CS 498ABD: Algorithms for Big Data

Frequency moments and
Counting Distinct Elements

Lecture 06
September 8, 2022
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Part |

Estimating Distinct Elements
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Distinct Elements
Given a stream o how many distinct elements did we see?

Offline solution via Dictionary data structure
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Hashing based idea

@ Assume idealized hash function: h : [n] — [0, 1] that is fully
random over the real interval

@ Suppose there are k distinct elements in the stream

@ What is the expected value of the minimum of hash values?
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Analyzing idealized hash function

Suppose X1, X, ..., Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = min; X;. Then
E[Y] = ;1

(k+1)"

DistinctElements
Assume ideal hash function h: [n] — [0, 1]
y<+1
While (stream is not empty) do
Let e be next item in stream
y < min(z, h(e))
EndWhile
Output % —1
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Analyzing idealized hash function

Lemma

Suppose X1, X, ..., Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = min; X;. Then

1

Lemma

Suppose X1, Xo, ..., Xy are random variables that are independent
and un/forma/y d/str/buted in [0,1] and let Y = m|n, Xi. Then

- k
and Var(Y) = goppes) < (k+1)2

E[Y2] = (k+1)(k+2)
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Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to
good bounds:

@ average h parallel and independent estimates to reduce variance

@ apply Chebyshev to show that the average estimator is a
(1 + €)-approximation with constant probability

@ use preceding and median trick with O(log1/6) parallel copies
to obtain a (1 + €)-approximation with probability (1 — J)

Total space: O(e—l2 log(1/d)) hash values to obtain an estimate that
is within (1 & €) approximation with probability at least (1 — §).
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Algorithm via regular hashing

Do not have idealized hash function.
@ Use h: [n] — [N] for appropriate choice of N

@ Use pairwise independent hash family H so that random h € H
can be stored in small space and computation can be done in
small memory and fast

Several variants of idea with different trade offs between
@ memory
@ time to process each new element of the stream

@ approximation quality and probability of success
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Algorithm from BJKST

BJKST-DistinctElements:
H is a pairwise independent hash family from [n] to [N = n®]
choose h at random from H
t+— 5
While (stream is not empty) do
a; is current item
Update the smallest t hash values seen so far with h(a;)
endWhile
Let v be the t’th smallest value seen in the hast values.
Output tN/v.

Chandra (UIUC) CS498ABD 9 Fall 2022 9/20



Algorithm from BJKST

BJKST-DistinctElements:
H is a pairwise independent hash family from [n] to [N = n®]
choose h at random from H
t+ 5
While (stream is not empty) do

a; is current item
Update the smallest t hash values seen so far with h(a;)

endWhile
Let v be the t’th smallest value seen in the hast values.

Output tN/v.

@ Memory: t = O(1/€?) values so O(log n/€?) bits. Also
O(log n) bits to store hash function

@ Processing time per element: O(log(1/€)) comparisons of log n
bit numbers by using a binary search tree. And computing hash

value.
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Intuition for algorithm /analysis

Let d be true number of distinct value in stream. Assume d > ce?;
can keep track of the exact count for small counts. How?
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Intuition for algorithm /analysis
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Ideal hash function maps to real interval [0, 1]. Instead we map to
integers in big range: 1 to N = nd.
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Intuition for algorithm /analysis

Let d be true number of distinct value in stream. Assume d > ce?;
can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0, 1]. Instead we map to
integers in big range: 1 to N = nd.

If h were truly random min hash value is around N/(d + 1)
t'th minimum hash value v to be around tN/(d + 1).
Hence tN /v should be around d + 1

t'th min hash value more robust estimator than minimum hash value
and incorporates the averaging trick to reduce variance
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Analysis

Let d be actual number of distinct values in a given stream (assume
d > c/€?). Let D be the output of the algorithm which is a random
variable.
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Analysis

Let d be actual number of distinct values in a given stream (assume
d > c/€?). Let D be the output of the algorithm which is a random
variable.

PriD < (1 —€)d] < 1/6.

Pr[D > (1 + €)d] < 1/6.

Hence Pr[|D — d| > ed] < 1/3. Can do median trick to reduce
error probability to & with O(log 1/9) parallel repetitions.
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Analysis

For simplicity assume no collisions. Prove following as exercise.

