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Motivation

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ We proved that E[Q] < 2ninn.

@ But we want to know more because expectation is only one
basic piece of information. For instance what is
Pr[Q > 10nIn n]? What is Var[Q]?

@ Of course we would like to know the full distribution of @ but it
is not feasible in many cases because @ is the outcome of a
non-trivial algorithm.

@ Even when we know the full distribution we don’t want complex
formulas but nice simple closed forms that help us understand
the behaviour of a random variable in intuitive ways.
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.

X has the well known Binomial distribution with p = 1/2:
Pr[X = k] = (:)1/2".

E[X] = n/2

Var[X]| = n/4
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.

X has the well known Binomial distribution with p = 1/2:
Pr[X = k] = (:)1/2".

E[X] = n/2

Var[X]| = n/4

Despite knowing the exact distribution it is hard to grasp how X
behaves without some analysis of binomial coefficients etc. Let's

plot.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.

probablity
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail

gives zero. How many 1s? Binomial distribution: k w.p. (Z) 1/on.
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Massive randomness.. Is not that random.
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This is known as concentration of measure.
This is a related to the law of large numbers and Chernoff bounds
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Side note...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.
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Part |

Inequalities
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Randomized QuickSort

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ We proved that E[Q] < 2ninn.
@ What is Pr[Q > 10nIn n]?

Question: Can we say anything interesting knowing just the
expectation?
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Q,Pr) and let . = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Q,Pr) and let . = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.

Meaningful only when t > 1. Example: Pr[X > 3u] < 1/3.
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Q,Pr) and let . = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.

Meaningful only when t > 1. Example: Pr[X > 3u] < 1/3. Proof?
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Q,Pr) and let . = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.

Meaningful only when t > 1. Example: Pr[X > 3u] < 1/3. Proof?
Simple averaging argument.

Split range of X into two disjoint intervals /; = [0, tut) and

I, = [tp, 00). This is because X is non-negative.

If Pr[X € b] > 1/t then E[X] > (1/t)(tp) > p a contradiction!
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Q,Pr) and let . = E[X]. Forany t > 0, Pr[X > tu] < 1/t.
Equivalently, for any a > 0, Pr[X > a] < 2.

Proof:

E[X]

>wea X(w) Prlw]
D, 0<xX(w)<a X(W) Prlw] + 3" x(w)>a X(w) Prlw]
weR, X(w)>a X((.U) PI’[(.(J]

a ZwEQ, X(w)>a Pr[w]
aPr[X > a]

IV IV
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(92, Pr) and let pu = E[X]. Forany a > 0, Pr[X > a] < £.
Equivalently, for any t > 0, Pr[X > tu] < 1/t.

Proof:

E[X] fooo zfx(z)dz
[° zfx(z)dz
af fx dZ

aPr[X > a]

VIV
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Randomized QuickSort

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ We proved that E[Q] < 2ninn.
Question: What is Pr[Q > 10nn n]?

By Markov's inequality at most 1/5.
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Chebyshev’s Inequality: Variance

Variance

Given a random variable X over probability space (€, Pr), variance of
X is the measure of how much does it deviate from its mean value.

Formally, Var(X) = E[(X — E[X])?] = E[X?] — (E[X])?

Derivation

Define Y = (X — E[X])? = X2 — 2X E[X] + E[X]".

Var(X) = E[Y]
= E[X?] — 2E[X]E[X] + E[X]?
= E[X?] —E[X]’
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Tightness of Markov’s Inequality

Exercise: Prove that Markov's inequality is tight.

More formally: for any given t > 1 describe a simple probability
space and a non-negative random variable X with g = E[X] finite

such that Pr[X > tu] =1/t.

Thus, improving on Markov's inequality requires additional
knowledge /assumption on distribution of X.
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Chebyshev’s Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
Vx,y €R, PriIX =xAY =y] =Pr[X = x| Pr[Y = y]

If X and Y are independent random variables then
Var(X + Y) = Var(X) + Var(Y).
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Chebyshev’s Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
Vx,y €R, PriIX =xAY =y] =Pr[X = x| Pr[Y = y]

If X and Y are independent random variables then
Var(X + Y) = Var(X) + Var(Y).

