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F, estimation in turnstile setting

AMS-¢5-Estimate:

Let Y1, Y2,..., Y, be {—1,+1} random variables that are
4-wise independent

z<+0

While (stream is not empty) do
aj = (ij,AAj) is current update
z+—z+ A Y,'J.

endWhile

Output z°

Claim: Output estimates ||x||3 where x is the vector at end of
stream of updates.
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Analysis
Z =" . xY;:and output is Z?

22 =3 xXY?+2> xixYiY;
i i7j

E[Z°] =) x7 = |Ix][3.

i

and hence

One can show that Var(Z?) < 2(E[Z?])%.
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Linear Sketching View

Recall that we take average of independent estimators and take
median to reduce error. Can we view all this as a sketch?

AMS-£,-Sketch:
k = clog(1/8)/€?
Let M be a k X n matrix with entries in {—1,1} s.t
(i) rows are independent and
(ii) in each row entries are 4-wise independent
z is a £ X 1 vector initialized to O
While (stream is not empty) do
aj = (ij, AAj) is current update
Z<4— zZ+ AjMe,-].
endWhile
Output vector z as sketch.

M is compactly represented via k hash functions, one per row,
independently chosen from 4-wise independent hash family.
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Geometric Interpretation

Given vector x € R" let M the random map z = Mx has the
following features
® E[z] = 0and E[z?] = ||x]|3 for each 1 < i < k where k is
number of rows of M
@ Thus each z7 is an estimate of length of x in Euclidean norm

® When k = ©(2 log(1/d)) one can obtain an (1 = €) estimate
of ||x]|2 by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such
that z contains information to estimate ||x||, accurately
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Geometric Interpretation

Given vector x € R" let M the random map z = Mx has the
following features
® E[z] = 0and E[z?] = ||x]|3 for each 1 < i < k where k is
number of rows of M
@ Thus each z7 is an estimate of length of x in Euclidean norm
® When k = ©(2 log(1/d)) one can obtain an (1 = €) estimate
of ||x]|2 by averaging and median ideas
Thus we are able to compress x into k-dimensional vector z such
that z contains information to estimate ||x||, accurately

Question: Do we need median trick? Will averaging do?
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Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector x € R? and let 11 € R¥*9 matrix where each entry N;; is
chosen independently according to standard normal distribution

N (0,1) distribution. If k = Q( log(1/8)), then with probability
(1-9) .

II\/E

Mx[l2 = (1 £ €)llx][2-

Can choose entries from {—1, 1} as well.
Note: unlike £, estimation, entries of [1 are independent.

Letting z = %I—Ix we have projected x from d dimensions to

k = O(El2 log(1/d)) dimensions while preserving length to within
(1 & €)-factor.
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Dimensionality reduction

Theorem (Metric JL Lemma)

Let vi, vy, ..., Vv, be any n points/vectors in R?. For any
e € (0,1/2), there is linear map f : R? — R* where k < 8Inn/e?
such that forall 1 < i < j < n,

(1 = &)lvi = villa < [[f(vi) = F(v)ll2 < [lvi = vjl]2-

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix M: f(v) = Nv.
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Dimensionality reduction

Theorem (Metric JL Lemma)

Let vi, vy, ..., Vv, be any n points/vectors in R?. For any
e € (0,1/2), there is linear map f : R? — R* where k < 8Inn/e?
such that forall 1 < i < j < n,

(1 = &)lvi = villa < [[f(vi) = F(v)ll2 < [lvi = vjl]2-

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix M: f(v) = Nv.

Apply DJL with § = 1/n? and apply union bound to ('2') vectors
(V,' — Vj), 175_] ]
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DJL and Metric JL

Key advantage: mapping is oblivious to data!
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Normal Distribution

. . _(x=p)?
Density function: f(x) = \/2;7e 2072

Standard normal: A/(0,1) is when p = 0,0 =1

10 [ [

0.8

0.0
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Normal Distribution

Cumulative density function for standard normal:
d(x) = = [ e=t/2 (no closed form)

1.0

0.8

0.2

0.0
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Sum of independent Normally distributed
variables

Let X and Y be independent random variables. Suppose
X ~N(ux,o%)and Y ~ N(py,0%). Let Z =X+ Y. Then
Z ~ N(px + py, 0% +0%).
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Sum of independent Normally distributed
variables

Lemma

Let X and Y be independent random variables. Suppose
X ~N(ux,o%)and Y ~ N(py,0%). Let Z =X+ Y. Then
Z ~ N(px + py, 0% +0%).

Corollary

Let X and Y be independent random variables. Suppose
X ~N(0,1)and Y ~ N(0,1). Let Z = aX + bY where a, b
are arbitrary real numbers. Then Z ~ N(0, a> + b?).
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Sum of independent Normally distributed
variables

Lemma

Let X and Y be independent random variables. Suppose
X ~N(ux,o%)and Y ~ N(py,0%). Let Z =X+ Y. Then
Z ~ N(NX + ,uy,O'f( + 0'%)

Corollary

Let X and Y be independent random variables. Suppose
X ~N(0,1)and Y ~ N(0,1). Let Z = aX + bY where a, b
are arbitrary real numbers. Then Z ~ N(0, a> + b?).

