want to maintain a sketch/data structure of size O(npolylog(n))
such that one can answer basic questions. Example: connectivity
queries.

Chandra (UIUC) CS498ABD 3 Fall 2022 3 / 31

Linear sketching recap

Vector x ∈ Rn that is updated one coordinate at a time.

Pick a sketch matrix Mr ∈ Rk×n and maintain sketch Mrx of
dimension k
The sketch matrix Mr depends on a random string r and is
implicitly defined and not explicitly stored. Assumption is that
Mr1i for vector 1i (which has 1 in i ’th coordinate and 0 in all
other entries) can be computed efficiently from r .

When x is updated to x + α1i we update sketch by αMr1i .

Do postprocessing of Mrx

Chandra (UIUC) CS498ABD 4 Fall 2022 4 / 31

`0 sampling in turnstile model

‖x‖0 is number of non-zero coordinates (distinct elements)

`0-sampling: output a non-zero coordinate of x near uniformly. Can
be done with O(log2 n)-sized sketch

Note: allow positive and negative entries in x

Chandra (UIUC) CS498ABD 5 Fall 2022 5 / 31

Sketching for graphs

Consider vector f ∈ R(n
2) where fi ∈ {0, 1} indicating whether edge

i in the complete graph on n nodes is in the graph or not.

Example:

Sketching f is not adequate for most graph applications. We need
information about edges incident to each vertex.

For node v let fv ∈ R(n
2) be a vector that only considers edges

incident to v in the complete graph. Essentially the row of v in the
adjacency matrix.

Why use
(n
2

)
dimensions? To be able to use linear

operations over different nodes.

We sketch each fv using same sketch matrix M and this takes
O(npolylog(n)) space.

Chandra (UIUC) CS498ABD 6 Fall 2022 6 / 31

Sketching for graphs

Consider vector f ∈ R(n
2) where fi ∈ {0, 1} indicating whether edge

i in the complete graph on n nodes is in the graph or not.

Example:

Sketching f is not adequate for most graph applications. We need
information about edges incident to each vertex.

For node v let fv ∈ R(n
2) be a vector that only considers edges

incident to v in the complete graph. Essentially the row of v in the
adjacency matrix. Why use

(n
2

)
dimensions?

To be able to use linear
operations over different nodes.

We sketch each fv using same sketch matrix M and this takes
O(npolylog(n)) space.

Chandra (UIUC) CS498ABD 6 Fall 2022 6 / 31

Sketching for graphs

Consider vector f ∈ R(n
2) where fi ∈ {0, 1} indicating whether edge

i in the complete graph on n nodes is in the graph or not.

Example:

Sketching f is not adequate for most graph applications. We need
information about edges incident to each vertex.

For node v let fv ∈ R(n
2) be a vector that only considers edges

incident to v in the complete graph. Essentially the row of v in the
adjacency matrix. Why use

(n
2

)
dimensions? To be able to use linear

operations over different nodes.

We sketch each fv using same sketch matrix M and this takes
O(npolylog(n)) space.

Chandra (UIUC) CS498ABD 6 Fall 2022 6 / 31

Sketching for graphs: connectivity

For connectivity the following specific representation is useful.

Assume wlog that V = [n]

Define vector a(i) for node i of dimension
(n
2

)
as follows:

a(i)({k, j}) = 0 if i 6= k and i 6= j (edge is not incident to i)
a(i)({k, j}) = 1 if i = k and i < j (edge is incident to i and
neighbor has higher index)

a(i)({k, j}) = −1 if i = j and k < i (edge is incident to i and
neighbor has higher index)

Lemma

Suppose S ⊂ [n] then
∑

i∈S a(i) is the representation for the node
obtained by contracting S into a single node.

Chandra (UIUC) CS498ABD 7 Fall 2022 7 / 31

Sketching for graphs: connectivity

For connectivity the following specific representation is useful.

Assume wlog that V = [n]

Define vector a(i) for node i of dimension
(n
2

)
as follows:

a(i)({k, j}) = 0 if i 6= k and i 6= j (edge is not incident to i)
a(i)({k, j}) = 1 if i = k and i < j (edge is incident to i and
neighbor has higher index)

a(i)({k, j}) = −1 if i = j and k < i (edge is incident to i and
neighbor has higher index)

Lemma

Suppose S ⊂ [n] then
∑

i∈S a(i) is the representation for the node
obtained by contracting S into a single node.

