Applications of CountMin and Count Sketches

Lecture 10
September 22, 2022
CountMin Sketch

CountMin-Sketch (w, d):

- h_1, h_2, \ldots, h_d are pair-wise independent hash functions from $[n] \rightarrow [w]$.

While (stream is not empty) do

- $e_t = (i_t, \Delta_t)$ is current item

 for $\ell = 1$ to d do

 - $C[\ell, h_\ell(i_j)] \leftarrow C[\ell, h_\ell(i_j)] + \Delta_t$

 endwhile

For $i \in [n]$ set $\tilde{x}_i = \min_{\ell=1}^d C[\ell, h_\ell(i)]$.

Counter $C[\ell, j]$ simply counts the sum of all x_i such that $h_\ell(i) = j$. That is,

$$C[\ell, j] = \sum_{i: h_\ell(i) = j} x_i.$$
Lemma

Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \geq x_i + \epsilon \|x\|_1] \leq \delta.$$

Corollary

With $d = \Omega(\ln n)$ and $w = 2/\epsilon$, with probability $(1 - \frac{1}{n})$ for all $i \in [n]$:

$$\tilde{x}_i \leq x_i + \epsilon \|x\|_1.$$

Total space: $O(\frac{1}{\epsilon} \log n)$ counters and hence $O(\frac{1}{\epsilon} \log n \log m)$ bits.
Count Sketch

Count-Sketch\((w, d)\):

- \(h_1, h_2, \ldots, h_d\) are pair-wise independent hash functions from \([n] \rightarrow [w]\).
- \(g_1, g_2, \ldots, g_d\) are pair-wise independent hash functions from \([n] \rightarrow \{-1, 1\}\).

While (stream is not empty) do

- \(e_t = (i_t, \Delta_t)\) is current item
 - for \(\ell = 1\) to \(d\) do
 - \(C[\ell, h_\ell(i_j)] \leftarrow C[\ell, h_\ell(i_j)] + g(i_t)\Delta_t\)
 - endWhile

For \(i \in [n]\)

- set \(\tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \ldots, g_\ell(i)C[\ell, h_\ell(i)]\}\).
Lemma

Let $d \geq 4 \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $E[\tilde{x}_i] = x_i$ and $Pr[|\tilde{x}_i - x_i| \geq \epsilon \|x\|_2] \leq \delta$.

Corollary

With $d = \Omega(\ln n)$ and $w = 3/\epsilon^2$, with probability $(1 - \frac{1}{n})$ for all $i \in [n]$:

$$|\tilde{x}_i - x_i| \leq \epsilon \|x\|_2.$$

Total space $O\left(\frac{1}{\epsilon^2} \log n\right)$ counters and hence $O\left(\frac{1}{\epsilon^2} \log n \log m\right)$ bits.
Part I

Applications
Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items i such that $x_i > \alpha \|x\|_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.
Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items i such that $x_i > \alpha \|x\|_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each i and check if $\tilde{x}_i > (\alpha - \epsilon) \|x\|_1$.
Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items i such that $x_i > \alpha \|x\|_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each i and check if $\tilde{x}_i > (\alpha - \epsilon) \|x\|_1$. Expensive
Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items i such that $x_i > \alpha \|x\|_1$ for some fixed $\alpha \in (0, 1]$.

Approximate version: output any i such that $x_i \geq (\alpha - \epsilon) \|x\|_1$

The sketches give us a data structure such that for any $i \in [n]$ we get an estimate \tilde{x}_i of x_i with additive error.

