CS 498ABD: Algorithms for Big Data

Course logistics, Streaming,
Sampling

Lecture 1
August 23, 2022
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Logistics

@ Website has most of the relevant information. Ask if you are
unsure.

@ All announcements on Ed. Check regularly (once a day). Use
private posts on Ed to communicate with course staff for
non-urgent matters. Use email to instructor/TA if matter is
time-sensitive or confidential.

@ All homeworks and project to be submitted via Gradescope

@ Exam logistics not finalized yet. Will be announced soon.
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Covid-19

Situation has improved but still need to take precautions

@ We will follow university guidelines.

Important: If you have symptoms, test. If positive need to
isolate, see univ policies.

Informal advice/recommendation: when in doubt please
mask even if you test negative

Seek help promptly and early if you have any health issues or
concerns. Do not be shy about contacting course staff for any
accommodations that you may need.

No online lectures but past videos have most of the content.
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Homework, Exams and Grading Policies

Grade based on:
@ 4-5 homeworks for 40% (to be submitted on Gradescope)

e No late submissions by default
e Will drop few problems to compensate

@ 2 midterms for total 40%
@ project for 20%

Homework is biweekly but one problem due first week to strongly
encourage work each week.
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Other important issues

@ Academic integrity: be aware of the rules as well as your
conscience

@ Disability resources: If you have/need DRES accommodations
please contact instructor as soon as possible.

@ Mental health

@ Anti-racism, inclusivity, bias, sexual harassment and reporting,
religious observances, FERPA rights. CS code of conduct and
CS CARES. See webpage with links to CS department, College
of Engineering and Campus resources and information.

Do not hesitate to approach the course staff.
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Course Topics

This is a theory course focused on rigorous guarantees and formal
analysis of algorithms. Practical applications will be discussed but
not the main focus.

@ Background in probability/randomized algorithms and some
technical tools
Streaming model and algorithms in the model

e Sampling

e Frequency moments

e Sketching

e Quantiles and selection

o Graph streams and sketches
Dimensionality reduction and related topics
Similarity estimation, locality sesitivity hashing
Coresets and clustering
Fast numerical linear algebra
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Applications of course material

@ Mining Massive Data Sets by Leskovic, Rajaraman, Ullman.
Book, MOOC and Slides at www.mmds . org.

@ Apache DataSketches: a software library for stochastic
streaming algorithms. datasketches.apache.org
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www.mmds.org
datasketches.apache.org

Part |

Streaming Model
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Streaming model

@ The input consists of m objects/items/tokens ey, €5, ..., €m
that are seen one by one by the algorithm.

@ The algorithm has “limited” memory say for B tokens where
B < m (often B < m) and hence cannot store all the input

@ Want to compute interesting functions over input
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Streaming model

@ The input consists of m objects/items/tokens ey, €5, ..., €m
that are seen one by one by the algorithm.

@ The algorithm has “limited” memory say for B tokens where
B < m (often B < m) and hence cannot store all the input
@ Want to compute interesting functions over input
Some examples:
@ Each token in a number from [n]

@ High-speed network switch: tokens are packets with source,
destination IP addresses and message contents.

@ Each token is an edge in graph (graph streams)
@ Each token in a point in some feature space
@ Each token is a row/column of a matrix
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Streaming model

@ The input consists of m objects/items/tokens ey, €5, ..., €m
that are seen one by one by the algorithm.

@ The algorithm has “limited” memory say for B tokens where
B < m (often B < m) and hence cannot store all the input

@ Want to compute interesting functions over input
Some examples:

@ Each token in a number from [n]

@ High-speed network switch: tokens are packets with source,
destination IP addresses and message contents.

@ Each token is an edge in graph (graph streams)

@ Each token in a point in some feature space

@ Each token is a row/column of a matrix

Question: What are the tradeoffs between memory size, accuracy,

randomness and other resources?
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Streaming model: motivation/connections

@ Very large but slow storage (tape, slow disk) that is suited for
sequential access and fast main memory. Read data in one (or
more) passes from slow medium.

@ Scenarios such as network switches, sensors etc where huge
amount of data is flying by and cannot be stored (due to cost or
privacy/legal reasons) but one wants only high-level statistics.

