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Linear least squares/Regression

Linear least squares: Given A ∈ Rn×d and b ∈ Rd find x to
minimize ‖Ax − b‖2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?

Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection c as c =

∑r
j=1〈b, zj〉zj and output answer as ‖b− c‖2.
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Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. Find an orthonormal basis
z1, z2, . . . , zr for the columns of A. Compute projection b′ as
b′ =

∑r
j=1〈b, zj〉zj and output answer as ‖b − b′‖2.

Finding the basis is the expensive part. Recall SVD gives
v1, v2, . . . , vr which form a basis for the row space of A but then
uT
1 , u

T
2 , . . . , u

T
m form a basis for the column space of A. Hence SVD

gives us all the information to find b′. In fact we have

min
x
‖Ax − b‖22 =

m∑
i=r+1

〈uT
i , b〉

2
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Subspace Embedding

Question: Suppose we have linear subspace E of Rn of dimension
d . Can we find a projection Π : Rn → Rk such that for every
x ∈ E , ‖Πx‖2 = (1± ε)‖x‖2?

Not possible if k < d .

Possible if k = d . Pick Π to be an orthonormal basis for E .
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn of dimension d . Let Π be a
DJL matrix Π ∈ Rk×n with k = O( d

ε2
log(1/δ)) rows. Then with

probability (1− δ) for every x ∈ E ,

‖
1
√

k
Πx‖2 = (1± ε)‖x‖2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Linear least squares via Subspace
embeddings

Let a1, a2, . . . , ad be the columns of A and let E be the subspace
spanned by {a1, a2, . . . , ad , b}

E has dimension at most d + 1.

Use subspace embedding on E . Applying JL matrix Π with
k = O( d

ε2
) rows we reduce a1, a2, . . . , ad , b to a′1, a

′
2, . . . , a

′
d , b

′

which are vectors in Rk .

Solve minx′∈Rd‖A′x ′ − b′‖2
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Faster Linear least squares via Subspace
embeddings

Let a1, a2, . . . , ad be the columns of A and let E be the subspace
spanned by {a1, a2, . . . , ad , b}

E has dimension at most d + 1.

Use subspace embedding on E . Applying JL matrix Π with
k = O( d

ε2
) rows we reduce a1, a2, . . . , ad , b to a′1, a

′
2, . . . , a

′
d , b

′

which are vectors in Rk .

Solve minx′∈Rd‖A′x ′ − b′‖2

Claim: Answer is a (1 + O(ε))-approximation to original problem if
Π is a (1 + ε)-approximate subspace embedding.
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Faster Linear least squares via Subspace
embeddings

Apply subspace embedding Π to A, b to obtain A′, b′

Solve minx′∈Rd‖A′x ′ − b′‖2

Claim: Answer is a (1 + O(ε))-approximation to original problem if
Π is a (1 + ε)-approximate subspace embedding.

Advantage: Reduces A from n× d to k × d where k = O(d/ε2).
Use any fast approximate regression method on A′, b′ as a black box.

Disadvantage: Dependence of 1/ε2 is high if one wants to choose
small ε. In particular if n and d are large and comparable.
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Accelerating Iterative Solvers via Sketching

Iterative solvers that converge to solution are very common in
numerical linear algebra. Each iteration is fast and goal is to
reduce number of iterations

Typically the number of iterations depends on how well-behaved
the data is. An example is the condition number of the matrix.

Iterative solvers can be sped up by pre-conditioning to make
data well-behaved.

Goal: show that sketching techniques such as oblivious supspace
embeddings can be viewed as preconditioning tools. Demonstrate on
least squares regression.

Chandra (UIUC) CS498ABD 9 Fall 2022 9 / 32



Gradient Descent

Let f : Rd → R be a real-valued differentiable function. Recall
∇f (x) is the gradient of f at x which is a vector in Rd with
(∇f (x))i = ∂f

∂xi
. Gradient descent is a common search technique to

find a local minimum/optimum of f in the unconstrained setting. A
local optimum is a point x where ∇f (x) = 0. When f is a convex
function then any local optimum is a global optimum. There are
many variants of gradient descent. Simplest one is based on having
only access to the gradient and works with a fixed step size η.

GradientDescent(f , η):
Choose a good strating point x (0) ∈ R
For t = 1 to T to

x (t) ← x (t−1) − η∇f (x (t−1))

Output x (T )
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Gradient Descent

The choice of η (step size) is important for convergence and it
depends on the smoothness of the function. If the gradient changes
very rapidly it is difficult to find a local minimum since we may
overshoot. An important parameter in the analysis is the smoothness
which upper bounds the rate of change of the gradient.