Chandra (UIUC) CS498ABD 7 Fall 2022 7 / 31

Example

Chandra (UIUC) CS498ABD 8 Fall 2022 8 / 31

Connectivity using sketching

Setting: stream of edge updates (ei ,∆i) where ei specifies the end
points and ∆i ∈ {−1, 1} (insert or delete). Strict turnstile.

Want to know if G is connected at end of stream and find a
spanning tree

Want to use O(n logc n) space for some small c

Chandra (UIUC) CS498ABD 9 Fall 2022 9 / 31

Offline algorithm

Consider following “parallel” algorithm for spanning tree computation
similar to Bourouvka’s algorithm for MST

Start with each vertex in separate connected component

In each round each connected component picks a single edge
leaving it.

All chosen edges added and connected components updated
(equivalently shrink the connected components into a single
node)

Repeat until graph has a single connected component (or
equivalently we have only one node)

Algorithm terminates in O(log n) iterations.

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 31

Offline algorithm

Consider following “parallel” algorithm for spanning tree computation
similar to Bourouvka’s algorithm for MST

Start with each vertex in separate connected component

In each round each connected component picks a single edge
leaving it.

All chosen edges added and connected components updated
(equivalently shrink the connected components into a single
node)

Repeat until graph has a single connected component (or
equivalently we have only one node)

Algorithm terminates in O(log n) iterations.

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 31

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph. But contracted graph depends on
sketch and we cannot make another pass! Linearity to the rescue!

Chandra (UIUC) CS498ABD 11 Fall 2022 11 / 31

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph.

But contracted graph depends on
sketch and we cannot make another pass! Linearity to the rescue!

Chandra (UIUC) CS498ABD 11 Fall 2022 11 / 31

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph. But contracted graph depends on
sketch and we cannot make another pass!

Linearity to the rescue!

Chandra (UIUC) CS498ABD 11 Fall 2022 11 / 31

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph. But contracted graph depends on
sketch and we cannot make another pass! Linearity to the rescue!

Chandra (UIUC) CS498ABD 11 Fall 2022 11 / 31

Emulation via sketching

Implementing two iterations of the offline algorithm

Pick independent sketching matrices M1 and M2 and keep
sketches for M1a(i) and M2a(i) for each i as before

Let H be contracted graph obtained by using M1 for first
iteration

Suppose S is a connected component that gets contracted to a
node v . By lemma we have sketch for nodes in graph H!
M2a(v) =

∑
i∈S M2a(i).

Question: Why do we need M2? Can we not use M1 itself?

Chandra (UIUC) CS498ABD 12 Fall 2022 12 / 31

Emulation via sketching

Implementing two iterations of the offline algorithm

Pick independent sketching matrices M1 and M2 and keep
sketches for M1a(i) and M2a(i) for each i as before

Let H be contracted graph obtained by using M1 for first
iteration

Suppose S is a connected component that gets contracted to a
node v . By lemma we have sketch for nodes in graph H!
M2a(v) =

∑
i∈S M2a(i).

Question: Why do we need M2? Can we not use M1 itself?

Chandra (UIUC) CS498ABD 12 Fall 2022 12 / 31

Emulation via sketching

Implementing the offline algorithm

Pick independent sketching matrices M1,M2, . . . ,Mt where
t = O(log n) and keep sketches for Mja(i) for each node i and
for each 1 ≤ j ≤ t. Total space is O(n logc n) since
t = O(log n)

Use Mj , via linearity, for the contracted graph in iteration j to
create graph for next iteration.

Correctness requires that each iteration has high probability. Use
union bound over iterations (since sketches are independent) and in
each iteration use union bound over all vertices (using high
probability of `0 sampling).

Chandra (UIUC) CS498ABD 13 Fall 2022 13 / 31

Emulation via sketching

Implementing the offline algorithm

Pick independent sketching matrices M1,M2, . . . ,Mt where
t = O(log n) and keep sketches for Mja(i) for each node i and
for each 1 ≤ j ≤ t. Total space is O(n logc n) since
t = O(log n)

Use Mj , via linearity, for the contracted graph in iteration j to
create graph for next iteration.

Correctness requires that each iteration has high probability. Use
union bound over iterations (since sketches are independent) and in
each iteration use union bound over all vertices (using high
probability of `0 sampling).

Chandra (UIUC) CS498ABD 13 Fall 2022 13 / 31

Implications

Sketching gives a streaming algorithm that uses O(npolylog(n))
space and can with high probability output the connected
components in the strict turnstile setting

Similar ideas can be used to compute cut sparsifiers in dynamic
streams

Also implies a data structure with O(npolylog(n)) space and
O(polylog(n)) time per edge update that gives randomized
guarantees on connectivity maintanence. Others have built on this in
various applications to offline algorithms

Original idea to Ahn, Guha, MacGregor.