@ Distributed computing. Data stored in multiple machines.
Cannot send all data to central location. Streaming algorithms
can simulate a class of algorithms that exchange small amount
of data. Leads to sketching.
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Streaming model: some early papers

@ Munro, J. lan; Paterson, Mike (1978). " Selection and Sorting
with Limited Storage”. 19th Annual Symposium on Foundations
of Computer Science, 1978.

@ Morris, Robert (1978), " Counting large numbers of events in
small registers”, Communications of the ACM.

e Misra, J.; Gries, David (1982). "Finding repeated elements".
Science of Computer Programming.

o Flajolet, Philippe; Martin, G. Nigel (1985). " Probabilistic
counting algorithms for data base applications”. JCSS.

@ Alon, Noga; Matias, Yossi; Szegedy, Mario (1996), " The space
complexity of approximating the frequency moments”,
Proceedings of 28th STOC. Winner of the Goedal Prize in TCS.
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Streaming: Approximation and
Randomization

Question: What are the tradeoffs between memory size, accuracy,
randomness and other resources?

Ideal scenario: compute some quantity of interest in very little
space compared to input stream length and deterministically.

@ Sub-linear: say v/m tokens where m is length of stream
@ Near-optimal: O(poly(log m))
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Streaming: Approximation and
Randomization

Question: What are the tradeoffs between memory size, accuracy,
randomness and other resources?

Ideal scenario: compute some quantity of interest in very little
space compared to input stream length and deterministically.

@ Sub-linear: say v/m tokens where m is length of stream
@ Near-optimal: O(poly(log m))

Bad news: For even very simple problems strong lower bounds
(essentially linear sapce) if one wants exact answers

Good news: Several interesting and useful results if one allows
randomization and approximation
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Part 1l

Sampling

Chandra (UIUC) CS498ABD 13 Fall 2022  13/33



Sampling

Random sampling is a powerful and general tool in data analysis. We
will see several variants and applications.

@ Pick a small random set S from a large set
@ Estimate quantity of interest on S instead of entire data set

@ Analysis relies on sampling strategy, sample size, and estimation
algorithm
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Sampling

Random sampling is a powerful and general tool in data analysis. We
will see several variants and applications.

@ Pick a small random set S from a large set
@ Estimate quantity of interest on S instead of entire data set

@ Analysis relies on sampling strategy, sample size, and estimation
algorithm

Basic sampling strategy: uniform sample of size k from set of size m

@ with replacement: pick a uniformly random number i € [m] and
repeat independently k times. same element can be picked
multiple times

@ without replacement: pick a single set uniformly from all sets of
size k (of cardinality (7).
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing
length of stream in advance?
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing
length of stream in advance?

How do we pick if we knew the length of stream in advance?
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing

length of stream in advance?

How do we pick if we knew the length of stream in advance?

@ Say length is m
@ Pick a random integer r in {1,2,...,m}
@ Store r'th element of stream as sample
Assumption: Algorithm has access to random numbers/bits.
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing
length of stream in advance?

How do we pick if we knew the length of stream in advance?

@ Say length is m
@ Pick a random integer r in {1,2,...,m}
@ Store r'th element of stream as sample

Assumption: Algorithm has access to random numbers/bits.

Digression: Suppose algorithm has access only to random bits. How
can one choose a random integer r in {1,2,...,m}?
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Digression: Rejection Sampling

Suppose algorithm has access only to random bits. How can one
choose a random integer r in {1,2,...,m}?
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Digression: Rejection Sampling

Suppose algorithm has access only to random bits. How can one
choose a random integer r in {1,2,...,m}?

@ Let k = [log m]|

@ Use k random bits to generate an integer r uniformly in
{1,2,...,2k}
o If r € {1,2,..., m} output r Else reject r and repeat
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Digression: Rejection Sampling

Suppose algorithm has access only to random bits. How can one
choose a random integer r in {1,2,...,m}?

@ Let k = [log m]|

@ Use k random bits to generate an integer r uniformly in
{1,2,...,2k}
o If r € {1,2,..., m} output r Else reject r and repeat

Question: What is expected number of iterations to generate a
“good sample”?
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Digression: Rejection Sampling

Suppose algorithm has access only to random bits. How can one
choose a random integer r in {1,2,...,m}?

