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Graphs

G = (V ,E ) is an undirected graph

n = |V | and m = |E |
Edges e1, e2, . . . , em seen as a stream, n known

Questions:

What graph problems can be solve with small space?

Can we handle edge deletions?

Focus is on undirected graphs partly because directed graphs are hard
to work with.
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Semi-streaming Model

Most problems require us to compute a structure of size Θ(n). Lower
bounds show that we require Ω(n) memory for even estimation
problems

Assume we have Θ(npolylog(n) memory. About polylog per vertex of
the graph

Can solve several interesting problems. Essentially reduce dense
graphs to sparse graphs.
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Connectivity

Is G connected? Output a spanning tree if it is.

Output an MST of G in the weighted case.

Is G k-edge connected?
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Basic Connectivity

Maintain spanning forest: need only O(n) edges

When edge ei = (u, v) arrives. If u and v are in different
components add ei to spanning forest. Otherwise discard ei .
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MST

Maintain spanning forest: need only O(n) edges

When edge ei = (u, v) arrives. If u and v are in different
components add ei to spanning forest.

What if u and v are in same connected component?

Check
cycle formed by adding ei and discard heaviest edge in cycle.

Exercise: Prove that algorithm outputs an MST if G is connected.

Note: we did not focus on time to process each edge in stream. Can
use data structures to implement in O(log n) time per operation.
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k-edge-connectivity

Definition

A graph G = (V ,E ) is k-edge-connected if deleting any k − 1
edges still leaves a connected graph.

Definition

Given a graph G = (V ,E ) and S ⊂ V , δ(S) is the set of edges
with exactly one end point in S .

Lemma

A graph G is k-edge connected iff |δ(S)| ≥ k for all S ⊂ V .
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Sparse certificates for k-edge connectivity

Observation: If G is k-edge-connected than m ≥ kn/2. Why?

Question: Suppose G is edge-minimal k-edge-connected graph on n
nodes. What is an upper bound on the number of edges?

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Theorem

Given a graph G finding the smallest 2-edge-connected subgraph is
NP-Hard.
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Sparse certificates for k-edge connectivity

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Constructive proof via algorithm.

For i = 1 to k do

Let Fi be a spanning forest in (V ,E \ ∪i−1
j=1Fj )

Output H = (V , F1 ∪ F2 . . . ∪ Fk)

Easy to see that H as at most k(n − 1) edges.

Lemma

H is k-edge-connected if G is.
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Streaming setting

For i = 1 to k do

Let Fi be a spanning forest in (V ,E \ ∪i−1
j=1Fj )

Output H = (V , F1 ∪ F2 . . . ∪ Fk)

Algorithm can be implemented in streaming setting. How?
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k-node-connectivity

Definition

A graph G = (V ,E ) is k-node-connected (or k-vertex-connected) if
deleting any k − 1 nodes leaves a connected graph.

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
kn edges.

Above theorem is much more tricky than for the edge case.

See [Zelke] for references and streaming algorithm.
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Part I

Cut Sparsifiers
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Graph Sparsification

G = (V ,E ) input graph and could be dense

n is reasonable to store

n2 may be unreasonable to store

edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V ,E ) create a sparse graph
H = (V ,F ) such that H mimics G for some property of interest

Connectivity

Distances (spanners and variants)

Cuts (cut sparsifiers)

...
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Cut Sparsifier

Definition

Given an edge weighted graph G = (V ,E ) with w : E → R+ an
edge weighted graph H = (V ,F ) with w ′ : F → R+ is an
ε-approximate cut sparsifier if for all S ⊂ V ,

w(δG (S)) ≤ w ′(δH(S)) ≤ (1 + ε)w(δG (S))

.

Very important concept and many powerful applications in graph
algorithms and beyond
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Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V ,E ) on m edges and n nodes and any ε > 0,
one can construct in randomized O(m log3 n) time a cut-sparsifier
with O( 1

ε2
n log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V ,E ) on m edges and n nodes and any ε > 0,
one can construct in deterministic polynomial time a cut-sparsifier
with O( 1

ε2
n) edges.

The preceding theorem is stronger. Gives a spectral sparsifier.

