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Near-Neighbor Search

Collection of n points P = {x1, . . . , xn} in a metric space.

NNS: preprocess P to answer near-neighbor queries: given query
point y output arg minx∈P dist(x, y)

c-approximate NNS: given query y , output x such that
dist(x, y) ≤ c minz∈P dist(z, y). Here c > 1.

Brute force/linear search: when query y comes check all x ∈ P

Beating brute force is hard if one wants near-linear space!
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NNS in Euclidean Spaces

Collection of n points P = {x1, . . . , xn} in Rd .
dist(x, y) = ‖x − y‖2 is Euclidean distance

d = 1. Sort and do binary search. O(n) space, O(log n) query
time.

d = 2. Voronoi diagram. O(n) space O(log n) query time.

(Figure from Wikipedia)

Higher dimensions: Voronoi diagram size grows as nbd/2c.
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NNS in Euclidean Spaces

Collection of n points P = {x1, . . . , xn} in Rd .
dist(x, y) = ‖x − y‖2 is Euclidean distance

Assume n and d are large.

Linear search with no data structures: Θ(nd) time, storage is
Θ(nd)

Exact NNS: either query time or space or both are exponential in
dimension d
(1 + ε)-approximate NNS for dimensionality reduction: reduce d
to O( 1

ε2
log n) using JL but exponential in d is still impractical

Even for approximate NNS, beating nd query time while keeping
storage close to O(nd) is non-trivial!
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Approximate NNS

Focus on c-approximate NNS for some small c > 1

Simplified problem: given query point y and fixed radius r > 0,
distinguish between the following two scenarios:

if there is a point x ∈ P such dist(x, y) ≤ r output a point x ′

such that dist(x ′, y) ≤ cr
if dist(x, y) ≥ cr for all x ∈ P then recognize this and fail

Algorithm allowed to make a mistake in intermediate case

Can use binary search and above procedure to obtain c-approximate
NNS.
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Part I

LSH Framework

Chandra (UIUC) CS498ABD 6 Fall 2022 6 / 28



LSH Approach for Approximate NNS

[Indyk-Motwani’98]

Initially developed for NNSearch in high-dimensional Euclidean space
and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r , cr , p1, p2)-LSH with p1 > p2 and
c > 1 if h drawn randomly from the family satisfies the following:

Pr[h(x) = h(y)] ≥ p1 when dist(x, y) ≤ r
Pr[h(x) = h(y)] ≤ p2 when dist(x, y) ≥ cr

Key parameter: the gap between p1 and p2 measured as ρ = log p1

log p2
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LSH Example: Hamming Distance

n points x1, x2, . . . , xn ∈ {0, 1}d for some large d

dist(x, y) is the number of coordinates in which x, y differ

Question: What is a good (r , cr , p1, p2)-LSH? What is ρ?

Pick a random coordinate: Hash family = {hi | i = 1, . . . , d}
where hi (x) = xi

Suppose dist(x, y) ≤ r then
Pr[h(x) = h(y)] ≥ (d − r)/d ≥ 1− r/d ' e−r/d

Suppose dist(x, y) ≥ cr then
Pr[h(x) = h(y)] ≤ 1− cr/d ' e−cr/d

Therefore ρ = log p1

log p2
≤ 1/c
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LSH Example: 1-d

n points on line and distance is Euclidean

Question: What is a good LSH?

Grid line with cr units.

No two far points will be in same bucket and hence p2 = 0

But close by points may be in different buckets. So do a random
shift of grid to ensure that p1 ≥ (1− 1/c).

Main difficulty is in higher dimensions but above idea will play a role.
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LSH Approach for Approximate NNS

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r , cr , p1, p2)-LSH with p1 > p2 and
c > 1 if h drawn randomly from the family satisfies the following:

Pr[h(x) = h(y)] ≥ p1 when dist(x, y) ≤ r
Pr[h(x) = h(y)] ≤ p2 when dist(x, y) ≥ cr

Key parameter: the gap between p1 and p2 measured as ρ = log p1

log p2

usually small.

