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Some topics today

We have seen fast “approximation” algorithms for matrix
multiplication

@ random sampling
@ Using JL
Today:

@ Subspace embeddings for faster linear least squares and low-rank
approximation

@ Frequent directions algorithms for one/two pass approximate
SVD
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d.

@ Possible if Kk = d. Pick N to be an orthonormal basis for E.
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of R" of dimension d. Let Il be a
DJL matrix N € Rk*" with k = O(;i2 log(1/d)) rows. Then with
probability (1 — §) for every x € E,

1

IIW

Nx[[> = (1 £ €)]lx][2-

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Part |

Faster algorithms via subspace
embeddings
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||».

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||».

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z;, z5, . . . , z, for the columns of A. Compute
projection ¢ as ¢ = > i, (b, zj)z; and output answer as ||b — c|l..
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Linear least squares via Subspace
embeddings

Let a;, a5, ...,aq be the columns of A and let E be the subspace
spanned by {ai, as,...,aq, b}

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix 1 with

k = O(g) rows we reduce a;, a,...,aq4, b to aj,aj,...,al, b

which are vectors in R,

Solve min,cpa||A’xX" — b’||>

Chandra (UIUC) CS498ABD 7 Fall 2022 7/17



Low-rank approximation

Recall: Given A € R"™*9 and integer k want to find best rank
matrix B to minimize |A — B]||f
o SVD gives optimum for all k. If A= UDVT = 3¢ ojuv]
then A, = Efle a',-u,-v,.T is optimum for every k.
° |A— Al =i
@ Vi, V,...,V are k orthogonal unit vectors from R? and
maximize the sum of squares of the projection of the rows of A
onto the space spanned by them
@ uy, U, ..., U are k orthogonal unit vectors from R" that
maximize the sum of squares of the projections of the columns
of A onto the space spanned
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Low-rank approximation via subspace
embeddings

Column view of SVD: uy, s, ..., ux are k orthogonal unit vectors
from R"” that maximize the sum of squares of the projections of the
columns of A onto the space spanned

Let a1, a»,...,ay be the columns of A and let E be subspace
spanned by them. dim(E) < d obviously.

Wilog uy, upy ..., ux € E. Why?
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Low-rank approximation via subspace
embeddings

Column view of SVD: uy, s, ..., ux are k orthogonal unit vectors
from R"” that maximize the sum of squares of the projections of the
columns of A onto the space spanned

Let a1, a»,...,ay be the columns of A and let E be subspace
spanned by them. dim(E) < d obviously.

Wilog uy, upy ..., ux € E. Why?
If uy, o, ..., u fixed then vy, vo, ..., vk are determined. Why?
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Low-rank approximation via subspace
embeddings

Column view of SVD: uy, s, ..., ux are k orthogonal unit vectors
from R"” that maximize the sum of squares of the projections of the
columns of A onto the space spanned

Let a1, a»,...,ay be the columns of A and let E be subspace
spanned by them. dim(E) < d obviously.

Wilog uy, upy ..., ux € E. Why?
If uy, o, ..., u fixed then vy, vo, ..., vk are determined. Why?

Let 1 be an e-approximate subspace preserving embedding for E

Claim: [|(NA) — (MA)[lr < (1+ €)l|A — Aclr
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Analysis

Claim: [|(NA) — (NA)llr < (1+ €)l|A — Adllr
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Analysis
Claim: ||(MA) — (MA)[lr < (1 + €)[|A — Al

Proof sketch: Let a, ..., a), be columns of [1A and let uf, ..., u;

be Muyy ..., Mug.
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Analysis
Claim: ||(MA) — (MA)[lr < (1 + €)[|A — Al

Proof sketch: Let a, ..., a), be columns of [1A and let uf, ..., u;
be Muyy ..., Mug.

d k .
1A = Acllz = > llai — Zj:l vi()ujl|3
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Analysis
Claim: ||(MA) — (MA)[lr < (1 + €)[|A — Al

Proof sketch: Let a, ..., a), be columns of [1A and let uf, ..., u;
be Muy, ..., MNuy.