Definition

f is L-smooth if ‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2 for all x, y .

One can show that GD converges if η ≤ 1/L. Convergence is much
faster if the function is in addition strongly convex.
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Convex functions

Definition

A real-valued continuous function f : Rd → R is convex over a
domain D ⊆ Rd if for all x, y ∈ D and for all θ ∈ [0, 1],
f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y).

We will be interested in differentiable functions and
twice-differentiable functions.

Fact: Differentiable function f is convex iff
f (x) ≥ f (x0) + (x − x0)T∇f (x0) for all x, x0 ∈ D.

f at any point x0 lies above the tangent at point x0.

f is strictly convex if f (x) > f (x0) + (x − x0)T∇f (x0) for all x, x0.
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Convex functions

Suppose f is twice differentiable function. H(x) = ∇2f (x) is the
Hessian of f at x . It is a d × d symmetric matrix where
H(x)i ,j = H(x)j ,i = ∂2f

∂xi∂xj
.

Fact: Twice-differentiable function f is convex iff ∇2f (x) � 0, that
is, it is a positive semi-definite matrix. Alternatively,
yT (∇2f (x))y ≥ 0 for all y , x .

A real-symmetric matrix has all real eigen values and hence H(x) has
real eigen-values for all twice-differentiable functions. When
H(x) � 0 (psd matrix) all the eigen-values are non-negative which
means that the function’s curvature is non-negative in all directions
and hence bowl shaped (convex).

Chandra (UIUC) CS498ABD 13 Fall 2022 13 / 32



Strongly convex functions

Definition

A differentiable function f is strongly convex with parameter µ if
f (x) ≥ f (x0) + (∇f (x)−∇f (x0))T (x − x0) + µ

2
‖x − x0‖22 for all

x, x0 ∈ D. Equivalently,
(∇f (x)−∇f (x0))T (x − x0) ≥ µ‖x − x0‖22.

Fact: Twice differentiable f is strongly convex with parameter µ iff
λmin(H(x)) ≥ µ for all x where λmin(H(x)) is the smallest
eigen-value of H(x).

Fact: f is strongly convex with parameter µ iff the function
g(x) = f (x)− µ

2
‖x‖22 is convex.
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Regression as convex optimization problem

Consider

f (x) = ‖Ax − b‖22 = xTATAx − 2xTAb + ‖b‖22

The gradient is easy to compute explicitly:

∇f (x) = 2ATAx − 2Ab

One can see that the Hessian ∇2f (x) = 2ATA and since ATA is
psd it also shows that f is convex

Setting gradient to 0 one can see that the optimum solution value is
x∗ = (ATA)−1Ab. Even though we have an explicit solution,
iterative methods are preferred since maxtrix multiplication and
computing the inverse are expensive.

Chandra (UIUC) CS498ABD 15 Fall 2022 15 / 32



Smoothness of regression

Suppose f (x) = ‖Ax − b‖22 = xTATAx − 2xTAb + ‖b‖22. It is a
convex function with gradient ∇f (x) = 2ATAx − 2Ab.

For x, y we have ‖∇f (x)−∇f (y)‖2 = 2‖ATA(x − y)‖2. It
follows that

‖∇f (x)−∇f (y)‖2 ≤ 2σ2
1‖x − y‖2

where σ1 is the top singular value of A.

Thus, for the regression problem, f is L-smooth where L = 2σ2
1.
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Condition number of a matrix

Suppose f (x) = ‖Ax − b‖22 = xTATAx − 2xTAb + ‖b‖22. It is a
convex function with gradient ∇f (x) = 2ATAx − 2Ab.

Let σmax(A) = sup‖x‖2=1‖Ax‖2 and let σmin(A) = inf‖x‖2=1‖Ax‖2.

Definition

The condition number of A, denoted by κ(A), is σmax(A)

σmin(A)
.

Recall that λmin(H(x)) is the strong convexity parameter of f . For
regression 2ATA is the Hessian and hence λmin(ATA) = σ2

min. Thus
κ(A) = L/µ where L is the smoothness parameter and µ is the
strong convexity parameter.
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Gradient descent convergence when
condition number is small

It is known that gradient descent converges very fast when L/µ is
bounded. We state a lemma that captures this in a special case of
regression while also making an additional assumption.