Go over each i and check if $\tilde{x}_i > (\alpha - \epsilon) \|x\|_1$. Expensive

Additional data structures to speed up above computation and reduce time/space to be proportional to $O\left(\frac{1}{\alpha} \text{polylog}(n)\right)$. More tricky for Count Sketch. See notes and references
Range Queries

Range query: given $i, j \in [n]$ want to know $\sum_{i \leq \ell \leq j} x[i, j]$

Examples:

- $[n]$ corresponds to IP address space in network routing and $[i, j]$ corresponds to addresses in a range
- $[n]$ corresponds to some numerical attribute in a database and we want to know number of records within a range
- $[n]$ corresponds to the discretization of a signal value
Range Queries

Range query: given $i, j \in [n]$ want to know $\sum_{i \leq \ell \leq j} x[i, j]$

Examples:

- $[n]$ corresponds to IP address space in network routing and $[i, j]$ corresponds to addresses in a range
- $[n]$ corresponds to some numerical attribute in a database and we want to know number of records within a range
- $[n]$ corresponds to the discretization of a signal value

Want to create a sketch data structure that can answer range queries for any given range that is chosen after the sketch is done. $\Omega(n^2)$ potential queries
Range Queries

Simple idea: imagine a binary tree over $[n]$ and any interval $[i, j]$ can be broken up into $O(\log n)$ disjoint "dyadic" intervals
Range Queries

Simple idea: imagine a binary tree over $[n]$ and any interval $[i, j]$ can be broken up into $O(\log n)$ disjoint "dyadic" intervals.

Create one sketch data structure per level of binary tree.
Range Queries

Simple idea: imagine a binary tree over \([n]\) and any interval \([i, j]\) can be broken up into \(O(\log n)\) disjoint "dyadic" intervals.

Create one sketch data structure per level of binary tree.

Output estimate \(\tilde{x}[i, j]\) by adding estimates for \(O(\log n)\) dyadic intervals that \([i, j]\) decomposes into.
Range Queries

Simple idea: imagine a binary tree over \([n]\) and any interval \([i, j]\) can be broken up into \(O(\log n)\) disjoint "dyadic" intervals.

Create one sketch data structure per level of binary tree.

Output estimate \(\tilde{x}[i, j]\) by adding estimates for \(O(\log n)\) dyadic intervals that \([i, j]\) decomposes into.

To manage error choose \(\epsilon' = \epsilon / \log n\): total space is \(O(\alpha \log n / \epsilon)\) where \(\alpha\) is the space for single level sketch.
Part II

Sparse Recovery
Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

- Data is often *explicitly* sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often *implicitly* sparse — in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc
Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling
- Data is often *explicitly* sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often *implicitly* sparse — in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc

Algorithmic goals
- Take advantage of sparsity to improve performance (speed, quality, memory etc)
- Find implicit sparse representation to reveal information about data. Example: topics in documents, frequencies in Fourier analysis
Sparse Recovery

Problem: Given vector/signal $x \in \mathbb{R}^n$ find a sparse vector z such that z approximates x

More concretely: given x and integer $k \geq 1$, find z such that z has at most k non-zeroes ($\|z\|_0 \leq k$) such that $\|x - z\|_p$ is minimized for some $p \geq 1$.

Optimum offline solution: z picks the largest k coordinates of x (in absolute value)

Want to do it in streaming setting: turnstile streams and $p = 2$ and want to use $\tilde{O}(k)$ space proportional to output
Sparse Recovery under ℓ_2 norm

Formal objective function:

$$\text{err}^k_2(x) = \min_{z: \|z\|_0 \leq k} \|x - z\|_2$$

$\text{err}^k_2(x)$ is interesting only when it is small compared to $\|x\|_2$.

For instance, when x is uniform, say $x_i = 1$ for all i then $\|x\|_2 = \sqrt{n}$ but $\text{err}^k_2(x) = \sqrt{n} - k$ if $\|x\|_0 \leq k$ and hence related to distinct element detection.
Sparse Recovery under ℓ_2 norm

Formal objective function:

$$\text{err}_2^k(x) = \min_{z: \|z\|_0 \leq k} \|x - z\|_2$$

$\text{err}_2^k(x)$ is interesting only when it is small compared to $\|x\|_2$

For instance when x is uniform, say $x_i = 1$ for all i then $\|x\|_2 = \sqrt{n}$ but $\text{err}_2^k(x) = \sqrt{n - k}$

$\text{err}_2^k(x) = 0$ iff $\|x\|_0 \leq k$ and hence related to distinct element detection
Sparse Recovery under ℓ_2 norm

Theorem

There is a linear sketch with size $O\left(\frac{k}{\epsilon^2} \text{polylog}(n)\right)$ that returns z such that $\|z\|_0 \leq k$ and with high probability $\|x - z\|_2 \leq (1 + \epsilon)\text{err}_2^k(x)$.