Chandra (UIUC) CS498ABD 14 Fall 2022 14 / 31

Part II

Matchings

Chandra (UIUC) CS498ABD 15 Fall 2022 15 / 31

Matchings

Definition

A matching M ⊆ E in a graph G = (V ,E) is a set of edges that
do not intersect (share vertices).

Definition

A matching M ⊆ E in a graph G = (V ,E) is a perfect matching if
all vertices are matched.

Given a graph G does it have a perfect matching?
Find a maximum cardinality matching.
Find a maximum weight matching.
Find a minimum cost perfect matching.
Count number of (perfect) matchings.

Matching theory: extensive, fundamental in theory and practice,
beautiful, · · ·

Chandra (UIUC) CS498ABD 16 Fall 2022 16 / 31

Matchings

Definition

A matching M ⊆ E in a graph G = (V ,E) is a set of edges that
do not intersect (share vertices).

Definition

A matching M ⊆ E in a graph G = (V ,E) is a perfect matching if
all vertices are matched.

Given a graph G does it have a perfect matching?
Find a maximum cardinality matching.
Find a maximum weight matching.
Find a minimum cost perfect matching.
Count number of (perfect) matchings.

Matching theory: extensive, fundamental in theory and practice,
beautiful, · · ·

Chandra (UIUC) CS498ABD 16 Fall 2022 16 / 31

Algorithms

Given a graph G does it have a perfect matching?

Find a maximum cardinality matching.

Find a maximum weight matching.

Find a minimum cost perfect matching.

Count number of (perfect) matchings.

All of the above solvable in polynomial time.

Bipartite graphs: via flow techniques

Non-bipartite/general graphs: more advanced techniques

Classical topics in combinatorial optimization

Chandra (UIUC) CS498ABD 17 Fall 2022 17 / 31

Semi-streaming setting

Edges e1, e2, . . . , em come in some (adversarial) order

Questions:

With Õ(n) memory approximate maximum cardinality matching

With Õ(n) memory approximate maximum weight matching

Multiple passes

Estimate size of maximum cardinality matching

· · ·
Substantial literature on upper and lower bounds

Chandra (UIUC) CS498ABD 18 Fall 2022 18 / 31

Maximum cardinality

Definition

A matching M is maximal if for all e ∈ E \M , M + e is not a
matching.

Lemma

If M is maximal then |M| ≥ |M∗|/2 for any matching M∗. Hence,
a maximal matching is a 1/2-approximation.

Chandra (UIUC) CS498ABD 19 Fall 2022 19 / 31

Maximal matching in streams

M = ∅
While (stream is not empty) do

e is next edge in stream

If (M + e) is a matching

M ← M + e
EndWhile

Output M

Chandra (UIUC) CS498ABD 20 Fall 2022 20 / 31

Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that w(e1) ≥ w(e2) ≥ . . . ≥ w(em)
M = ∅
For (i = 1 to m) do

If (M + ei) is a matching

M ← M + ei
EndWhile

Output M

Claim: w(M) ≥ w(M∗)/2.

Streaming setting? Cannot sort!

Chandra (UIUC) CS498ABD 21 Fall 2022 21 / 31

Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that w(e1) ≥ w(e2) ≥ . . . ≥ w(em)
M = ∅
For (i = 1 to m) do

If (M + ei) is a matching

M ← M + ei
EndWhile

Output M

Claim: w(M) ≥ w(M∗)/2.

Streaming setting? Cannot sort!

Chandra (UIUC) CS498ABD 21 Fall 2022 21 / 31

Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that w(e1) ≥ w(e2) ≥ . . . ≥ w(em)
M = ∅
For (i = 1 to m) do

If (M + ei) is a matching

M ← M + ei
EndWhile

Output M

Claim: w(M) ≥ w(M∗)/2.

Streaming setting? Cannot sort!

Chandra (UIUC) CS498ABD 21 Fall 2022 21 / 31

Maximum-weight matching

M = ∅
For (i = 1 to m) do

C = {e′ ∈ M | e′ ∩ ei 6= ∅}
If (w(ei) > w(C)) then

M ← M − C + ei
EndWhile

Output M

Can be arbitrarily bad compared to optimum weight.