Two-level hashing scheme:

Amplify basic locality sensitive hash family to create better
family by repetition

Use several copies of amplified hash functions
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Amplification

Fix some r . Pick k independent hash functions h1, h2, . . . , hk . For
each x set

g(x) = h1(x)h2(x) . . . hk(x)

g(x) is now the larger hash function

If dist(x, y) ≤ r : Pr[g(x) = g(y)] ≥ pk
1

If dist(x, y) ≥ cr : Pr[g(x) = g(y)] ≤ pk
2

Choose k such that pk
2 ' 1/n so that expected number of far away

points that collide with query y is ≤ 1. Then pk
1 = 1/nρ.
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Multiple hash tables

If dist(x, y) ≤ r : Pr[g(x) = g(y)] ≥ pk
1

If dist(x, y) ≥ cr : Pr[g(x) = g(y)] ≤ pk
2

Choose k such that pk
2 ' 1/n so that expected number of far away

points that collide with query y is ≤ 1. k = log n
log(1/p2)

.

Then pk
1 = 1/nρ which is also small.

To make good point collide with y choose L ' nρ hash functions
g1, g2, . . . , gL
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Data Structure

Fix some radius r and consider a (r , cr , p1, p2) basic LSH family H
with ρ = log p1

log p2
. Given n points x1, x2, . . . , xn which are the initial

set of points.

Pick k = log n
log(1/p2)

and L = cnρ for sufficiently large constant c .

For i = 1 to L hash function gi obtained by picking k
independent hash functions from H
For each i = 1 to L create a hash table Ti using hash function
gi . Each xj is hashed and stored in Ti in location gi (xj ) via
chaining.

Storage: L hash tables. Θ(n) space for each hash table so total is
nL = n1+ρ (ignoring log factors). See next slide for details.
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Details

What is the range of each gi ? A k tuple (h1(x), h2(x), . . . , hk(x)).
Hence depends on range of the h’s.

We leave the range implicit. Say range of gi is [mk ] where range of
each h is [m]. We only store non-empty buckets of each gi and there
can be at most n of them. For each gi can use another hash function
`i that maps mk to [n].
So what is actually stored?

L hash tables one for each gi using chaining

Each item x in database is hashed and stored in each of the L
tables. Need to store only index of x in table, not x itself.

Total storage O(Ln)

Time to hash an item: Lk evaluations of basic LSH functions hj
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Query

Given new point y how to query?

Hash y using gi for 1 ≤ i ≤ L
For each i = 1 to L do

Let S be all points in data that are in same bucket as gi (y)
For each xj ∈ S : if d (xj , y) ≤ cr output xj

No item found: report FAIL

What if too many items collide with y? How do we bound query
time?
Fix: Stop search after comparing with Θ(L) items and report failure

Query time: L hash function evaluations and Θ(L) distance
comparisions.
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Analysis

Observations:

If query outputs a point x then dist(x, y) ≤ cr .

If there is no x such that dist(x, y) ≤ cr then Query correctly
fails.

Main issue: What is the probability that there be a good point x∗

such that dist(x, y) ≤ r and algorithm fails?

Two reasons

x∗ does not collide with y
too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x∗)
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Analysis

Two reasons for failure:

x∗ does not collide with y
too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x∗)

First reason:

Pr[gi (x∗) = gi (y)] = pk
1 ≥ 1/nρ

If L > 10nρ then
Pr[∀i gi (x∗) 6= gi (y)] ≤ (1− 1/nρ)L ≤ e−10 < 1/10.
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Analysis

Two reasons for failure:

x∗ does not collide with y
too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x∗)

Second reason: let x be a bad point, that is dist(x, y) > cr

Pr[gi (x) = gi (y)] = pk
2 ≤ 1/n by choice of k

Hence expected number of bad points that collide with y in any table
is ≤ 1. Hence expected number of bad points that collide with y in
all tables is at most L. By Markov, probability of more than 10L
colliding with y is at most 1/10
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Analysis

Hence query for y succeeds with probability 1− 2/10 ≥ 4/5.