Lemma

Suppose all singular vectors of A are in the range
[1− 1/

√
2, 1 + 1/

√
2]. If we do gradient descent for regression with

η = 1/2 then for all t ≥ 0 we have

‖Ax (t+1) − Ax∗‖2 ≤ 2−t‖Ax (0) − Ax∗‖2

In other words the error of the vector x (t) after t steps goes down
exponentially with t when compared to the initial error.
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Gradient descent convergence when
condition number is small

The lemma in the previous slide is a special case of a more general
theorem about convergence of gradient descent for strongly convex
functions. For a direct proof of the stated lemma for regression in
previous slide see Nelson’s notes.

Lemma

Suppose f is an L-smooth and µ-strongly convex function. Gradient
descent with η ≤ 1/L satisfies the property that

‖x (t) − x∗‖22 ≤ (1− αµ)t‖x (0) − x∗‖22.
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Implication for Regression

Lemma shows that if condition number of A is small then gradient
descent converges very fast. In pariticular if we have a good starting
point x (0) such that ‖Ax (0) − b‖2 ≤ c‖Ax∗ − b‖ for some
constant c then gradient descent has the following property.

Lemma

After t = O(log(c/ε)) steps we have
‖Ax (t) − b‖2 ≤ (1 + ε)‖Ax∗ − b‖.

To see this we observe via triangle inequality and lemma,
‖Ax(t) − b‖2 ≤ ‖Ax(t) − Ax∗‖2 + ‖Ax∗ − b‖2 ≤ 2−t‖Ax(0) − Ax∗‖2 + ‖Ax∗ − b‖2.

By triangle inequality
‖Ax(0) − Ax∗‖2 ≤ ‖Ax(0) − b‖2 + ‖Ax∗ − b‖2.

Putting together
‖Ax(t) − b‖2 ≤ 2−t‖Ax(0) − b‖2 + (1 + 2−t )‖Ax∗ − b‖2 ≤ (1 + O(ε))‖Ax∗ − b‖2
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Oblivious Subspace Embeddings Again

Suppose we use α-approximate oblivious subspace embedding for the
columns a1, a2, . . . , ad via a k × n sketch matrix Π. Thus we
obtain A′ = ΠA. Previously we used α = (1 + ε) and solved the
regression problem minx′∈Rd‖A′x ′ − b′‖2 where b′ = Πb. This
required k to be Θ(d/ε2). Now we instead use α = (1 + ε0) for
some fixed constaint ε0 (say 1/4).

Let A′ = ΠA = U ′Σ′(V ′)T where we compute SVD of A′. Note U ′

is an orthonormal basis for the columns of A′. Let R = V ′(Σ′)−1.

Claim

The singular values of AR are in the range [1− ε0, 1 + ε0].
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Oblivious Subspace Embeddings Again

Claim

The singular values of AR are in the range [1− ε0, 1 + ε0].

To see this consider any vector z :

‖z‖2 = ‖U ′z‖2 = ‖ΠARz‖2 = (1± ε0)‖ARz‖2.

The first equality is from ortonormality of U ′, and second ineq is
since Π is a (1 + ε0)-approximate OBSE.

Claim

The column space of A and AR are the same since V ′ is
orthonormal and Σ′ is a diagonal matrix.

Thus solving minx‖Ax − b‖2 is same as solving miny‖ARy − b‖2.
If y∗ is solution to latter problem then x∗ = Ry∗ is a solution to the
original problem.
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Oblivious Subspace Embeddings Again

The previous two claims imply that gradient descent on AR will
converge very fast since its condition number if small and moreover a
solution to miny‖ARy − b‖2 allows us to recover a solution to the
original regression problem with the same approximation quality.

Since Π is constant factor approximate OBSE, we can use the SVD
U ′Σ′(V ′)T of ΠA to obtain a constant factor approximate starting
solution x (0) to start the gradient descent. This implies that the
number of iterations required for an eventual (1 + ε)-approximation
is O(log(1/ε)). Each iteration requires computing ARx (t).

Computing ARx (t) can be done in O(d 2 + nnz(A)) where nnz(A) is
the number of non-zeroes in A.
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Summarizing the algorithm

Input A, b where A is n × d matrix and b ∈ Rn with n ≥ d
Use (1 + ε0)-approximate OBSE embedding k × n matrix Π
with k = O(d) and compute A′ = ΠA (use fast JL)

Compute SVD U ′Σ′(V ′)T of A′ and let R = V ′(Σ′)−1

Use SVD to compute a good starting solution for y (0) for the
problem miny‖ARy − b‖2
Use gradient descent for solving miny‖ARy − b‖2 with starting
solution y (0) and terminate in t = O(log(1/ε)) iterations

Output Ry (t)

We have reduced dependence on ε by using ε0 approximate OBSE for
some fixed ε0 and then using gradient descent which has much better
dependence on ε. For high accurate solutions this is an advantage.

