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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||».

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||».

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z;, z5, . . . , z, for the columns of A. Compute
projection ¢ as ¢ = 3., (b, z;) z; and output answer as ||b — c||>.
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Linear least square/Regression and SVD

Linear least squares: Given A € R™*" and b € R™ find x to
minimize ||Ax — b||».

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. Find an orthonormal basis

Z1, Zoy . . . 4 Z, for the columns of A. Compute projection b’ as

b = Z}Zl(b, z;)z; and output answer as ||b — b’||».

Finding the basis is the expensive part. Recall SVD gives

Vi, Vo, ..., V, which form a basis for the row space of A but then
ul,u),...,ul form a basis for the column space of A. Hence SVD
gives us all the information to find b’. In fact we have

minllAx — bIE = 3 (47, b

i=r+1
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d.

@ Possible if Kk = d. Pick N to be an orthonormal basis for E.
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of R" of dimension d. Let Il be a
DJL matrix N € Rk*" with k = O(;i2 log(1/d)) rows. Then with
probability (1 — §) for every x € E,

1

IIW

Nx[[> = (1 £ €)]lx][2-

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.

Chandra (UIUC) CS498ABD 5 Fall 2022  5/32



Linear least squares via Subspace
embeddings

Let a;, a5, ...,aq be the columns of A and let E be the subspace
spanned by {ai, as,...,aq, b}

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix 1 with

k = O(g) rows we reduce a;, a,...,aq4, b to aj,aj,...,al, b

which are vectors in R,

Solve min,cpa||A’xX" — b’||>
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Faster Linear least squares via Subspace
embeddings

Let a;, a5, ...,aq be the columns of A and let E be the subspace
spanned by {ai, as,...,aq, b}

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix 1 with

k = O(g) rows we reduce a;, a,...,aq4, b to aj,aj,...,al, b

which are vectors in R,
Solve min,cpa||A’xX" — b’||>

Claim: Answer is a (1 + O(e))-approximation to original problem if
Mis a (1 + €)-approximate subspace embedding.
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Faster Linear least squares via Subspace
embeddings

Apply subspace embedding I1 to A, b to obtain A’, b’
Solve min,/cpra||A’x" — b’||2

Claim: Answer is a (1 + O(e))-approximation to original problem if
Mis a (1 + €)-approximate subspace embedding.

Advantage: Reduces A from n X d to k x d where k = O(d/¢€?).
Use any fast approximate regression method on A’, b’ as a black box.

Disadvantage: Dependence of 1/€? is high if one wants to choose
small €. In particular if n and d are large and comparable.
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Accelerating lterative Solvers via Sketching

@ lterative solvers that converge to solution are very common in
numerical linear algebra. Each iteration is fast and goal is to
reduce number of iterations

@ Typically the number of iterations depends on how well-behaved
the data is. An example is the condition number of the matrix.
@ lterative solvers can be sped up by pre-conditioning to make
data well-behaved.
Goal: show that sketching techniques such as oblivious supspace
embeddings can be viewed as preconditioning tools. Demonstrate on
least squares regression.
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Gradient Descent

Let f : RY — R be a real-valued differentiable function. Recall
Vf(x) is the gradient of f at x which is a vector in R? with
(Vf(x))i = g—;. Gradient descent is a common search technique to
find a local min'imum/optimum of f in the unconstrained setting. A
local optimum is a point x where Vf(x) = 0. When f is a convex
function then any local optimum is a global optimum. There are
many variants of gradient descent. Simplest one is based on having
only access to the gradient and works with a fixed step size 7.

GradientDescent(f, n):
Choose a good strating point x(® € R
For t=1to T to
x()  x(t=1) _ v f(x(E-1)

Output x(M
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Gradient Descent

The choice of 1 (step size) is important for convergence and it
depends on the smoothness of the function. If the gradient changes
very rapidly it is difficult to find a local minimum since we may
overshoot. An important parameter in the analysis is the smoothness
which upper bounds the rate of change of the gradient.