If X and Y are mutually independent, then E[XY] = E[X] E[Y].
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Chebyshev’s Inequality

Chebyshev’s Inequality
If VarX < oo, for any a > 0, Pr[|X — E[X]| > a] < V%gx)
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Chebyshev’s Inequality
Chebyshev’s Inequality

If VarX < oo, for any a > 0, Pr[|X — E[X]| > a] < Y2{X)

Y = (X — E[X])? is a non-negative random variable. Apply
Markov's Inequality to Y for a°.

Prly > a’] <&8v/2 <« Pr[(X — E[X])?

>
< PrX —EX]| 2

2] < Var(X)/az
< Vv

a
a] ar(X)/az
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Chebyshev’s Inequality
Chebyshev’s Inequality

If VarX < oo, for any a > 0, Pr[|X — E[X]| > a] < _Va;gX)

Y = (X — E[X])? is a non-negative random variable. Apply
Markov's Inequality to Y for a°.

Prly > a’] <&8v/2 <« Pr[(X — E[X])?

>
< PrX —EX]| 2

2] < Var(X)/az
< Vv

a
a] ar(X)/az

Pr[X < E[X] — a] < Var(X)/a?> AND
PriX > E[X] + a] < Var(X)/a?
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Chebyshev’s Inequality

Chebyshev’s Inequality

Given a > 0, Pr[|X — E[X]| > a] < V%gx) equivalently for any

t >0, Pr[[ X — E[X]| > tox] < 3 where ox = /Var(X) is the
standard deviation of X.
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.

@ After n steps how far from the origin?
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.
@ After n steps how far from the origin?

At time i let X; be —1 if move to left and 1 if move to right.
Y, position at time n

Y" = 27:1 X’
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.
@ After n steps how far from the origin?

At time i let X; be —1 if move to left and 1 if move to right.
Y, position at time n

Yn = 27:1 Xi

E[Ya] = 0and Var(Y,) =>; , Var(X;) =n
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Example: Random walk on the line

@ Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.

@ After n steps how far from the origin?

At time i let X; be —1 if move to left and 1 if move to right.
Y, position at time n

Yn = 27:1 Xi
E[Ya] = 0 and Var(Y,) =7, Var(X;) =

By Chebyshev: Pr[|Y,| > ty/n] < 1/t
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Chernoff Bound: Motivation

In many applications we are interested in X which is sum of
independent and bounded random variables.

X = Zle X; where X; € [0,1] or [—1, 1] (normalizing)
Chebyshev not strong enough. For random walk on line one can prove

Pr(|Yal > tv/n] < 2exp(—t%/2)
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Chernoff Bound: Non-negative case

Lemma

Let X1, ..., Xk be k independent binary random variables such that,
for each i € [k], E[Xi] = Pr[X; = 1] = pi. Let X =S¥ | X;. Then
EX] = X i
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Chernoff Bound: Non-negative case

Lemma

Let X1, ..., Xk be k independent binary random variables such that,
for each i € [k], E[Xi] = Pr[X; = 1] = pi. Let X =S¥ | X;. Then
E[X] =2 pi.

e Upper tail bound: For any u > E[X] and any 6 > 0,

eé

PriX > (L +6)u] < (m)“

@ Lower tail bound: For any 0 < pu < E[X] and any 0 < § < 1,

e—6

PriX < (1 —6)u] < (m)”
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Chernoff Bound: Non-negative case,
simplifying

When 0 < § < 1 an important regime of interest we can simplify.

Lemma

Let X1, ..., Xx be k independent random variables such that, for
each i € [1, k|, X; equals 1 with probability p;, and 0 with
probability (1 — p;). Let X = Zf.‘zl Xi and p = E[X] =), pi. For
any 0 < 8 < 1, it holds that:
P
o Pr[X > (1+68)u] <e 3"
—5p

@ PrIX < (1—-96)u] < e
—82,
@ Hence by union bound: Pr[|X — p| > dp] < 2e~3"
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Chernoff Bound: Non-negative case

Important: non-negative case bound depends only on p, not on k.

Regimes of interest for § for upper tail.
00< <L PIX > (1+0)u <e 5+
05 >1L PIX>(1+8u] <esH

(useful when § is close to a small constant)
_(148) In(1+8)
7

@0 >LPIX>(1+d6)p]<Le H,
(useful when & is large)
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Chernoff Bound: general

Let Xi,..., X, be k independent random variables such that, for
eachi € [1, k], X; € [-1,1].
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Chernoff Bound: general

Let Xi,..., X, be k independent random variables such that, for
eachi € [1,k], X; € [-1,1]. Let X = fo:l X;i. For any a > 0,

PrllX — E[X]| > a] < 2exp(5 ).