Query time:
Hashing y in L tables with g1, g2, . . . , gL where each gi is a k
tuple of basic LSH functions. Hence kL = knρ.
Compute d(y , x) for at most O(L) points so total of O(L)
distance computations.

Amplify success probability to 1− (1/5)t by constructing t copies

Data structure only for one radius r . Need separate data structure
for geometrically increasing values of r in some range [rmin, rmax]

The above two issues result in an additional multiplicative factor of
O(log n log ∆) in the query time where ∆ = log(rmax)/rmin)
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Standard data structure issues

What if original data changes? Hash tables can be adjusted as
new points come in or old ones deleted by periodic
recomputation of data structure (cost can be amortized)

Error analysis is only for one query point. By amplification can
handle a polynomial in n queries. Periodic rebuilding of data
structure with fresh randomness if too many queries.
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Part II

LSH for Hamming Cube
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Hamming Distance

n points x1, x2, . . . , xn ∈ {0, 1}d for some large d

dist(x, y) is the number of coordinates in which x, y differ

Recall that minhash and simhash reduce to Hamming distance
estimation

Closely related to more general `1 distance (ideas carry over)

Question: What is a good (r , cr , p1, p2)-LSH? What is ρ?
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LSH for Hamming Cube

Question: What is a good (r , cr , p1, p2)-LSH? What is ρ?

Pick a random coordinate. Hash family = {hi | i = 1, . . . , d}
where hi (x) = xi

Suppose dist(x, y) ≤ r then

Pr[h(x) = h(y)] ≥ (d − r)/d ≥ 1− r/d ' e−r/d

Suppose dist(x, y) ≥ cr then

Pr[h(x) = h(y)] ≤ 1− cr/d ' e−cr/d

Therefore ρ = log p1

log p2
≤ 1/c
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LSH for Hamming Cube

ρ = 1/c

Say c = 2 meaning we are setting for a 2-approximate near neighbor.
k = O(d log n) and L = O(nρ) = O(

√
n).

space is Õ(dn + n
√

n). We store original points and
L = O(

√
n) hash tables.

query time is Õ(kL + Ld) = Õ(d
√

n).

Exact/brute force: O(nd) for storage and O(nd) for query time.
Thus improved query time at expense of increased space.

As c increases (our approximation suffers) we get better bounds.
Spaces is Õ(dn + n1+1/c) and query time is Õ(dn1/c).
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LSH for Hamming Cube

Questions:

Is c-approximation good enough in “high”-dimensions?

Isn’t space a big bottleneck?

Practice: use heuristic choices to settle for reasonable performance.
LSH allows for a high-level non-trivial tradeoff between approximation
and query time which is not apriori obvious
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Part III

LSH for Euclidean Distances
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LSH for Euclidean Distances

Now x1, x2, . . . , xn ∈ Rd and dist(x, y) = ‖x − y‖2

First do dimensionality reduction (JL) to reduce d (if necessary) to
O(log n) (since we are using c-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we
want a hashing approach that makes nearby points more likely to
collide than farther away points.

Projections onto random lines plus bucketing
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LSH for Euclidean Distances

Recall we are interested in (r , cr , p1, p2) lsh family for a radius r

Consider hash family with two parameters ā,w where a is a random
unit vector (line) in Rd and w is a uniform number from [0, r ]

ha,w (x) = b
x · a + w

r
c

In other words we consider r length buckets on the line defined by
vector a where the origin of the bucketing is via a random shift w

ρ < 1/c for this scheme though it is quite close to 1/c .

Can achieve ρ = (1 + o(1)) 1
c2 using more advanced schemes and this

is close to optimal modulo constant factors.
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