Hence space is proportional to desired output. Assumption k is typically quite small compared to n, the dimension of x.

Note that if x is k-sparse vector is exactly reconstructed.

Based on CountSketch
Algorithm

- Use Count Sketch with $w = \frac{3k}{\epsilon^2}$ and $d = \Omega(\log n)$.
- Count Sketch gives estimates \tilde{x}_i for each $i \in n$
- Output the k coordinates with the largest estimates
Algorithm

- Use Count Sketch with $w = \frac{3k}{\epsilon^2}$ and $d = \Omega(\log n)$.
- Count Sketch gives estimates \tilde{x}_i for each $i \in n$
- Output the k coordinates with the largest estimates

Intuition for analysis

- With $w = \frac{ck}{\epsilon^2}$ the k biggest coordinates will be spread out in their own buckets
- rest of small coordinates will be spread out evenly
- refine the analysis of Count-Sketch to carefully analyze the two scenarios
Lemma

Count-Sketch with $w = 3k/\epsilon^2$ and $d = O(\log n)$ ensures that

$$\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$$

with high probability (at least $(1 - 1/n)$).

Lemma

Let $x, y \in \mathbb{R}^n$ such that $\|x - y\|_\infty \leq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$. Then, $\|x - z\|_2 \leq (1 + 5\epsilon) \text{err}_2^k(x)$, where z is the vector obtained as follows: $z_i = y_i$ for $i \in T$ where T is the set of k largest (in absolute value) indices of y and $z_i = 0$ for $i \notin T$.

Lemmas combined prove the correctness of algorithm.
Count Sketch

Count-Sketch\((w, d)\):

\(h_1, h_2, \ldots, h_d\) are pair-wise independent hash functions from \([n] \to [w]\).

\(g_1, g_2, \ldots, g_d\) are pair-wise independent hash functions from \([n] \to \{-1, 1\}\).

While (stream is not empty) do

\(e_t = (i_t, \Delta_t)\) is current item

for \(\ell = 1\) to \(d\) do

\(C[\ell, h_\ell(i_t)] \leftarrow C[\ell, h_\ell(i_t)] + g(i_t) \Delta_t\)

endWhile

For \(i \in [n]\)

set \(\hat{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \ldots, g_d(i)C[d, h_d(i)]\}\).
Recap of Analysis

Fix an $i \in [n]$. Let $Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]$.

For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_\ell(i) = h_\ell(i')$; that is i and i' collide in h_ℓ.

$E[Y_{i'}] = E[Y_{i'}^2] = 1/w$ from pairwise independence of h_ℓ.

$Z_\ell = g_\ell(i)C[\ell, h_\ell(i)] = g_\ell(i) \sum_{i'} g_\ell(i')x_{i'}Y_{i'}$

Therefore,

$E[Z_\ell] = x_i + \sum_{i' \neq i} E[g_\ell(i)g_\ell(i')Y_{i'}]x_{i'} = x_i$,

because $E[g_\ell(i)g_\ell(i')] = 0$ for $i \neq i'$ from pairwise independence of g_ℓ and $Y_{i'}$ is independent of $g_\ell(i)$ and $g_\ell(i')$.