When variables are not positive the bound depends on n while in the
non-negative case there is no dependence on n (dimension-free)
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Chernoff Bound: general

Let Xi,..., X, be k independent random variables such that, for
eachi € [1,k], X; € [-1,1]. Let X = Zle X;i. For any a > 0,

PrllX — E[X]| > a] < 2exp(5 ).

When variables are not positive the bound depends on n while in the
non-negative case there is no dependence on n (dimension-free)
Applying to random walk:

Pr{|Yal > tv/n] < 2exp(—t2/2).
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Extensions and variations

Hoeffding extension: Theorems hold as long as X; is bounded —
variables do not have to be {0, 1}.

@ For non-negative X; € [0, 1]
@ For general X; € [—1,1]

Averaging version: Bound X = %(Zle X;) instead of the sum.
Use variable Y = kX and bound on Y.

Scaling variables: If X; is in [0, B] use Y; = X;/B.

Shifting variables: If X; € [a;, b;] where b; — a; is small consider
\/,' = X,' — dj.

Many variations and generalization. See pointers on course webpage.
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Part 1l

Balls and Bins
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Balls and Bins

@ m balls and n bins
@ Each ball thrown independently and uniformly in a bin
@ Want to understand properties of bin loads

@ Fundamental problem with many applications
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Balls and Bins

m balls and n bins
Each ball thrown independently and uniformly in a bin

Want to understand properties of bin loads

Fundamental problem with many applications

@ Z;; indicator for ball i falling into bin j

e X; = i", Z; is number of balls in bin j

® >, Zj =1 deterministically

@ E[Zj] =1/nfor all i,j, and hence E[X;] = m/n for each bin j
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load?
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load?

Let Y = maxi_, Xj be the maximum load. Then
Pr[Y > 10Inn/Inlnn] < 1/n? (high probability) and hence
E[Y] = O(Inn/InIn n).

One can also show that E[Y] = ©(Inn/ InIn n).
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load?

Let Y = maxi_, Xj be the maximum load. Then
Pr[Y > 10Inn/Inlnn] < 1/n? (high probability) and hence
E[Y] = O(Inn/InIn n).

One can also show that E[Y] = ©(Inn/ InIn n).
Proof technique: combine Chernoff bound and union bound which is
powerful and general template

Chandra (UIUC) CS498ABD 28 Fall 2022  28/45



Maximum load
Focus on bin 1 without loss of generality since bins are symmetric.
Simplifying notation X = ). Z; where X is load of bin 1 and Z; is

indicator of ball i falling in bin.

e Want to know Pr[X > 12Inn/InIn n|
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Maximum load

Focus on bin 1 without loss of generality since bins are symmetric.

Simplifying notation X = ). Z; where X is load of bin 1 and Z; is

indicator of ball i falling in bin.

e Want to know Pr[X > 12Inn/InIn n|

o u=FE[X]=1

@ (1+9)=12Inn/InInn. We are in large § setting

@ Apply the Chernoff upper tail bound (with simplification) :

(1+6) n(1+5)

PrIX > (1+8)u] < e~
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Maximum load

Focus on bin 1 without loss of generality since bins are symmetric.
Simplifying notation X = ). Z; where X is load of bin 1 and Z; is
indicator of ball i falling in bin.

e Want to know Pr[X > 12Inn/InIn n|

o u=FE[X]=1

@ (1+9)=12Inn/InInn. We are in large § setting

@ Apply the Chernoff upper tail bound (with simplification) :

(1+6) n(1+5)

PrIX > (1+8)u] < e~

o Calculate/simplify and see that Pr[X > 12Inn/Inlnn] < 1/n°
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Maximum load

@ For each bin j, Pr[X; > 12Inn/Ininn] < 1/n°
@ Let Aj be event that X; > 12Inn/Inilnn

@ By union bound

PriUjA)l <D PrA] < n-1/n* < 1/n°.

J

@ Hence, with probability at least (1 — 1/n?) no bin has load
more than 12Inn/Inin n.
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Maximum load

@ For each bin j, Pr[X; > 12Inn/Ininn] < 1/n°
@ Let Aj be event that X; > 12Inn/Inilnn

@ By union bound

PriUjA)l <D PrA] < n-1/n* < 1/n°.

J

@ Hence, with probability at least (1 — 1/n?) no bin has load
more than 12Inn/Inin n.