Definition

f is L-smooth if ||V f(x) — Vf(y)||. < L||x — y]||2 for all x,y.

One can show that GD converges if n < 1/L. Convergence is much
faster if the function is in addition strongly convex.
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Convex functions

Definition

A real-valued continuous function f : R? — R is convex over a
domain D C RY if for all x,y € D and for all 6 € [0, 1],
f(Ox + (1 —0)y) < O0f(x)+ (1 —0)f(y).

We will be interested in differentiable functions and
twice-differentiable functions.

Fact: Differentiable function f is convex iff
f(x) > F(x0) + (x — x0) TV F(x) for all x,x, € D.

f at any point xp lies above the tangent at point xg.

f is strictly convex if f(x) > f(xg) + (x — x0) TV f(xo) for all x, xg.
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Convex functions

Suppose f is twice differentiable function. H(x) = V2f(x) is the
Hessian of f at x. Itis a d X d symmetric matrix where

H(x)ij = H(x)ji = 5555

Fact: Twice-differentiable function f is convex iff V2f(x) = 0, that

is, it is a positive semi-definite matrix. Alternatively,
yT(V2f(x))y > 0 forall y, x.

A real-symmetric matrix has all real eigen values and hence H(x) has
real eigen-values for all twice-differentiable functions. When

H(x) > 0 (psd matrix) all the eigen-values are non-negative which
means that the function’s curvature is non-negative in all directions
and hence bowl shaped (convex).
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Strongly convex functions

Definition

A differentiable function f is strongly convex with parameter p if
F(x) > F(x0) + (VF(x) — VF(x0))T(x — x0) + £l|x — x]I2 for all
X, Xo € D. Equivalently,

(VF(x) — VF(x0))"(x — x0) = pllx — xoll5.

Fact: Twice differentiable f is strongly convex with parameter p iff
Amin(H(x)) > p for all x where Ain(H(x)) is the smallest
eigen-value of H(x).

Fact: f is strongly convex with parameter p iff the function
g(x) = f(x) — &||x||3 is convex.
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Regression as convex optimization problem

Consider

F(x) = [|Ax — b|l2 = xTAT Ax — 2xT Ab + || b||3

The gradient is easy to compute explicitly:

Vf(x) = 2AT Ax — 2Ab

One can see that the Hessian V2f(x) = 2AT A and since ATA is
psd it also shows that f is convex

Setting gradient to 0 one can see that the optimum solution value is
x* = (ATA)"1Ab. Even though we have an explicit solution,
iterative methods are preferred since maxtrix multiplication and
computing the inverse are expensive.
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Smoothness of regression

Suppose f(x) = ||Ax — b||3 = xTATAx —2xTAb + ||b||2. Itis a
convex function with gradient Vf(x) = 2AT Ax — 2Ab.

For x,y we have ||[VF(x) — Vf(y)|l. = 2||ATA(x — y)||». It
follows that

IVE(x) = VEW)2 < 207]Ix =yl

where o is the top singular value of A.

Thus, for the regression problem, f is L-smooth where L = 2072
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Condition number of a matrix

Suppose f(x) = ||Ax — b||3 = xTATAx —2xTAb + ||b||2. Itis a
convex function with gradient Vf(x) = 2AT Ax — 2Ab.

Let O max(A) = supixj,=1l|Ax||2 and let o min(A) = infjjxj,=1]| Ax]|2.

Definition

The condition number of A, denoted by k(A), is Tmax(A)

a'min(A) '

Recall that Ayin(H(x)) is the strong convexity parameter of f. For
regression 2AT A is the Hessian and hence Apin(ATA) = o2, . Thus
K(A) = L/p where L is the smoothness parameter and g is the
strong convexity parameter.
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Gradient descent convergence when
condition number is small

It is known that gradient descent converges very fast when L/p is
bounded. We state a lemma that captures this in a special case of
regression while also making an additional assumption.