d k .
1A = Acllz = > llai — Zj:l vi()yjll3

From subspace embedding property of I1,

IM(ai = 325, vi(Duy)llz < (1 + €)llar — 35, vi(i)yjll2

Since uf, U}, ..., u, is a feasible solution for k-rank approximation
to MNA.
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Analysis
Claim: ||(MA) — (MA)[lr < (1 + €)[|A — Al

Proof sketch: Let a, ..., a), be columns of [1A and let uf, ..., u;
be Muy, ..., MNuy.

d k .
1A = Acllz = > llai — Zj:l vi()yjll3

From subspace embedding property of I1,

IM(ai = 325, vi(Duy)llz < (1 + €)llar — 35, vi(i)yjll2

Since uf, U}, ..., u, is a feasible solution for k-rank approximation
to MNA.

Claim: [|(MA) — (NA)[lr > (1 — €)[|A — Aglr.
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Analysis
Claim: ||(MA) — (MA)[lr < (1 + €)[|A — Al

Proof sketch: Let a, ..., a), be columns of [1A and let uf, ..., u;
be Muy, ..., MNuy.

d k .
1A = Acllz = > llai — Zj:l vi()yjll3

From subspace embedding property of I1,

IM(ai = 325, vi(Duy)llz < (1 + €)llar — 35, vi(i)yjll2

Since uf, U}, ..., u, is a feasible solution for k-rank approximation
to MNA.

Claim: ||[(TA) — (MA)|lr > (1 — €)||A — Akl|F. Prove it!
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Running Time

@ A has d columns in R” and MA has d columns in R¥ where
k = O(g2 In(1/6)). Hence dimensionality reduction from n to k
and one can run SVD on lA.

@ [1A can be computed fast in time roughly proportional to
nnz(A) (number of non-zeroes of A).
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Part 1l

Frequent Directions Algorithm
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Low-rank approximation

Faster low-rank approximation algorithms based on randomized
algorithm: sampling and subspace embeddings

@ Can we find a deterministic algorithm?

@ Streaming algorithm?
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Low-rank approximation and SVD

Given matrix A € R™%? and (small) integer k

Row view of SVD: v, v,, ..., v are k orthogonal unit vectors
from R that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, @, ..., a, be the rows of A (treated as vectors in ]Rd)

of =3 1(ai,vj)? and |A— Al = ik 0f
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Low-rank approximation and SVD

Given matrix A € R™%? and (small) integer k

Row view of SVD: v, v,, ..., v are k orthogonal unit vectors

from R that maximize the sum of squares of the projections of the

rows A onto the space spanned

Let ay, a,...,a, be the rows of A (treated as vectors in R9)
2 _\n 2 2 _ 2

o; = >ici(ais vi)® and [|A — Agl[; = Z,->k g;

Consider matrix Dy VkT whose rows are o1V, OoVao, . . o Ok V.

k
||DkaT||%: = Zj:l o}? = “Ak”%
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Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by
[Ghashami-Phillips]
Liberty inspired by Misra-Greis frequent items algorithm.

Rows of A come one by one

Algorithm maintains a matrix Q € R¢*9 where £ = k(1 + 1/e).
Hence memory is O(kd /€)

At end of algorithm let Qg be best rank k-approximation for Q.
Then ||A — Projg, (A)llr < (1 +€)||A — AxllF.

Thus a (1 + €)-approximate k-dimensional subspace for rows of A be
identified by storing O(k/€) rows.
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FD Algorithm

Frequent-Directions
Initialize Q° as an all zeroes £ X d matrix
For each row a; € A do
Set @, < Q' ~! with last row replaced by a;
Compute SVD of Q, as UDVT
C' = DVT (for analysis)
d; = o (for analysis)

D’ = diag(\/0? — di,\/03 — 8iy...y\/Os_1 — 6i,0)
Qi _ DlvT

EndFor

Return Q = Q"

If £ = [k(1+ 1/€)] and QX is the rank k approximation to output
Q then

|A = Projg, (A)llr < (1 + €)llA — Acllr
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Running time

@ One pass algorithm but requires second pass to compute actual
singular values etc

@ Space O(kd/€)
@ Run time: n computations of SVD on k/e X d matrix. Can be
improved (see home work problem).

Interesting even when k = 1. Alternative to power method to find
top singular value/vector. Deterministic.
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