@ Let Y =max; X;. Y < n. Hence

E[Y] < (1 —1/n*)(12Inn/Inlnn) + (1/n*)n.
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From a ball’s perspective

Consider a ball i. How many other balls fall into the same bin as i?
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From a ball’s perspective

Consider a ball i. How many other balls fall into the same bin as i?
@ Ball 7 is thrown first wlog. And lands in some bin j.
@ Then the other n — 1 balls are thrown.
@ Now bin j is fixed. Hence expected load on bin j is (1 — 1/n).
@ What is variance? What is a high probability bound?
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Part |11

Approximate Median
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Approximate median

@ Input: n distinct numbers a;, a5,...,a,and 0 < e < 1/2

@ Output: A number x from input such that
(1 —€)n/2 < rank(x) < (1+¢€)n/2
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Approximate median

@ Input: n distinct numbers a;, a5,...,a,and 0 < e < 1/2
@ Output: A number x from input such that
(1 —€)n/2 < rank(x) < (1+¢€)n/2
Algorithm:
@ Sample with replacement k numbers from a;, as, ..., a,

@ Output median of the sampled numbers
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Approximate median

@ Input: n distinct numbers a;, a5,...,a,and 0 < e < 1/2
@ Output: A number x from input such that
(1 —€)n/2 < rank(x) < (1+¢€)n/2
Algorithm:
@ Sample with replacement k numbers from a;, as, ..., a,

@ Output median of the sampled numbers

Forany0 < e <1/2and0<d <1, ifk = Q(el2 log(1/9)), the
algorithm outputs an e-approximate median with probability at least

(1 - 9).
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Approximate median

@ Let S be random sample chosen by algorithm
@ Imagine sorting the numbers
@ Split numbers into L (left), M (middle), and R (right)
o M={y|(1—¢€)n/2 < rank(y) < (1+¢€)n/2}
@ Algorithm makes a mistake only if |[S N L| > k/2 or
|S N R| > k/2. Otherwise it will output a number from M.
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Approximate median

@ Let S be random sample chosen by algorithm
@ Imagine sorting the numbers
@ Split numbers into L (left), M (middle), and R (right)
o M={y|(1—¢€)n/2 < rank(y) < (1+¢€)n/2}
@ Algorithm makes a mistake only if |[S N L| > k/2 or
|S N R| > k/2. Otherwise it will output a number from M.

PriISN L| > k/2] < 6/2 if k > 2 log(1/4).
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Analysis

o Let Y = |SNL|? What is E[Y]?

oY = Ele X; where X; is indicator of sample i falling in L.
Hence E[Y] = k(1 — €)/2
@ Use Chernoff bound: PrlY > k/2] < §/2if k > 33 log(1/9).
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Analysis continued

o Pr|SNL| > k/2] < é/2if k > 3 log(1/85).
@ By symmetry: Pr[[SNR| > k/2] < d/2if k > 1—2 log(1/46).

@ By union bound at most é probability that |[S N L| > k/2 or
ISNR| > k/2.

@ Hence with (1 — &) probability median of S is an e-approximate
median

Chandra (UIUC) CS498ABD 36 Fall 2022  36/45



Part |V

Randomized QuickSort (Contd.)
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Randomized QuickSort: Recall

Input: Array A of n numbers. Qutput: Numbers in sorted order.

Randomized QuickSort
© Pick a pivot element uniformly at random from A.

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.
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Randomized QuickSort
© Pick a pivot element uniformly at random from A.

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(nlog n) time
in expectation. On every input it may take (n?) time with some
small probability.
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Randomized QuickSort: Recall

Input: Array A of n numbers. Qutput: Numbers in sorted order.

Randomized QuickSort
© Pick a pivot element uniformly at random from A.

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(nlog n) time
in expectation. On every input it may take (n?) time with some
small probability.

Question: With what probability it takes O(nlog n) time?
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that PriQ(A) < 32nInn] > 1 — 1/m.
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that PriQ(A) < 32nInn] > 1 — 1/m.

If n = 100 then this gives Pr[Q(A) < 32nIn n] > 0.99999. )
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that PriQ(A) < 32nInn] > 1 — 1/ns.

Outline of the proof

@ If depth of recursion is k then Q(A) < kn.

@ Prove that depth of recursion < 32In n with high probability.
Which will imply the result.
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Randomized QuickSort: High Probability
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Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that PriQ(A) < 32nInn] > 1 — 1/ns.

