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Matrix Rank

Given m × n matrix A the column rank of A is the maximum
number of linearly independent columns of A. The row rank is the
maximum number of linearly independent rows of A.

Non-obvious fact: column rank = to row rank = rank(A)

Fact: A has rank r iff A can be written as sum of k rank 1 matrices

A =
r∑

i=1

yizT
i = YZT

where Y is m × r matrix and Z is r × n matrix.
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Singular Value Decomposition (SVD)

Let A be a m × n real-valued matrix

ai denotes vector corresponding to row i
m rows. think of each row as a data point in Rn

Data applications: m � n
Other notation: A is a n × d matrix.

SVD theorem: A can be written as UDV T where

V is a n × n orthonormal matrix

D is a m × n diagonal matrix with ≤ min{m, n} non-zeroes
called the singular values of A
U is a m ×m orthonormal matrix
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SVD

Let d = min{m, n}.
u1, u2, . . . , um columns of U , left singular vectors of A
v1, v2, . . . , vn columns of V (rows of V T ) right singular vectors
of A
σ1 ≥ σ2 ≥ . . . ,≥ σd ≥ 0 are non-negative singular values
where d = min{m, n}. And σi = Di ,i

A =
d∑

i=1

σiuivT
i

We can in fact restrict attention to r the rank of A.

A =
r∑

i=1

σiuivT
i
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SVD

Interpreting A as a linear operator A : Rn → Rm

Columns of V is an orthonormal basis and hence V Tx for
x ∈ Rn expresses x in the V basis. Note that V Tx is a rigid
transformation (does not change length of x).

Let y = V Tx . D is a diagonal matrix which only stretches y
along the coordinate axes. Also adjusts dimension to go from n
to m with right number of zeroes.

Let z = Dy . Then Uz is a rigid transformation that expresses z
in the basis corresponding to rows of U .

Thus any linear operator can be split into a sequence of three
simpler/basic type of transformations
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Low rank approximation property of SVD

Question: Given A ∈ Rm×n and integer k find a matrix B of rank
at most k such that ‖A− B‖ is minimized

Fact: For Frobenius norm and spectral norm optimum for all k is
captured by SVD.

That is, Ak =
∑k

i=1 σiuivT
i is the best rank k approximation to A

‖A− Ak‖F = min
B:rank(B)≤k

‖A− B‖F =

√∑
i>k

σ2
i

‖A− Ak‖2 = min
B:rank(B)≤k

‖A− B‖2 = σk+1

Why this magic? Frobenius norm and basic properties of vector
projections
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Geometric meaning

What is the best rank 1 matrix B that minimizes ‖A− B‖F
Since B is rank 1, B = uvT where v ∈ Rn and u ∈ Rm

Without loss of generality v is a unit vector

‖A− uvT‖2F =
m∑

i=1

||ai − u(i)v ||2

If we know v then best u to minimize above is determined. Why?
For fixed v , u(i) = 〈ai , v〉
‖ai − 〈ai , v〉v‖2 is distance of ai from line described by v .
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Geometric meaning

What is the best rank 1 matrix B that minimizes ‖A− B‖F
It is to find unit vector/direction v to minimize

m∑
i=1

||ai − 〈ai , v〉v ||2

which is same as finding unit vector v to maximize

m∑
i=1

〈ai , v〉2

Note: Maximum value is ‖A‖22, the spectral norm square! How to
find best v? Not obvious: we will come to it a bit later
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Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes
‖A− B‖F

Since B has rank 2 we can assume without loss of generality that
B = u1vT

1 + u2vT
2 where v1, v2 are orthogonal unit vectors (span a

space of dimension 2)

Minimizing ‖A− B‖2F is same as finding orthogonal vectors v1, v2

to maximize

m∑
i=1

(〈ai , v1〉2 + 〈ai , v2〉2)

in other words the best fit 2-dimensional space
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Greedy algorithm

Find v1 as the best rank 1 approximation. That is
v1 = arg maxv ,‖v‖2=1

∑m
i=1〈ai , v〉2

For v2 solve arg maxv⊥v1,‖v‖2=1

∑m
i=1〈ai , v〉2.

Alternatively: let a′i = ai − 〈ai , v1〉v1. Let
v2 = arg maxv ,‖v‖2=1

∑m
i=1〈a′i , v〉2

Greedy algorithm works!
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Greedy algorithm correctness

Proof that Greedy works for k = 2.

Suppose w1,w2 are orthogonal unit vectors that form the best fit 2-d
space. Let H be the space spanned by w1,w2.