Chandra (UIUC)
Recap of Analysis

\[Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]. \text{ And } E[Z_\ell] = x_i. \]

\[
\text{Var}(Z_\ell) = E[(Z_\ell - x_i)^2] = E \left[\left(\sum_{i' \neq i} g_\ell(i)g_\ell(i') Y_{i'} x_{i'} \right)^2 \right] \\
= E \left[\sum_{i' \neq i} x_{i'}^2 Y_{i'}^2 + \sum_{i' \neq i''} x_{i'} x_{i''} g_\ell(i')g_\ell(i'') Y_{i'} Y_{i''} x_{i'} x_{i''} \right] \\
= \sum_{i' \neq i} x_{i'}^2 E[Y_{i'}^2] \\
\leq \|x\|_2^2 / w.
\]
Refining Analysis

\[T_{\text{big}} = \{ i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x \} \]

\[T_{\text{small}} = [n] \setminus T \]

\[\sum_{i' \in T_{\text{small}}} x_{i'}^2 = (\text{err}_2^k(x))^2 \]
Refining Analysis

\(T_{\text{big}} = \{ i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x \} \)

\(T_{\text{small}} = [n] \setminus T \)

\[\sum_{i' \in T_{\text{small}}} x_{i'}^2 = (\text{err}^k_2(x))^2 \]

What is \(\Pr \left[\left| Z_\ell - x_i \right| \geq \frac{\epsilon}{\sqrt{k}} \text{err}^k_2(x) \right] \)?
Refining Analysis

\[T_{\text{big}} = \{ i' \mid i' \text{ is one of the } k \text{ biggest coordinates in } x \} \]

\[T_{\text{small}} = [n] \setminus T \]

\[\sum_{i' \in T_{\text{small}}} x_{i'}^2 = (\text{err}_2^k(x))^2 \]

What is \(\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \)?

Lemma

\[\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq \frac{2}{5}. \]
$Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]$.

Let A_ℓ be event that $h_\ell(i') = h_\ell(i)$ for some $i' \in T_{\text{big}}, i' \neq i$

Lemma

$\Pr[A_\ell] \leq \epsilon^2/3$. In other words with $1 - \epsilon^2/3$ probability no big coordinates collide with i under h_ℓ.
Analysis

\[Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]. \]

Let \(A_{\ell} \) be event that \(h_{\ell}(i') = h_{\ell}(i) \) for some \(i' \in T_{\text{big}}, i' \neq i \)

Lemma

\[\Pr[A_{\ell}] \leq \epsilon^2 / 3. \text{ In other words with } 1 - \epsilon^2 / 3 \text{ probability no big coordinates collide with } i \text{ under } h_{\ell}. \]

- \(Y_{i'} \) indicator for \(i' \neq i \) colliding with \(i \).
 \[\Pr[Y_{i'}] \leq 1/w \leq \epsilon^2/(3k). \]
- Let \(Y = \sum_{i' \in T_{\text{big}}} Y_{i'} \). \(E[Y] \leq \epsilon^2/3 \) by linearity of expectation.
- Hence \(\Pr[A_{\ell}] = \Pr[Y \geq 1] \leq \epsilon^2/3 \) by Markov
\[Z_\ell = g_\ell(i) C[\ell, h_\ell(i)] = x_i + \sum_{i' \in T_{\text{big}}} g_\ell(i) g_\ell(i') Y_{i'} x_{i'} + \sum_{i' \in T_{\text{small}}} g_\ell(i) g_\ell(i') Y_{i'} x_{i'} \]

Let \(Z'_\ell = \sum_{i' \in T_{\text{small}}} g_\ell(i) g_\ell(i') Y_{i'} \)

Lemma

\[
\Pr \left[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq 1/3.
\]
\[Z_\ell = g_\ell(i)C[\ell, h_\ell(i)] \]
\[= x_i + \sum_{i' \in T_{\text{big}}} g_\ell(i)g_\ell(i') Y_i' x_{i'} + \sum_{i' \in T_{\text{small}}} g_\ell(i)g_\ell(i') Y_i' x_{i'} \]

Let \(Z'_\ell = \sum_{i' \in T_{\text{small}}} g_\ell(i)g_\ell(i') Y_i' \)

Lemma

\[\Pr \left[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq 1/3. \]

- \(\mathbb{E}[Z'_\ell] = 0 \)
- \(\text{Var}(Z'_\ell) \leq \mathbb{E}[(Z'_\ell)^2] = \sum_{i' \in T_{\text{small}}} x_{i'}^2/w \leq \frac{\epsilon^2}{3k} (\text{err}_2^k(x))^2 \)
- By Chebyshev \(\Pr \left[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq 1/3. \)
Analysis: Proof of lemma