Chandra (UIUC) CS498ABD 22 Fall 2022 22 / 31

Maximum-weight matching

M = ∅
For (i = 1 to m) do

C = {e′ ∈ M | e′ ∩ ei 6= ∅}
If (w(ei) > w(C)) then

M ← M − C + ei
EndWhile

Output M

Can be arbitrarily bad compared to optimum weight.

Chandra (UIUC) CS498ABD 22 Fall 2022 22 / 31

Maximum-weight matching

M = ∅
For (i = 1 to m) do

C = {e′ ∈ M | e′ ∩ ei 6= ∅}
If (w(ei) > (1 + γ)w(C)) then

M ← M − C + ei
EndWhile

Output M

Theorem

w(M) ≥ f (γ)w(M∗).

Chandra (UIUC) CS498ABD 23 Fall 2022 23 / 31

Maximum-weight matching

M = ∅
For (i = 1 to m) do

C = {e′ ∈ M | e′ ∩ ei 6= ∅}
If (w(ei) > (1 + γ)w(C)) then

M ← M − C + ei
EndWhile

Output M

Theorem

w(M) ≥ f (γ)w(M∗).

Chandra (UIUC) CS498ABD 23 Fall 2022 23 / 31

Analysis

Consider edge e ∈ M at end of algorithm. Let Te set of edges in G
that were “killed” by e.

Claim: w(Te) ≤ w(e)/γ.

e = C0 killed C1 which killed C2 . . . killed Ch

w(Ci) ≥ (1 + γ)w(Ci+1) for i ≥ 0 and adding up

w(e) + w(Te) ≥ (1 + γ)w(Te)

Chandra (UIUC) CS498ABD 24 Fall 2022 24 / 31

Analysis

Consider edge e ∈ M at end of algorithm. Let Te set of edges in G
that were “killed” by e.

Claim: w(Te) ≤ w(e)/γ.

e = C0 killed C1 which killed C2 . . . killed Ch

w(Ci) ≥ (1 + γ)w(Ci+1) for i ≥ 0 and adding up

w(e) + w(Te) ≥ (1 + γ)w(Te)

Chandra (UIUC) CS498ABD 24 Fall 2022 24 / 31

Analysis

Consider edge e ∈ M at end of algorithm. Let Te set of edges in G
that were “killed” by e.

Claim: w(Te) ≤ w(e)/γ.

e = C0 killed C1 which killed C2 . . . killed Ch

w(Ci) ≥ (1 + γ)w(Ci+1) for i ≥ 0 and adding up

w(e) + w(Te) ≥ (1 + γ)w(Te)

Chandra (UIUC) CS498ABD 24 Fall 2022 24 / 31

Analysis

Claim: w(M∗) ≤ (1 + γ)
∑

e∈M(w(Te) + 2w(e)).

Fix any f ∈ M∗

If f ∈ M at some point then f ∈ Te for some e ∈ M , or
f ∈ M . Charge f to itself.

Else, when f considered it was not added to M . Let Cf
conflicting edges at that time. w(f) ≤ (1 + γ)w(Cf).

If |Cf | = 1 charge f to single edge e ∈ Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e′ and e′ gets killed by e′′, transfer charge of f
from e′ to e′′.

If e ∈ M can be charged twice hence total is 2(1 + γ)w(e)

If e′ ∈ Te then only one edge of M∗ leaves charge on e′. Why?

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 31

Analysis

Claim: w(M∗) ≤ (1 + γ)
∑

e∈M(w(Te) + 2w(e)).

Fix any f ∈ M∗

If f ∈ M at some point then f ∈ Te for some e ∈ M , or
f ∈ M . Charge f to itself.

Else, when f considered it was not added to M . Let Cf
conflicting edges at that time. w(f) ≤ (1 + γ)w(Cf).

If |Cf | = 1 charge f to single edge e ∈ Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e′ and e′ gets killed by e′′, transfer charge of f
from e′ to e′′.

If e ∈ M can be charged twice hence total is 2(1 + γ)w(e)

If e′ ∈ Te then only one edge of M∗ leaves charge on e′. Why?

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 31

Analysis

Claim: w(M∗) ≤ (1 + γ)
∑

e∈M(w(Te) + 2w(e)).

Fix any f ∈ M∗

If f ∈ M at some point then f ∈ Te for some e ∈ M , or
f ∈ M . Charge f to itself.

Else, when f considered it was not added to M . Let Cf
conflicting edges at that time. w(f) ≤ (1 + γ)w(Cf).

If |Cf | = 1 charge f to single edge e ∈ Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e′ and e′ gets killed by e′′, transfer charge of f
from e′ to e′′.