Normal distribution is a stable distributions: adding two independent
random variables within the same class gives a distribution inside the
class. Others exist and useful in F, estimation for p € (0, 2).
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Random Guassian vector

One can consider higher dimensional normal distributions, also called
multivariate Guassian (or Normal) distributions. Here we consider
one such.

Fix some dimension k > 1. A real random vector
Z =(2Z,2,,...,2Z) is a standard normal random vector if
Z; ~ N(0,1) for each i and Z,. .., Z, are independent.

Some observations about Z:

@ Density function is F(y1, Y2y ..+, ¥k) = (\/LQ_W)ke—(Yer---ﬂ,?)/%
Hence distribution is centrally symmetric. Can be used to

generate a random unit vector in R¥

e Euclidean length: E[|| Z]|3] = >, E[Z?] = k. Will see that the
length is concentrated.
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Concentration of sum of squares of
normally distributed variables

x> (k) distribution: distribution of sum of squares of k independent
standard normally distributed variables
Y = 32K | Z2 where each Z; ~ N(0,1).
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Concentration of sum of squares of
normally distributed variables

x> (k) distribution: distribution of sum of squares of k independent
standard normally distributed variables

Y = 32K | Z2 where each Z; ~ N(0,1).

E[Z?] = 1 hence E[Y] = k.
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Concentration of sum of squares of
normally distributed variables

x> (k) distribution: distribution of sum of squares of k independent
standard normally distributed variables

Y = 3K | Z? where each Z; ~ N(0,1).

E[Z?] = 1 hence E[Y] = k.

Lemma

Let Zy, Z,, ..., Zx be independent N'(0, 1) random variables and let
Y = >, Z?. Then, fore € (0,1/2), there is a constant c such that,

Pri(1 — €)?k < Y < (1 + €)k] > 1 — 2e°k,
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x? distribution

Density function
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x? distribution

Cumulative density function
Fk(l‘) 2
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Concentration of sum of squares of
normally distributed variables

x> (k) distribution: distribution of sum of k independent standard
normally distributed variables

Let Zy, Z>, ..., Zk be independent N(0, 1) random variables and
let Y =%, Z?. Then, for e € (0,1/2), there is a constant c such
that, Pr{(1 — €’k < Y < (14 €)?k] > 1 — 2e <k,

Recall Chernoff-Hoeffding bound for bounded independent
non-negative random variables. Z,? is not bounded, however
Chernoff-Hoeffding bounds extend to sums of random variables with
exponentially decaying tails.
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Random Guassian vector again

A real random vector Z = (Zy, Z,, ..., Zy) is a standard normal

random vector if Z; ~ N(0,1) for each i and Zi, ..., Zy are
independent.

Euclidean length: E[||Z]13] = Y-, E[Z?] = k.

Thus, the Euclidean length of Z is concentrated around v/k.
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Proof of DJL Lemma

Without loss of generality assume ||x||> = 1 (unit vector)
Z; =3 Niyx

e Z; ~ N(0,1) for each i
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Proof of DJL Lemma

Without loss of generality assume ||x||> = 1 (unit vector)
Z; =3 Niyx

e Z; ~ N(0,1) for each i

@ Thus Z is a random Guassian vector in k dimensions!
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Proof of DJL Lemma
Without loss of generality assume ||x||> = 1 (unit vector)
Z; =3 Niyx

e Z; ~ N(0,1) for each i
@ Thus Z is a random Guassian vector in k dimensions!

o Let Y = YK Z2. Y's distribution is x2(k) since Zy, ..., Zk
are iid.
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Proof of DJL Lemma

Without loss of generality assume ||x||> = 1 (unit vector)
Z; =3 Niyx

e Z; ~ N(0,1) for each i
@ Thus Z is a random Guassian vector in k dimensions!

o Let Y = YK Z2. Y's distribution is x2(k) since Zy, ..., Zk
are iid.
@ Hence Pr[(1 — €’k < Y < (14 €)?k] > 1 — 2e°’k
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Proof of DJL Lemma

Without loss of generality assume ||x||> = 1 (unit vector)
Z; =3 Niyx

e Z; ~ N(0,1) for each i

@ Thus Z is a random Guassian vector in k dimensions!

o Let Y = YK Z2. Y's distribution is x2(k) since Zy, ..., Zk
are iid.

@ Hence Pr[(1 — €’k < Y < (14 €)?k] > 1 — 2e°’k

@ Since k = Q(ei2 log(1/d)) we have
Pri(l — €’k <Y < (1+€?k]>1-4
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Proof of DJL Lemma

Without loss of generality assume ||x||> = 1 (unit vector)
Z; =3 Niyx

e Z; ~ N(0,1) for each i

@ Thus Z is a random Guassian vector in k dimensions!

o Let Y = YK Z2. Y's distribution is x2(k) since Zy, ..., Zk
are iid.