Chandra (UIUC) CS498ABD 24 Fall 2022 24 / 32



Part I

Proof of GD Convergence for
Strongly Convex Functions
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Convergence of GD

Recall strong convexity implies that

f (y) ≥ f (x) + (∇f (x))T (y − x) +
µ

2
‖y − x‖22

We need a very useful lemma.

Lemma

Suppose f is µ-strongly convex then it also satisfies the
Polyak-Lojasiewicz condition that ‖∇f (x)‖22 ≥ 2µ(f (x)− f (x∗)).

Intuition: strongly convex means function is has a strong curvature.
Thus, the farther x is from x∗ (where gradient is 0) the larger the
gradient.
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Properties from smoothness

Lemma

Suppose f is L-smooth. Then

1 f (y)− f (x)− (∇f (x))T (y − x) ≤ L
2
‖x − y‖22

2 f (x − 1
L∇f (x))− f (x) ≤ − 1

2L‖∇f (x)‖22

Corollary

Suppose f is L-smooth then ‖∇f (x)‖22 ≤ 2L(f (x)− f (x∗)).

Follows from part (2) of Lemma since

f (x∗)− f (x) ≤ f (x −
1

L
∇f (x))− f (x) ≤ −

1

2L
‖∇f (x)‖22
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Properties from smoothness

Suppose f is L-smooth. Then
f (y)− f (x)− (∇f (x))T (y − x) ≤ L

2
‖x − y‖22.

Consider univariate function g(·) where
g(t) = f (x + t(y − x))− (∇f (x))T (x + t(y − x)). Note that
g(0) = f (x)− (∇f (x))Tx and g(1) = f (y)− (∇f (x))Ty .

g(1)− g(0) =

∫ 1

0
g ′(t)dt =

∫ 1

0
(∇f (x + t(y − x))−∇f (x))T (y − x)dt

≤
∫ 1

0
‖(∇f (x + t(y − x))−∇f (x))‖‖(y − x)‖dt

≤
∫ 1

0
Lt‖y − x‖2dt =

L
2
‖y − x‖2.

We used smoothness to go from second to third line.
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Properties from smoothness

Second part: f (x − 1
L∇f (x))− f (x) ≤ − 1

2L‖∇f (x)‖22

Using first part with y = x − 1
L∇f (x),

f (x −
1

L
∇f (x))− f (x)− (∇f (x))T (−

1

L
∇f (x)) ≤

L
2
‖

1

L
∇f (x)‖22

Simplifying and rearranging terms gives the desired property.
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Polyak-Lojasiewicz condition

We don’t need this but it is a nice contrast to the previous lemma.

Lemma

Suppose f is µ-strongly convex then it also satisfies the
Polyak-Lojasiewicz condition that ‖∇f (x)‖22 ≥ 2µ(f (x)− f (x∗)).

Applying strong convexity with y = x∗ and rearranging

f (x)− f (x∗) ≤ (∇f (x))T (x − x∗)−
µ

2
‖x − x∗‖22

=
1

2µ
‖∇f (x)‖22 −

1

2
‖√µ(x − x∗)−

1
√
µ
∇f (x)‖22

≤
1

2µ
‖∇f (x)‖22.

Rearranging gives the desired claim.
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Proof of convergence of GD for strongly
convex functions

Lemma

Suppose f is an L-smooth and µ-strongly convex function. Gradient
descent with η ≤ 1/L satisfies the property that
‖x (t) − x∗‖22 ≤ (1− αµ)t‖x (0) − x∗‖22.

Suffices to prove the following

‖x (t+1) − x∗‖22 ≤ (1− αµ)‖x (t) − x∗‖22

and apply it repeatedly.
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Proof contd

‖x(t+1) − x∗‖22 = ‖x(t) − η∇f (x(t))− x∗‖22 from GD algorithm

= ‖x(t) − x∗‖22 − 2η(∇f (x(t)))T (x(t) − x∗) + η2‖∇f (x(t))‖22

≤ (1− αµ)‖x(t) − x∗‖22 − 2η(f (x(t))− f (x∗)) + 2η2L‖∇f (x(t))‖22 (strong convexity ineq)

≤ (1− αµ)‖x(t) − x∗‖22 − 2η(f (x(t))− f (x∗)) + 2η2L(f (x(t))− f (x∗)) (smoothness corollary)

≤ (1− αµ)‖x(t) − x∗‖22 − 2η(1− ηL)(f (x(t))− f (x∗))

≤ (1− αµ)‖x(t) − x∗‖22 (since η ≤ 1/L and f (x(t))− f (x∗)
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