If e ∈ M can be charged twice hence total is 2(1 + γ)w(e)

If e′ ∈ Te then only one edge of M∗ leaves charge on e′. Why?

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 31

Analysis

Claim: w(M∗) ≤ (1 + γ)
∑

e∈M(w(Te) + 2w(e)).

Fix any f ∈ M∗

If f ∈ M at some point then f ∈ Te for some e ∈ M , or
f ∈ M . Charge f to itself.

Else, when f considered it was not added to M . Let Cf
conflicting edges at that time. w(f) ≤ (1 + γ)w(Cf).

If |Cf | = 1 charge f to single edge e ∈ Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e′ and e′ gets killed by e′′, transfer charge of f
from e′ to e′′.

If e ∈ M can be charged twice hence total is 2(1 + γ)w(e)

If e′ ∈ Te then only one edge of M∗ leaves charge on e′. Why?

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 31

Analysis

Claim: w(Te) ≤ w(e)/γ.

Claim: w(M∗) ≤ (1 + γ)
∑

e∈M(w(Te) + 2w(e)).

Setting γ = 1 we obtain w(M∗) ≤ 6w(M).

Chandra (UIUC) CS498ABD 26 Fall 2022 26 / 31

Another algorithm/approach for weighted
matching

We describe another algorithm for weighted matching that uses the
unweighted matching algorithm as a black box

We make some assumptions that can be gotten rid of with more care

Smallest edge weights is at least 1, that is, mine w(e) ≥ 1.

Largest weight edges is polynomially bounded in n, that is,
maxe w(e) ≤ nc

Chandra (UIUC) CS498ABD 27 Fall 2022 27 / 31

Another algorithm/approach for weighted
matching

We will describe the algorithm as an offline algorithm first.

Algorithm(G = (V ,E))
Assume edge weights are in [1,W]
For i = 1 to k = O(1

ε
logW) do

Ei = {e | w(e) ≥ (1 + ε)i}
Let Mi be a maximal matching in Gi = (V ,Ei)

M = ∅
For i = k down to 1 do

For each (e ∈ Mi) do

If M + e is a matching then M ← M + e
Output M

Exercise: Show that algorithm above can be implemented in
streaming setting with space O(n logW

ε
).

Chandra (UIUC) CS498ABD 28 Fall 2022 28 / 31

Another algorithm/approach for weighted
matching

We will describe the algorithm as an offline algorithm first.

Algorithm(G = (V ,E))
Assume edge weights are in [1,W]
For i = 1 to k = O(1

ε
logW) do

Ei = {e | w(e) ≥ (1 + ε)i}
Let Mi be a maximal matching in Gi = (V ,Ei)

M = ∅
For i = k down to 1 do

For each (e ∈ Mi) do

If M + e is a matching then M ← M + e
Output M

Exercise: Show that algorithm above can be implemented in
streaming setting with space O(n logW

ε
).

Chandra (UIUC) CS498ABD 28 Fall 2022 28 / 31

Analysis

Theorem

Algorithm outputs a matching M such that w(M) ≥ 1
4(1+ε)

OPT.

Assume weights are power of (1 + ε)i with a loss of (1 + ε) factor.

Let M∗ be an optimum matching and let M∗i = M∗ ∩ Ei .

Claim |Mi | ≥ |M∗i |/2 since Mi is a maximal matching in Ei

Chandra (UIUC) CS498ABD 29 Fall 2022 29 / 31

Analysis

Theorem

Algorithm outputs a matching M such that w(M) ≥ 1
4(1+ε)

OPT.

Assume weights are power of (1 + ε)i with a loss of (1 + ε) factor.

Let M∗ be an optimum matching and let M∗i = M∗ ∩ Ei .

Claim |Mi | ≥ |M∗i |/2 since Mi is a maximal matching in Ei

Chandra (UIUC) CS498ABD 29 Fall 2022 29 / 31

Analysis continued

Let Ci = M ∩ Ei be the set of edges in the output from Ei

Claim: |Ci | ≥ |Mi |/2 ≥ |M∗i |/4
since Ci is a maximal matching in Mi

Exercise: The preceding claim yields the theorem.

Chandra (UIUC) CS498ABD 30 Fall 2022 30 / 31

Other results

There is a clever and simple (1
2
− ε)-approximation

[Paz-Schwartzman’17]

Many other results on matchings in streaming: multipass, random
arrival order, lower bounds, ...

Chandra (UIUC) CS498ABD 31 Fall 2022 31 / 31

	Graph sketching for connectivity
	Matchings