Claim: Any two orthogonal unit vectors in H will yield same value.

Suffices to prove that

m∑
i=1

(〈ai , v1〉2 + 〈ai , v2〉2) ≥
m∑

i=1

(〈ai ,w1〉2 + 〈ai ,w2〉2)
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Greedy algorithm correctness

Case 1: v1 ∈ H then done because we can assume wlog that
w1 = v1 and v2 is at least as good as w2.

Case 2: v1 6∈ H . Let v ′1 be projection of v1 onto H and
v ′′1 = v1 − v ′1 be the component of v1 orthogonal to H .

Note that
‖v ′1‖2 + ‖v ′′1 ‖22 = ‖v1‖22 = 1.

Wlog we can assume by rotation that w1 = 1
‖v ′1‖2

v ′1 and w2 is

orthogonal to v ′1. Hence w2 is orthogonal to v1.

Therefore v2 is at least as good as w2, and v1 is at least as good as
w1 which implies the desired claim.
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Greedy algorithm for general k

Find v1 as the best rank 1 approximation. That is
v1 = arg maxv ,‖v‖2=1

∑m
i=1〈ai , v〉2

For vk solve arg maxv⊥v1,v2,...,vk−1,‖v‖2=1

∑k
i=1〈ai , v〉2 which is

same as solving k = 1 with vectors a′1, a
′
2, . . . , a

′
m that are

residuals. That is a′i = ai −
∑k−1

j=1 〈ai , vj〉vj

Proof of correctness is via induction and is a straight forward
generalization of the proof for k = 2
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Summarizing

σ2
j =

∑m
i=1〈ai , vj〉2

By greedy contruction σ1 ≥ σ2 ≥ . . . ,

Let r be the (row) rank of A. v1, v2, . . . , vr span the row space of
A and σj = 0 for j > r . Can choose vr+1, . . . , vn to ensure
orthonormal basis of Rn

u1 determined by v1 and u2 determined by v1, v2 and so on. Can
show that they are orthogonal.

A =
n∑

i=1

σiuivT
i =

r∑
i=1

σiuivT
i
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Power method

Thus SVD relies on being able to solve k = 1 case

Given m vectors a1, a2, . . . , am ∈ Rn solve

max
v∈Rn,‖v‖2=1

〈ai , v〉2

How do we solve the above problem?

Let B = ATA Then

B = (
m∑

i=1

σiviuT
i )(

r∑
i=1

σiuivT
i )

=
r∑

i=1

σ2
i vivT

i
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Power method continued

Let B = ATA Then

B2 = (
r∑

i=1

σ2
i vivT

i )(
r∑

i=1

σ2
i vivT

i )

=
r∑

i=1

σ4
i vivT

i .

More generally

Bk =
r∑

i=1

σ2k
i vivT

i

If σ1 > σ2 then Bk converges to σ2k
1 v1vT

1 and we can identify v1

from Bk . But expensive to compute Bk
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Power method continued

Pick a random (unit) vector x ∈ Rn. Then x =
∑n

i=1 λivi since
v1, v2, . . . , vn is a basis for Rn.

Bkx = (
r∑

i=1

σ2k
i vivT

i )(
d∑

i=1

λivi )→ σ2k
1 λ1v1

Can obtain v1 by normalizing Bkx to a unit vector.
Computing Bkx is easier via a series of matrix vector multiplications

Why random x? So as to ensure λ1 > 0 with good probability.

Theorem

Suppose σ1 > σ2. Then with probability (1− δ), power method
converges to a vector v such that 〈v , v1〉 ≥ (1− ε) after

O( log n+log(1/ε)+log(1/δ)

log(σ1/σ2)
) iterations.
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Power method continued

Pick a random (unit) vector x ∈ Rn. Then x =
∑n

i=1 λivi since
v1, v2, . . . , vn is a basis for Rn.

Bkx = (
r∑

i=1

σk
i vivT

i )(
d∑

i=1

λivi )→ σ2k
1 λ1v1

Convergence dependes on σ1/σ2. What if σ1 ' σ2? Power method
may not converge to v1 but output will be some vector in the space
spanned by v1, v2, . . . , vh where σh is the largest h such that
σ1 ' σh. This is good enough in various applications. See
references.
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Principal Component Analysis

Consider A a m × n matrix where rows a1, a2, . . . , am are data
points in Rn

B = ATA is a symmetrix positive definite matrix and has real
non-negative eigenvalues

Via SVD B = (UDV T )T (UDV T ) = (VDTDV T )

Can check that v1, v2, . . . , vr are eigen vectors of B with eigen
values σ2

1, σ
2
2, . . . , σ

2
r
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Principal Component Analysis

Consider A a m × n matrix where rows a1, a2, . . . , am are data
points in Rn

Compute eigenvectors of B = ATA or singular vectors
v1, v2, . . . , vn which are also called the principal directions

Approximate each ai by its projection onto the first k singular
vectors for some small k . That is a′i =

∑k
j=1〈ai , vj〉vj .