Lemma

Suppose all singular vectors of A are in the range
[1 —1/+/2,1+1/+/2]. If we do gradient descent for regression with
n = 1/2 then for all t > 0 we have

|AxED — Ax*||, < 27| Ax© — Ax*||,

In other words the error of the vector x(*) after t steps goes down
exponentially with t when compared to the initial error.
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Gradient descent convergence when
condition number is small

The lemma in the previous slide is a special case of a more general
theorem about convergence of gradient descent for strongly convex
functions. For a direct proof of the stated lemma for regression in
previous slide see Nelson's notes.

Lemma

Suppose f is an L-smooth and p-strongly convex function. Gradient
descent with n < 1/L satisfies the property that

I — x*[17 < (1 = ap)fIx — x*||3.
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Implication for Regression

Lemma shows that if condition number of A is small then gradient
descent converges very fast. In pariticular if we have a good starting
point x(© such that ||Ax(©®) — b||, < c||Ax* — b|| for some
constant ¢ then gradient descent has the following property.

After t = O(log(c/€)) steps we have
[Ax®) — bll> < (1 + €)||Ax* — b]|.

To see this we observe via triangle inequality and lemma,
lAx() — bl; < [|AxD — Ax*[|5 + [|Ax* — blls < 27*(|Ax(©) — Ax*|5 + [|Ax* — b]|5.
By triangle inequality

1ax© — Ax* ||, < [|AxO) — blj5 + [|Ax* — bll2-

Putting together

1Ax(®) — blly < 275 Ax©) — bl|5 + (1 +27F)||Ax* — bll2 < (1 + O(e))[|Ax* — b]|>
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Oblivious Subspace Embeddings Again

Suppose we use a-approximate oblivious subspace embedding for the
columns ay, @, ...,aq via a k X n sketch matrix . Thus we
obtain A” = A. Previously we used o = (1 + €) and solved the
regression problem min,,cgd||A’x” — b’||2 where b’ = b. This
required k to be ©(d/e?). Now we instead use a = (1 + €p) for
some fixed constaint €q (say 1/4).

Let A’ = A = U'Y/(V’)T where we compute SVD of A’. Note U’
is an orthonormal basis for the columns of A’. Let R = V/(¥’)~1.

The singular values of AR are in the range [1 — €, 1 + €].

Chandra (UIUC) CS498ABD 21 Fall 2022  21/32



Oblivious Subspace Embeddings Again

The singular values of AR are in the range [1 — €, 1 + €].

To see this consider any vector z:
zllo = Uzl = INARz||> = (1 £ &)[|ARz|l..

The first equality is from ortonormality of U’, and second ineq is
since MMis a (1 + €g)-approximate OBSE.

The column space of A and AR are the same since V' is
orthonormal and ¥’ is a diagonal matrix.

Thus solving miny||Ax — b||, is same as solving min, || ARy — b]]..
If y* is solution to latter problem then x* = Ry™ is a solution to the

original problem.

Chandra (UIUC) CS498ABD 22 Fall 2022 22/32



Oblivious Subspace Embeddings Again

The previous two claims imply that gradient descent on AR will
converge very fast since its condition number if small and moreover a
solution to miny ||ARy — b||> allows us to recover a solution to the
original regression problem with the same approximation quality.

Since I1 is constant factor approximate OBSE, we can use the SVD
U’Y’'(V')T of MNA to obtain a constant factor approximate starting
solution x(©) to start the gradient descent. This implies that the
number of iterations required for an eventual (1 + €)-approximation
is O(log(1/€)). Each iteration requires computing ARx(®).

Computing ARx(®) can be done in O(d? + nnz(A)) where nnz(A) is
the number of non-zeroes in A.
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Summarizing the algorithm

Input A, b where A is n X d matrix and b € R" with n > d

@ Use (1 + €g)-approximate OBSE embedding k X n matrix [1
with k = O(d) and compute A" = A (use fast JL)

e Compute SVD U'Y/(V’)T of A’ and let R = V/(¥')71
@ Use SVD to compute a good starting solution for y(© for the
problem miny||ARy — b||»
@ Use gradient descent for solving min, ||ARy — b||> with starting
solution y© and terminate in t = O(log(1/€)) iterations
e Output Ry(?)
We have reduced dependence on € by using €q approximate OBSE for

some fixed €; and then using gradient descent which has much better
dependence on €. For high accurate solutions this is an advantage.