Since N = n® the probability that there are no collisions in h is at
least 1 — 1/n.

Recall

X=X+ X5+ ...+ Xk where X1, Xo, ..., X are pairwise
independent. Then Var(X) = . Var(X;).

1
—€
1
+

fay

=l+e+e---=>1+e< =<1+ Xfore<1/2
=l-€et+e...=>1-e< - <1-%

—_
m
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Analysis

Let by, bo, ..., by be the distinct values in the stream.
Recall D = tN /v where v is the t'th smallest hash value seen.

@ Each b; hashed to a uniformly random bucket from 1 to N
@ Consider buckets in interval | = [1..%]

@ Expected number of distinct items hashed into / is t

°

Estimate D < (1 — €)d implies less than t hashed in interval

L= [1"(1:,\51):1] when expected is

@ Esitmate D > (1 + €)d implies more than t hashed in interval

L, = [1..(11'\6')11] when expected is (1;).

@ Use Chebyshev to analyse “bad” event probabilities via pairwise
independence of hash function.
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Analysis

PriD < (1 — €)d] < 1/6.

Let by, by, ..., by be the distinct values in the stream.
Recall D = tN /v where v is the t'th smallest hash value seen.

D<(1—e)di ) . Implies less than t hash values fell in
the interval I = [1..

(1— e)d:|
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Analysis

PriD < (1 — €)d] < 1/6.

Let by, by, ..., by be the distinct values in the stream.
Recall D = tN /v where v is the t'th smallest hash value seen.

D < (1—e)diffv > )d Implies less than t hash values fell in

the interval I =

Let X; be indicator for h(b;) < 7%
And X = 27:1 X; is number that hashed to /

PriD < (1 — e)d] = Pr[X < t].
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Analysis

Let X; be indicator for h(b;) < (11,\51)d' And X = ¢ X;

@ Since h(b;) is uniformly distributed in {1,..., N},

E[X] = Pr[X; = 1] = =55 > (1+ e)t/d.
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Analysis

Let X; be indicator for h(b;) < ~N_ And X = 3¢ X;

(1—e)d

@ Since h(b;) is uniformly distributed in {1,..., N},

E[X] = Pr[X; = 1] = =55 > (1+ e)t/d.

d
e E[X] > (1+ e)t.
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Analysis

Let X; be indicator for h(b;) < (11,\51)d' And X = ¢ X;

@ Since h(b;) is uniformly distributed in {1,..., N},

d
® E[X] > (1+ e)t.
Recall Pr[D < (1 — €)d] = Pr[X < t]

Thus D < (1 — €)d only if X — E[X] < et. Use Chebyshev to
upper bound this probability.
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Analysis

Let X; be indicator for h(b;) < (11,\51)d' And X = 27:1 X;

@ Since h(b;) is uniformly distributed in {1,..., N},
E[Xi] = Pr[Xi = 1] = =55 = (1 + €/2)t/d
e E[X] > (1+ e)t.
@ X; is a binary rv hence Var(X;) < E[X;] < (1+ 3¢/2)t/d.
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e E[X] > (1+ e)t.
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Analysis

Let X; be indicator for h(b;) < (11,\51)d' And X = ¢ X;
@ Since h(b;) is uniformly distributed in {1,..., N},
EIXi] = PriX; = 1] = oy > (L+¢/2)t/d
e E[X] > (1+ e)t.
@ X; is a binary rv hence Var(X;) < E[Xi] < (1 + 3¢/2)t/d.
o X, Xs,...,Xy are pair-wise independent random variables
hence Var(X) = >, Var(X;) < (1 + 3¢/2)t.
By Chebyshev:

Pr[X < t] < Pr[|X — E[X]]| > et] Var(X)/€e*t?

<
< (1+3¢/2)/c
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Analysis

Let X; be indicator for h(b;) < (11,\51)d' And X = ¢ X;
@ Since h(b;) is uniformly distributed in {1,..., N},
EIXi] = PriX; = 1] = oy > (L+¢/2)t/d
e E[X] > (1+ e)t.
@ X; is a binary rv hence Var(X;) < E[Xi] < (1 + 3¢/2)t/d.
o X, Xs,...,Xy are pair-wise independent random variables
hence Var(X) = >, Var(X;) < (1 + 3¢/2)t.
By Chebyshev:

PriX < t] < Pr[|X — E[X]| > et] Var(X)/€t?