Want to show:

Lemma

\[
\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2(x) \right] \leq 2/5.
\]
Analysis: Proof of lemma

Want to show:

Lemma

\[
\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq 2/5.
\]

We have

\[
Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]
= x_i + \sum_{i' \in T_{\text{big}}} g_\ell(i)g_\ell(i')Y_i'x_{i'} + \sum_{i' \in T_{\text{small}}} g_\ell(i)g_\ell(i')Y_i'x_{i'}
\]
Analysis: Proof of lemma

Want to show:

Lemma

$$\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} err_k^2(x) \right] \leq \frac{2}{5}.$$

We have $Z_\ell = g_\ell(i) C[\ell, h_\ell(i)] = x_i + \sum_{i' \in T_{big}} g_\ell(i) g_\ell(i') Y_{i'} x_{i'} + \sum_{i' \in T_{small}} g_\ell(i) g_\ell(i') Y_{i'} x_{i'}$

We saw:

Lemma

$$\Pr \left[|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} err_k^2(x) \right] \leq \frac{1}{3}.$$

Lemma

$$\Pr[A_\ell] \leq \frac{\epsilon^2}{3}. \text{ In other words with } 1 - \frac{\epsilon^2}{3} \text{ probability no big coordinates collide with } i \text{ under } h_\ell.$$
Analysis: Proof of lemma

\[Z_\ell = g_\ell(i) C[\ell, h_\ell(i)] \]
\[= x_i + \sum_{i' \in T_{\text{big}}} g_\ell(i) g_\ell(i') Y_i' x_i' + \sum_{i' \in T_{\text{small}}} g_\ell(i) g_\ell(i') Y_i' x_i' \]

\[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}^k_2(x) \] implies

- \(A_\ell \) happens (that is some big coordinate collides with \(i \) in \(h_\ell \) or
- \(|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} \text{err}^k_2(x) \)
Analysis: Proof of lemma

\[Z_\ell = g_\ell(i)C[\ell, h_\ell(i)] \]
\[= x_i + \sum_{i' \in T_{\text{big}}} g_\ell(i)g_\ell(i') Y_{i'} x_{i'} + \sum_{i' \in T_{\text{small}}} g_\ell(i)g_\ell(i') Y_{i'} x_{i'} \]

\[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \] implies

- \(A_\ell \) happens (that is some big coordinate collides with \(i \) in \(h_\ell \) or
- \(|Z'_\ell| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \)

Therefore, by union bound,

\[\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq \frac{\epsilon^2}{3} + \frac{1}{3} \leq \frac{2}{5} \]

if \(\epsilon \) is sufficiently small.
High probability estimate

Lemma

\[\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq \frac{2}{5}. \]

Recall \(\tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \ldots, g_d(i)C[d, h_d(i)]\} \).

- Hence by Chernoff bounds with \(d = \Omega(\log n) \),
 \[\Pr \left[|\tilde{x}_i - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq \frac{1}{n^2} \]
- By union bound, with probability at least \((1 - 1/n)\),
 \[|\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \text{ for all } i \in [n]. \]
lemma

\[\Pr \left[|Z_\ell - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq \frac{2}{5}. \]

Recall \(\tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], \ldots, g_d(i)C[d, h_d(i)]\} \).

- Hence by Chernoff bounds with \(d = \Omega(\log n) \),
 \[\Pr \left[|\tilde{x}_i - x_i| \geq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right] \leq \frac{1}{n^2} \]
- By union bound, with probability at least \((1 - 1/n) \),
 \[|\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \] for all \(i \in [n] \).