Outline of the proof
@ If depth of recursion is k then Q(A) < kn.

@ Prove that depth of recursion < 32In n with high probability.
Which will imply the result.

© Focus on a fixed element. Prove that it “participates” in
> 321In n levels with probability at most 1/n*.

© By union bound, any of the n elements participates in > 32Inn
levels with probability at most
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that PriQ(A) < 32nInn] > 1 — 1/ns.

Outline of the proof
@ If depth of recursion is k then Q(A) < kn.

@ Prove that depth of recursion < 32In n with high probability.
Which will imply the result.
© Focus on a fixed element. Prove that it “participates” in
> 321In n levels with probability at most 1/n*.

© By union bound, any of the n elements participates in > 32Inn
levels with probability at most 1/n3.
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Useful lemma

Consider h = 32 In n for n sufficiently large integer. Consider h
independent unbiased coin tosses X1, X5, ..., Xp and let A be the
event that there are less than 4In n heads. Then Pr[A] < 1/n*.
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Useful lemma

Consider h = 32 In n for n sufficiently large integer. Consider h
independent unbiased coin tosses X1, X5, ..., Xp and let A be the
event that there are less than 4In n heads. Then Pr[A] < 1/n*.

Apply Chernoff bound (lower tail).
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Useful lemma

Consider h = 32 In n for n sufficiently large integer. Consider h
independent unbiased coin tosses X1, X5, ..., Xp and let A be the
event that there are less than 4In n heads. Then Pr[A] < 1/n*.

Apply Chernoff bound (lower tail).

@ X; = 1ifiis head, 0 otherwise. Let Y = 27:1 X; is number of
heads.

e u=E[Y]=h/2=16Inn.

@ Pr[A] = Pr[Y < 4Inn] = Pr[Y < n/4].

@ By Chernoff bound: Pr[Y < (1 — &)u] < exp(—62u/2).
Using 8 = 3/4 we have Pr[A] < exp(—4.5Inn) < 1/n*®.
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Randomized QuickSort: High Probability
Analysis

@ Fix an element s € A. We will track it at each level.

@ Let S; be the partition containing s at it" level.

@ S; = Aand Sk = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience
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@ S; = Aand Sk = {s} where k is the last level for s (note k is
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@ We call s lucky in ith iteration, if balanced split:
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@ Let S; be the partition containing s at it" level.

@ S; = Aand Sk = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience

@ We call s lucky in ith iteration, if balanced split:
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Randomized QuickSort: High Probability
Analysis

@ Fix an element s € A. We will track it at each level.

@ Let S; be the partition containing s at it" level.

@ S; = Aand Sk = {s} where k is the last level for s (note k is
a random variable). Define S, = {s} for all k < £ < n for
technical convenience

@ We call s lucky in ith iteration, if balanced split:
1Sial < (3/4)ISi] and |Si \ Siaal < (3/4)]Sil.

@ If p =#lucky rounds in first h rounds, then
1Sal < (3/4)°n.

@ If h> p=4Innthen S, < 1 implies s done.

Fix h = 32Inn. |Sp| > 1 only if less then 4 In n lucky rounds for s
in the first h rounds.
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How may rounds before 4 In n lucky rounds?

@ Fix element s and h = 321In n.

@ X; = 1if s is lucky in iteration i
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How may rounds before 4 In n lucky rounds?

@ Fix element s and h = 32In n.

@ X; = 1if s is lucky in iteration i

@ Observation: Xi,..., X}, are independent variables.
o PriX; =1] =3 Why?
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How may rounds before 4 In n lucky rounds?

@ Fix element s and h = 32In n.

@ X; = 1if s is lucky in iteration i

@ Observation: Xi,..., X}, are independent variables.

o PriX; =1] =3 Why?

@ Thus s not done after h iterations only if less than 4 In n lucky

rounds in h rounds. Use Lemma to see probability less than
1/n*.
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Randomized QuickSort w.h.p. Analysis

@ n input elements. Probability that depth of recursion in
QuickSort > 32Innis at most 2 * n = %

n3’
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Randomized QuickSort w.h.p. Analysis

@ n input elements. Probability that depth of recursion in
QuickSort > 32In nis at most & x n = %

With high probability (i.e., 1 — % ) the depth of the recursion of
QuickSort is < 321In n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(nn n).
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