@ Hence Pr[(1 — €’k < Y < (14 €)?k] > 1 — 2e°’k

@ Since k = Q(ei2 log(1/d)) we have
Pril — e’k <Y < (1+e€)?k]>1-96

o Therefore ||z||2 = /Y /k has the property that with probability
(1—=0). [lzll2 = (1 £ €)[Ix]|.
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JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we
do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.
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Fast JL and Sparse JL

Projection matrix 1 is dense and hence lNx takes ©(kd) time.
Question: Can we find I1 to improve time bound?

Two scenarios: x is dense and x is sparse
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Fast JL and Sparse JL

Projection matrix I is dense and hence lNx takes ©(kd) time.
Question: Can we find I1 to improve time bound?
Two scenarios: x is dense and x is sparse

Known results:
@ Choose M to be {—1,0,1} with probability 1/6,1/3,1/6.
Also works. Roughly 1/3 entries are 0

@ Fast JL: Choose I1 in a dependent way to ensure [1x can be
computed in O(d log d + k?) time. For dense x.

@ Sparse JL: Choose I1 such that each column is s-sparse. The
best known is s = O(2 log(1/8)). Helps in sparse x.
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Part |

(Oblivious) Subspace
Embeddings
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d. Why?
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d. Why? 1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d. Why? 1 maps E to a lower dimension.

Implies some non-zero vector x € E mapped to 0
@ Possible if k = d. Why?
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d. Why? 1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0

@ Possible if k = d. Why? Pick I to be an orthonormal basis for
E.
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d. Why? 1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0

@ Possible if k = d. Why? Pick I1 to be an orthonormal basis for
E. Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection 1 : R” — R* such that for every
x € E, [[Nx|lz = (1 & €)[|x][2?

@ Not possible if k < d. Why? 1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0
@ Possible if k = d. Why? Pick I1 to be an orthonormal basis for
E. Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.
What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of R" of dimension d. Let Il be a
DJL matrix N € Rk*" with k = O(;i2 log(1/d)) rows. Then with
probability (1 — §) for every x € E,

1

IIW

Nx[[> = (1 £ €)]lx][2-

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Proof Idea

How do we prove that I1 works for all x € E which is an infinite set?

Several proofs but one useful argument that is often a starting
hammer is the “net argument”

@ Choose a large but finite set of vectors T carefully (the net)

@ Prove that 1 preserves lengths of vectors in T (via naive union
bound)

@ Argue that any vector x € E is sufficiently close to a vector in
T and hence I1 also preserves length of x
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Net argument

Sufficient to focus on unit vectors in E. Why?
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Net argument
Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.
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Net argument
Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

Claim: There is a net T of size €°(9) such that preserving lengths of
vectors in T suffices.
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Net argument

Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

o(d

Claim: There is a net T of size €°(9) such that preserving lengths of

vectors in T suffices.

Assuming claim: use DJL with k = O(;i2 log(1/4)) and union bound
to show that all vectors in T are preserved in length up to (1 & €)
factor.
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Net argument
Sufficient to focus on unit vectors in E.

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

A weaker net:
e Consider the box [—1,1]¢ and make a grid with side length €/d
@ Number of grid vertices is (2d/€)?
o Sufficient to take T to be the grid vertices
@ Gives a weaker bound of O(Zd log(d/€)) dimensions
@ A more careful net argument gives tight bound
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Net argument: analysis

Fix any x € E such that ||x]||> = 1 (unit vector)
There is grid point y such that ||y||» < 1 and x is close to y
Let z=x—y. Wehave |z;| < e/dfor1<i<i<dandz =0

fori > d
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Net argument: analysis
Fix any x € E such that ||x]||> = 1 (unit vector)
There is grid point y such that ||y||» < 1 and x is close to y
Let z=x—y. Wehave |z| < e/dfor1 <i<i<dandz =0
fori > d
IMx[[ = [|My + Nz < [[Ay]| + [[Nz]]

d
(1+e)+(1+e)Z|z,-|

(I+e€)+e(l+e)<1+3€

IA

IA

Chandra (UIUC) CS498ABD 27 Fall 2022  27/28



Net argument: analysis
Fix any x € E such that ||x]||> = 1 (unit vector)
There is grid point y such that ||y||» < 1 and x is close to y
Let z=x—y. Wehave |z| < e/dfor1 <i<i<dandz =0
fori > d
IMx[[ = [|My + Nz < [[Ay]| + [[Nz]]

d
(1+e)+(1+e)Z|z,-|

(I+e€)+e(l+e)<1+3€

IA

IA

Similarly [|Mx|| > 1 — O(e).
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Application of Subspace Embeddings

Faster algorithms for approximate
@ matrix multiplication
@ regression
e SVD

Basic idea: Want to perform operations on matrix A with n data
columns (say in large dimension R") with small effective rank d.
Want to reduce to a matrix of size roughly R9%9 by spending time
proportional to nnz(A).

Later in course.
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