Lemma

Count-Sketch with \(w = 3k/\epsilon^2 \) and \(d = O(\log n) \) ensures that \(\forall i \in [n], |\tilde{x}_i - x_i| \leq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \) with high probability (at least \((1 - 1/n) \)).
Lemma

Let $x, y \in \mathbb{R}^n$ such that $\|x - y\|_\infty \leq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$. Then,

$$\|x - z\|_2 \leq (1 + 5\epsilon)\text{err}_2^k(x),$$

where z is the vector obtained as follows: $z_i = y_i$ for $i \in T$ where T is the set of k largest (in absolute value) indices of y and $z_i = 0$ for $i \not\in T$.

What the lemma is saying:

- \tilde{x} the estimated vector of Count-Sketch approximates x very closely in each coordinate

- Algorithm picks the top k coordinates of \tilde{x} to create z

- Then z approximates x well
Lemma

Let \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n \) such that \(\| \mathbf{x} - \mathbf{y} \|_\infty \leq \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(\mathbf{x}) \). Then, \(\| \mathbf{x} - \mathbf{z} \|_2 \leq (1 + 5\epsilon) \text{err}_2^k(\mathbf{x}) \), where \(\mathbf{z} \) is the vector obtained as follows: \(z_i = y_i \) for \(i \in T \) where \(T \) is the set of \(k \) largest (in absolute value) indices of \(\mathbf{y} \) and \(z_i = 0 \) for \(i \notin T \).

What the lemma is saying:

- \(\tilde{\mathbf{x}} \) the estimated vector of Count-Sketch approximates \(\mathbf{x} \) very closely in each coordinate
- Algorithm picks the top \(k \) coordinates of \(\tilde{\mathbf{x}} \) to create \(\mathbf{z} \)
- Then \(\mathbf{z} \) approximates \(\mathbf{x} \) well

Proof is basically follows the intuition of triangle inequality
Proof of lemma

S (previously T_{big}) is set of k biggest coordinates in x
T is the set of k biggest coordinates in $y = \tilde{x}$

Let $E = \frac{1}{\sqrt{k}} \err^k_2(x)$ for ease of notation.

$$
(err^k_2(x))^2 = kE^2 = \sum_{i \in [n] \setminus S} x_i^2 = \sum_{i \in T \setminus S} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2.
$$

Want to bound

$$
\|x - z\|_2^2 = \sum_{i \in T} |x_i - z_i|^2 + \sum_{i \in S \setminus T} |x_i - z_i|^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2
= \sum_{i \in T} |x_i - y_i|^2 + \sum_{i \in S \setminus T} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2.
$$
Analysis continued

Want to bound

$$\|x - z\|^2 = \sum_{i \in T} |x_i - z_i|^2 + \sum_{i \in S \setminus T} |x_i - z_i|^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2$$

$$= \sum_{i \in T} |x_i - y_i|^2 + \sum_{i \in S \setminus T} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2.$$

First term: $$\sum_{i \in T} |x_i - \tilde{x}_i|^2 \leq k\epsilon^2 E^2 \leq \epsilon^2 (\text{err}_k^2(x))^2$$
Want to bound

$$\|x - z\|_2^2 = \sum_{i \in T} |x_i - z_i|^2 + \sum_{i \in S \setminus T} |x_i - z_i|^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2$$

$$= \sum_{i \in T} |x_i - y_i|^2 + \sum_{i \in S \setminus T} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2$$

First term: $$\sum_{i \in T} |x_i - \tilde{x}_i|^2 \leq k \epsilon^2 E^2 \leq \epsilon^2 (\text{err}^k_2(x))^2$$

Third term: common to expression for $$\text{(err}^k_2(x))^2$$
Analysis continued

Want to bound

$$\|x - z\|^2 = \sum_{i \in T} |x_i - z_i|^2 + \sum_{i \in S \setminus T} |x_i - z_i|^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2$$

$$= \sum_{i \in T} |x_i - y_i|^2 + \sum_{i \in S \setminus T} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2.$$

First term: $$\sum_{i \in T} |x_i - \tilde{x}_i|^2 \leq k\epsilon^2 E^2 \leq \epsilon^2 (err^k_2(x))^2$$

Third term: common to expression for $$(err^k_2(x))^2$$

Second term: needs more care
Analysis contd

Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let $\ell = |S \setminus T| \leq k$. Since $|S| = |T| = k$, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$
Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let $\ell = |S \setminus T| \leq k$. Since $|S| = |T| = k$, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$