What is a cut-sparsifier of a complete graph Kn? An expander graph!
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Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.
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Merge and Reduce

Observation (Merge): If H1 = (V ,F1) is a α-approximate
sparsifier for G1 = (V ,E1) and H2 = (V ,F2) is a α-approximate
cut-sparsifier for G2 = (V ,E2) then H1 ∪ H2 = (V ,F1 ∪ F2) is a
α-approximate cut-sparsifier for G1 ∪ G2 = (V ,E1 ∪ E2).

Observation (Reduce): If H = (V ,F ) is a α-approximate cut
sparsifier for G = (V ,E1) and H ′ = (V ,F ′) is a β-approximate
cut-sparsifier for H then H ′ is a (αβ)-approximate cut-sparsifier for
G .
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Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.

Merge and Reduce via a binary tree approach over the m edges in
the stream. Seen this approach twice already: range queries in
CountMin sketch and quantile summaries.
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Cut sparsifiers in streaming

Split stream of m edges into k graphs of m/k edges each. Let
G1,G2, . . . ,Gk be the k graphs. Assume for simplicity that k
is a power of 2.

Imagine a binary tree with G1, . . . ,Gk as leaves

Build a sparsifier bottom up. At each internal node merge the
sparisfiers and reduce with approximation α

Questions:

What is α to ensure that final sparsifier is ε-approximate?

How much space needed in streaming setting?
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Cut sparsifiers in streaming

What is α to ensure that final sparsifier is ε-approximate?

How much space needed in streaming setting?

Collect N = Θ(n logc n) edges before processing since we can afford
roughly that much space. So each leaf corresponds to a graph with
N edges

Depth of tree is ≤ log(m/N) ≤ log n. Due to reduce operations
final approximation is (1 + α)d . Choose α such that
(1 + α)d ≤ (1 + ε) which implies α ' ε/(ed) ' ε/(e log n)
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Cut sparsifiers in streaming

p Collect N = Θ(n logc n) edges before processing since we can
afford roughly that much space. So each leaf corresponds to a graph
with N edges

Depth of tree is ≤ log(m/N) ≤ log n. Due to reduce operations
final approximation is (1 + α)d . Choose α such that
(1 + α)d ≤ (1 + ε) which implies α ' ε/(ed) ' ε/(e log n)

Space analysis: Sparsifier size with α = ε/ log n is O(n log2 n/ε2)
(if one uses BSS sparsifier, otherwise another log factor for
Benczur-Karger sparsifier).

Need another log n factor to store sparsfiers at log n levels for
streaming. So total space is O(N + n log3 n/ε2). Hence choose
N = O(n log3 n).
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Spectral Sparsifier

Spectral sparisifer is a stronger notion than cut sparsifier. Comes
from linear algebraic view of graphs.

Definition

The Laplacian LG of a n-vertex undirected graph G = (V ,E ) with
non-negative edge-weights w : E → R+ is a n × n symmetric
diagonally dominant matrix where (i) LG (ii) = deg(i) for each
i ∈ [n] and LG (ij) = LG (ij) = −w(ij) if ij ∈ E and 0 otherwise.

LG is a positive semi-definite matrix and has rank < n
Since LG is psd it has non-negative real eigenvalues and
xTLGx ≥ 0 for all x ∈ Rn

xTLGx =
∑

ij∈E w(ij)(xi − xj )
2

Suppose x = 1S the indicator of a set S ⊆ V then
xTLGx = w(δ(S))
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Spectral Sparsifier

Spectral sparisifer is a stronger notion than cut sparsifier. Comes
from linear algebraic view of graphs.

Definition

Given G = (V ,E ) with edge weights w : E → R+ a weighted
graph H = (V ,EH) with w ′ : EH → R+ is a (1 + ε)-spectral
sparsifier for G if

xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

for all x ∈ Rn. Equivalently, LG � LH � (1 + ε)LG .

Observation: An α-approximate spectral sparisfier is an
α-approximate cut sparsifier but converse is not necessarily true.
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Spectral Sparisfier

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V ,E ) on m edges and n nodes and any ε > 0,
one can construct in deterministic polynomial time a
spectral-sparsifier with O( 1

ε2
n) edges.

Reduce and Merge framework extends easily for spectral sparsifiers as
well so one can compute spectral sparisfiers in O(npoly(log n)) space
in the streaming setting.
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