Chandra (UIUC) CS498ABD 24 Fall 2022 24 /32



Part |

Proof of GD Convergence for
Strongly Convex Functions
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Convergence of GD

Recall strong convexity implies that

2

Fy) 2 F(x) + (TF)T(y = %) + Slly = xII

We need a very useful lemma.

Suppose f is p-strongly convex then it also satisfies the
Polyak-Lojasiewicz condition that ||V f(x)||3 > 2u(f(x) — f(x*)).

Intuition: strongly convex means function is has a strong curvature.
Thus, the farther x is from x* (where gradient is 0) the larger the
gradient.

Chandra (UIUC) CS498ABD 26 Fall 2022 26/32



Properties from smoothness

Suppose f is L-smooth. Then
Q fy) — f(x) — (VF(x))"(y — x) < 5lIx — yli3
O f(x — {VFf(x) — f(x) < =5 IVF(x)I3

Suppose f is L-smooth then ||V f(x)||3 < 2L(f(x) — f(x*)).

Follows from part (2) of Lemma since

Fx) = F(x) < Fx = V() = F(x) < = IVFGIE
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Properties from smoothness

Suppose f is L-smooth. Then
fly) — f(x) = (VF(x)T(y —x) < 5llx — yli3.

Consider univariate function g(+) where
g(t) = f(x+ tly — x)) — (VF(x))T(x + t(y — x)). Note that
g(0) = F(x) — (VF(x)Tx and g(1) = F(y) — (VF(x))Ty

eV —£(0) = | &t~ /0 (VF(x + tly = x)) = V() T(y

/ I(VF(x x)) = VEC) Iy — x)lldt
< [ telly — xlPde = Sy I
We used smoothness to go from second to third line.
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Properties from smoothness
Second part: f(x — $1VF(x)) — f(x) < —% || VF(x)|]3

Using first part with y = x — %Vf(x),
1 1 L 1
F(x = 2VF(x)) = F(x) = (VF(x) T (=7 VF(x)) < SV

Simplifying and rearranging terms gives the desired property.
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Polyak-Lojasiewicz condition

We don't need this but it is a nice contrast to the previous lemma.

Suppose f is p-strongly convex then it also satisfies the
Polyak-Lojasiewicz condition that ||V f(x)||3 > 2u(f(x) — f(x*)).

Applying strong convexity with y = x* and rearranging
* * l’l’ *
F(x) = F(x) < (VF))Tx = x) = Slix = X711
VI — lIViEx — x7) — = V()
= — x)||5 — = X —x*)— — x)||:
1
< EIIVf(X)Ili-

Rearranging gives the desired claim.
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Proof of convergence of GD for strongly
convex functions

Suppose f is an L-smooth and p-strongly convex function. Gradient
descent with m < 1/L satisfies the property that
[ — x*|I3 < (1 — o) | — x*|I3.

Suffices to prove the following

XD — x*[1 < (1= ap)lIx — x*|3

and apply it repeatedly.
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Proof contd

||x<t+1) — x* ||§ = ||x(t) — an(x(t)) — x* ||§ from GD algorithm

x® = 113 — 2n(T )T (O — x*) + P 7 FD))13

< = o)l = )13 = 2m(F(x D) — F(x*)) + 20°L VF(xD)]13 (strong convexity ineq)

< @ = apllx® = x* 2 = 2n(F(xD) — F(x*)) + 2n°L(F(xD) — F(x*)) (smoothness corollary
< = o)l = x* )2 = 2m(1 — L) (F(Y) — F(x*))

< = op)lxD — x| (since n < 1/Land F(xD) — F(x*)
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