Claim: Let $a = \max_{i \in S \setminus T} |x_i|$ and $b = \min_{i \in T \setminus S} |x_i|$. Then $a \leq b + 2\frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$.
Want to bound $\sum_{i \in S \setminus T} x_i^2$

Let $\ell = |S \setminus T| \leq k$. Since $|S| = |T| = k$, $|T \setminus S| = \ell$

Coordinates in $S \setminus T$ and $T \setminus S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$

Claim: Let $a = \max_{i \in S \setminus T} |x_i|$ and $b = \min_{i \in T \setminus S} |x_i|$. Then $a \leq b + 2 \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)$.

Therefore

$$\sum_{i \in S \setminus T} x_i^2 \leq \ell a^2 \leq \ell \left(b + 2 \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x)\right)^2$$

$$\leq \ell b^2 + 4k \frac{\epsilon^2}{k} (\text{err}_2^k(x))^2 + 4kb \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x).$$
Analysis contd

\[\sum_{i \in S \setminus T} x_i^2 \leq \ell a^2 \leq \ell \left(b + 2 \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \right)^2 \]

\[\leq \ell b^2 + 4k \frac{\epsilon^2}{k} (\text{err}_2^k(x))^2 + 4kb \frac{\epsilon}{\sqrt{k}} \text{err}_2^k(x) \]

\[\leq \ell b^2 + 4\epsilon^2 (\text{err}_2^k(x))^2 + 4\epsilon (\sqrt{k}b) \text{err}_2^k(x) \]

\[\leq \ell b^2 + 8\epsilon (\text{err}_2^k(x))^2 \]

\[\leq \sum_{i \in T \setminus S} x_i^2 + 8\epsilon (\text{err}_2^k(x))^2. \]

Exercise: Why is $\sqrt{kb} \leq \text{err}_2^k(x)$? (We used it above.)
Analysis contd

\[\|x - z\|_2^2 = \sum_{i \in T} |x_i - z_i|^2 + \sum_{i \in S \setminus T} |x_i - z_i|^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2 \]

\[= \sum_{i \in T} |x_i - y_i|^2 + \sum_{i \in S \setminus T} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2. \]

First term: \(\sum_{i \in T} |x_i - \tilde{x}_i|^2 \leq k\epsilon^2 E^2 \leq \epsilon^2 (\text{err}_2^k(x))^2 \)

Third term: common to expression for \((\text{err}_2^k(x))^2 \)

Second term: at most \(\sum_{i \in T \setminus S} x_i^2 + 8\epsilon (\text{err}_2^k(x))^2 \)

Hence

\[\|x - z\|_2^2 \leq (1 + 9\epsilon)(\text{err}_2^k(x))^2 \]

Implies

\[\|x - z\|_2 \leq (\sqrt{1 + 9\epsilon})\text{err}_2^k(x) \leq (1 + 5\epsilon)\text{err}_2^k(x) \]
Application to signal processing

Given signal x approximate it via small number of basis signals

- Fourier analysis and Wavelets
- Useful in compression of various kinds
Given signal x approximate it via small number of basis signals
 - Fourier analysis and Wavelets
 - Useful in compression of various kinds

Transform x into $y = Bx$ where B is a transform and then approximate y by k-sparse vector z

To (approximately) reconstruct x, output $x' = B^{-1}z$

If Bx can be computed in streaming fashion from stream for x, we can apply preceding algorithm to obtain z
Compressed Sensing

We saw that given x in streaming fashion we can construct sketch that allows us to find k-sparse z that approximates x with high probability.

Compressed sensing: we want to create projection matrix Π such that for any x we can create from Πx a good k-sparse approximation to x.

Doable! With Π that has $O(k \log(n/k))$ rows. Creating Π requires randomization but once found it can be used. Called RIP matrices. First due to Candes, Romberg, Tao and Donoho. Lot of work in signal processing and algorithms.