CS 498ABD: Algorithms for Big Data

Heavy Hitters

Lecture 08 September 15, 2022

Models

Richer model:

- Want to estimate a function of a vector x ∈ ℝⁿ which is initially assume to be the all 0's vector.
- Each element e_j of a stream is a tuple (i_j, Δ_j) where i_j ∈ [n] and Δ_i ∈ ℝ is a real-value: this updates x_{ij} to x_{ij} + Δ_j. (Δ_j can be positive or negative)

Models

Richer model:

- Want to estimate a function of a vector x ∈ ℝⁿ which is initially assume to be the all 0's vector.
- Each element e_j of a stream is a tuple (i_j, Δ_j) where i_j ∈ [n] and Δ_i ∈ ℝ is a real-value: this updates x_{ij} to x_{ij} + Δ_j. (Δ_j can be positive or negative)
- $\Delta_j > 0$: cash register model. Special case is $\Delta_j = 1$.
- Δ_i arbitrary: *turnstile* model
- Δ_j arbitrary but $x \ge 0$ at all times: *strict turnstile* model
- *Sliding window* model: interested only in the last *W* items (window)

What is F_k when $k = \infty$?

What is F_k when $k = \infty$? Maximum frequency.

What is F_k when $k = \infty$? Maximum frequency.

 F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

What is F_k when $k = \infty$? Maximum frequency.

 F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

What is F_k when $k = \infty$? Maximum frequency.

 F_{∞} very brittle and hard to estimate with low memory. Can show strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items *i* such that $f_i > m/k$ for some fixed *k*.

Heavy hitters are very frequent items.

Majority element problem:

- Offline: given an array/list **A** of **m** integers, is there an element that occurs more than **m**/2 times in **A**?
- Streaming: is there an *i* such that $f_i > m/2$?

```
Streaming-Majority:
      c = 0, s \leftarrow null
      While (stream is not empty) do
            If (e_i = s) do
                 \boldsymbol{c} \leftarrow \boldsymbol{c} + 1
            ElseIf (\boldsymbol{c} = 0)
                  c = 1
                  s = e_i
            Else
                  c \leftarrow c - 1
      endWhile
      Output s, c
```

```
Streaming-Majority:
      c = 0, s \leftarrow null
      While (stream is not empty) do
            If (\boldsymbol{e_i} = \boldsymbol{s}) do
                  c \leftarrow c + 1
            ElseIf (\boldsymbol{c}=0)
                  c = 1
                  s = e_i
            Else
                  c \leftarrow c - 1
      endWhile
      Output s, c
```

Claim: If there is a majority element *i* then algorithm outputs s = i and $c \ge f_i - m/2$.

```
Streaming-Majority:
     c = 0, s \leftarrow null
     While (stream is not empty) do
           If (e_i = s) do
                c \leftarrow c + 1
          ElseIf (\boldsymbol{c} = 0)
                c = 1
                s = e_i
          Else
                c \leftarrow c - 1
     endWhile
     Output s, c
```

Claim: If there is a majority element *i* then algorithm outputs s = i and $c \ge f_i - m/2$. **Caveat:** Algorithm may output incorrect element if no majority element. Can verify correctness in a second pass.

Chandra ((UI	UC

CS498ABD

)

Misra-Gries Algorithm

Heavy Hitters Problem: Find all items *i* such that $f_i > m/k$.

```
MisraGreis(k):
     D is an empty associative array
     While (stream is not empty) do
          e; is current item
          If (e_i \text{ is in } keys(D))
               D[e_i] \leftarrow D[e_i] + 1
          Else if (|keys(A)| < k - 1) then
          D[e_i] \leftarrow 1
          Else
               for each \ell \in keys(D) do
                    D[\ell] \leftarrow D[\ell] - 1
          Remove elements from D whose counter values are 0
endWhile
For each i \in keys(D) set \hat{f}_i = D[i]
For each i \notin keys(D) set \hat{f}_i = 0
```

Analysis

Space usage O(k).

Theorem

For each
$$i \in [n]$$
: $f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i$.

Corollary

Any item with $f_i > m/k$ is in D at the end of the algorithm.

A second pass to verify can be used to verify correctness of elements in D.

Theorem

For each
$$i \in [n]$$
: $f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i$.

Theorem

For each
$$i \in [n]$$
: $f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i$.

Easy to see: $\hat{f}_i \leq f_i$. Why?

Theorem

For each
$$i \in [n]$$
: $f_i - \frac{m}{k+1} \leq \hat{f}_i \leq f_i$.

Easy to see: $\hat{f}_i \leq f_i$. Why?

Alternative view of algorithm:

- Maintains counts *C*[*i*] for each *i* (initialized to 0). Only *k* are non-zero at any time.
- When new element e_j comes
 - If $C[e_j] > 0$ then increment $C[e_j]$
 - Elself less then k positive counters then set $C[e_j] = 1$
 - Else decrement all positive counters (exactly **k** of them)

8

• Output $\hat{f}_i = C[i]$ for each i

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

Suppose we have ℓ occurrences of k counters being decremented.

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then ℓk + ℓ ≤ m which implies ℓ ≤ m/(k + 1).
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially 0. How big can it get?

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then ℓk + ℓ ≤ m which implies ℓ ≤ m/(k + 1).
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially 0. How big can it get?

• If $e_i = i$ and C[i] is incremented α stays same

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then ℓk + ℓ ≤ m which implies ℓ ≤ m/(k + 1).
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially 0. How big can it get?
 - If $e_j = i$ and C[i] is incremented α stays same
 - If e_j = i and C[i] is not incremented then α increases by one and k counters decremented — charge to l

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then ℓk + ℓ ≤ m which implies ℓ ≤ m/(k + 1).
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially 0. How big can it get?
 - If $e_j = i$ and C[i] is incremented α stays same
 - If e_j = i and C[i] is not incremented then α increases by one and k counters decremented — charge to l
 - If e_j ≠ i and α increases by 1 it is because C[i] is decremented
 charge to ℓ

Want to show: $f_i - \hat{f}_i \leq m/(k+1)$:

- Suppose we have ℓ occurrences of k counters being decremented. Then ℓk + ℓ ≤ m which implies ℓ ≤ m/(k + 1).
- Consider $\alpha = (f_i \hat{f}_i)$ as items are processed. Initially 0. How big can it get?
 - If $e_j = i$ and C[i] is incremented α stays same
 - If e_j = i and C[i] is not incremented then α increases by one and k counters decremented — charge to l
 - If e_j ≠ i and α increases by 1 it is because C[i] is decremented
 charge to ℓ

9

• Hence total number of times α increases is at most ℓ .

Deterministic to Randomized Sketches

Cannot improve O(k) space if one wants additive error of at most m/k. Nice to have a deterministic algorithm that is near-optimal

Why look for randomized solution?

- Obtain a sketch that allows for deletions
- Additional applications of sketch based solutions
- Will see Count-Min and Count sketches

Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items *i* such that $f_i > m/k$.

- Let b_1, b_2, \ldots, b_k be the k heavy hitters
- Suppose we pick $h: [n] \rightarrow [ck]$ for some c > 1
- h spreads b_1, \ldots, b_k among the buckets (k balls into ck bins)
- In ideal situation each bucket can be used to count a separate heavy hitter