Thus a′1, a
′
2, . . . , a

′
m, a kind of dimensionality reduction along

first k principal directions. Different from JL and is motivated
by different applications (mainly statistical analysis)
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PCA and Covariance Matrix

Covariance of two real-valued random variables X ,Y is defined as

Cov(X ,Y ) := E[(X − E[X ])(Y − E[Y ])]

Note that Cov(X ,X ) = Var(X ). If X ,Y independent then
Cov(X ,Y ) = 0 but converse is not necessarily true. There is also a
related normalized measure (value in [−1, 1])

Correlation(X ,Y ) =
Cov(X ,Y )

σXσY

The sign of Cov(X ,Y ) is an “indication” of positive vs negative
correlation. Non-linear relationships between X ,Y are not
necessarily captured by covariance but still useful in many situations.
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PCA and Covariance Matrix

Suppose X = (X1,X2, . . . ,Xn) is a n-dimensional random variable.
Thus, each Xi is a random variable and may be correlated with the
other variables.

Given X we can define a covariance matrix C where
Ci ,j = Cov(Xi ,Xj ). Note that if the Xi are independent then C will
be a diagonal matrix. Similarly one can also define a correlation
matrix where the entries are the correlation coefficients instead of
covariances.

PCA of C reveals useful information if X is in fact obtained via a
linear transformation from another random variable Y that lives in a
lower dimension. Typically X will be a noisy version of Y and hence
will not be a pure low rank matrix but a low rank approximation gives
the important directions.
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PCA and Covariance Matrix

Suppose X = (X1,X2, . . . ,Xn) is a n-dimensional random variable.

Suppose we have m data points a1, a2, . . . , am ∈ Rn drawn
independently from the distribution of X . We create a m× n matrix
A where ai is i ’th row. Given the empirical data matrix A we would
like to estimate the covariance matrix C of X .

Assuming we know for each i , µi = E[Xi ] we can estimate
Cov(Xi ,Xj ) from the m data samples as
1
m

∑m
`=1(a`(i)− µi )(a`(j)− µj ).

By setting a′` = a` − µ where µ is the vector of expectations we see
that C = 1

m (A′)TA′ is the desired estimated covariance matrix.
Thus PCA on (A′)TA′ helps identify important features in the
underlying distribution X
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PCA and Covariance Matrix

Suppose X = (X1,X2, . . . ,Xn) is a n-dimensional random variable.
Suppose we have m data points a1, a2, . . . , am ∈ Rn drawn
independently from the distribution of X . We create a m× n matrix
A where ai is i ’th row. Given the empirical data matrix A we would
like to estimate the covariance matrix C of X .

Suppose we do not know the means µi = E[Xi ]. We can compute an
empirical estimate from the data itself as 1

m

∑m
`=1 a`(i) and then the

empirical mean vector it to ”center” the data to compute an
estimated covariance matrix as in the previous slide. Sometimes data
is already assumed to be centered in which case we simply work with
ATA.
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Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection b′ as b′ =

∑r
j=1〈b, zj〉zj and output answer as

‖b − b′‖2.

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 26



Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection b′ as b′ =

∑r
j=1〈b, zj〉zj and output answer as

‖b − b′‖2.

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 26



Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?

Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection b′ as b′ =

∑r
j=1〈b, zj〉zj and output answer as

‖b − b′‖2.

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 26



Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.
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Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. Find an orthonormal basis
z1, z2, . . . , zr for the columns of A. Compute projection b′ as
b′ =

∑r
j=1〈b, zj〉zj and output answer as ‖b − b′‖2.

Finding the basis is the expensive part. Recall SVD gives
v1, v2, . . . , vr which form a basis for the row space of A but then
uT
1 , u

T
2 , . . . , u

T
m form a basis for the column space of A. Hence SVD

gives us all the information to find b′. In fact we have

min
x
‖Ax − b‖22 =

m∑
i=r+1

〈uT
i , b〉
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