<
< (1+3¢/2)/c

Choose c sufficiently large to ensure ratio is at most 1/6.
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Analysis

Pr[D > (1+ €)d] < 1/6].

Let by, by, ..., by be the distinct values in the stream.
Recall D = tN /v where v is the t'th smallest hash value seen.

D> (1+e)diffv < (15:\6')‘1. Implies more than t hash values fell in
the interval [1..

(1+e) ]
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Analysis

Pr[D > (1+ €)d] < 1/6].

Let by, by, ..., by be the distinct values in the stream.
Recall D = tN /v where v is the t'th smallest hash value seen.

D> (1+e)diffv < (15:\6')‘1. Implies more than t hash values fell in

the interval [1..(1fr'\€')d]. What is the probability of this event?

Let X; be indicator for h(b;) < %55
And X =7 X;

Pr[D > (1 + €)d] = Pr[Y > t].

Chandra (UIUC) CS498ABD 17 Fall 2022  17/20



Analysis

Let X; be indicator for h(b;) < 1+ )d And X = Z

@ Since h(b;) is uniformly distributed in {1,..., N},
EX] = PrX; = 1] = L < (1— ¢/2)t/d.

o E[X] < (1 —e/2)t.

_t
(1+€e)d

@ X; is a binary rv hence Var(X;) < E[Xi]] < (1 —€/2)t/d.

o X, X5,...,Xy are pair-wise independent random variables
hence Var(X) = >, Var(X;) < (1 — €/2)t.
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Analysis

Let X; be indicator for h(b;) < 1+ )d And X = Z
@ Since h(b;) is uniformly distributed in {1,..., N},
E[Xi] = Pr[Xi =1] = <(1—¢€/2)t/d.
e E[X] < (1 —¢€/2)t.
@ X; is a binary rv hence Var(X;) < E[Xi]] < (1 —€/2)t/d.
o X, X5,...,Xy are pair-wise independent random variables
hence Var(X) = >, Var(X;) < (1 — €/2)t.
By Chebyshev:

_t
(1+€e)d

PriX > t] < Pr[|X — E[X]| > et/2] < 4Var(X)/ét>

<
< 41—e€/2)/c
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Analysis

Let X; be indicator for h(b;) < 1+ )d And X = Z
@ Since h(b;) is uniformly distributed in {1,..., N},
E[Xi] = Pr[Xi =1] = <(1—¢€/2)t/d.
e E[X] < (1 —¢€/2)t.
@ X; is a binary rv hence Var(X;) < E[Xi]] < (1 —€/2)t/d.
o X, X5,...,Xy are pair-wise independent random variables
hence Var(X) = >, Var(X;) < (1 — €/2)t.
By Chebyshev:

_t
(1+€e)d

PriX > t] < Pr[|X — E[X]| > et/2] < 4Var(X)/ét>

41— e€/2)/c

Choose c sufficiently large to ensure ratio is at most 1/6.

<
<

Chandra (UIUC) CS498ABD 18 Fall 2022

18/20



Question

Where did we use the fact that d > c/€??
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Question

Where did we use the fact that d > c/€??

Analysis need to be more careful in using (1—Ne)d and (1:‘[5),1 since we
need to round them to nearest integer; technically have to use floor
and cielings. If d > c/€? then rounding error of 1 does not matter

— adds only ed error.

We avoid floor and ceiling etc in lecture for clarity.
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Summary on Distinct Elements

e with O( log(1/8) log n) bits algorithm output estimate D
such that |D — d| < ed with probability at least (1 — 9)

@ Best known memory bound: O('°g (/9 4 log n) bits and for any

fixed d this meets lower bound Wlthm constant factors. Both
lower bound and upper bound quite technical — potential
reading for projects.

@ Continuous monitoring: want estimate to be correct not only at

end of stream but also at all intermediate steps. Can be done
with O(w + log n) bits.

@ Deletions allowed! Can also be done. More on this later.
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