@ Let k = [log m]|

@ Use k random bits to generate an integer r uniformly in
{1,2,...,2k}

o If r € {1,2,..., m} output r Else reject r and repeat

Question: What is expected number of iterations to generate a
“good sample”? At most 2. Why?
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing
length of stream in advance?
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing
length of stream in advance?

UNIFORMSAMPLE:

s < null

m<+ 0

While (stream is not done)
m<— m+1
em is current item
Toss a biased coin that is heads with probability 1/m
If (coin turns up heads)

S < em
endWhile
Output s as the sample
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Reservoir Sampling: Claim

Let m be the length of the stream. The output of the algorithm s is
uniform. That is, for any1 < j < m, Pr[s = ¢j] = 1/m.
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Reservoir Sampling: Claim

Let m be the length of the stream. The output of the algorithm s is
uniform. That is, for any1 < j < m, Pr[s = ¢j] = 1/m.

Proof

We observe that s = e; if g; is chosen when it is considered by the
algorithm (which happens with probability Jl) and none of

€j+1,- -5 €m are chosen to replace e;. All the relevant events are
independent and we can compute:

Prls = e] = 3 x [o;( — 1/i) = 1/m. O

Can also prove by induction on m.
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Reservoir Sampling: k samples

Want to pick k samples for k > 1. How?
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Reservoir Sampling: k samples
Want to pick k samples for k > 1. How?

@ With replacement. Easy, simply run single sample algorithm
independently in parallel and store the k samples.
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Reservoir Sampling: k samples

Want to pick k samples for k > 1. How?

@ With replacement. Easy, simply run single sample algorithm
independently in parallel and store the k samples.

@ Without replacement?
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k samples without replacement

SAMPLE-WITHOUT-REPLACEMENT(k):
S[1..k] « null
m<+0
While (stream is not done)
m<+— m+1
em is current item
If (m < k) S[m] < e
Else
r <— uniform random number in range [1..m]
If (r < k) S[r] + em
endWhile
Output S

Exercise: Prove correctness of algorithm.
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k samples without replacement: alternative

SAMPLE-WITHOUT-REPLACEMENT(K):
S[1..k] < null
m<+0
While (stream is not done)
m <+ m+ 1, ey is current item
Pick random real number 6, € (0,1)
Store in S the min{k, m} items with largest 6 values
endWhile
Output S

Exercise: How will you implement in streaming setting with O(k)
space? Prove correctness of algorithm.
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Weighted Sampling

Stream has m items ey, ..., e,. Each item has weight w; > 0.
Want to pick item i in proportion to weight (useful in various
settings). Formally Pr[e; is chosen] = w;/W where W = 31" w;.
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Weighted Sampling

Stream has m items ey, ..., e,. Each item has weight w; > 0.
Want to pick item i in proportion to weight (useful in various
settings). Formally Pr[e; is chosen] = w;/W where W = 31" w;.

SINGLE WEIGHTED SAMPLE:
s<null,m+<0 W=0
While (stream is not done)
m+—m+1 W+ W+ w,
em is current item
Toss a biased coin that is heads with probability wy,/ W
If (coin turns up heads)
S+ ey
endWhile
Output s as the sample

Chandra (UIUC) CS498ABD 22 Fall 2022 22/33



Weighted Sampling: k samples

With replacement is easy. Without replacement? What does
sampling without replacement mean?
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Weighted Sampling: k samples

With replacement is easy. Without replacement? What does
sampling without replacement mean?

If k = 0 do nothing. Else sample one item in proportion to weight,
remove from set and recurse with k — 1.
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Weighted Sampling: k samples

With replacement is easy. Without replacement? What does
sampling without replacement mean?

If k = 0 do nothing. Else sample one item in proportion to weight,
remove from set and recurse with k — 1.

How to implement above in streaming without knowing full sequence
in advance?
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Weighted Sampling: k samples

Offline algorithm.

WEIGHTED-SAMPLE-WITHOUT-REPLACEMENT(K):

Fori =1 to mdo
0; < uniform random number in interval (0, 1)
w] = 0,-1/Wi
endFor
Sort items in decreasing order according to w/ values
Output the first k items from the sorted order

Chandra (UIUC) CS498ABD 24 Fall 2022 24 /33



Weighted Sampling: k samples

Offline algorithm.

WEIGHTED-SAMPLE-WITHOUT-REPLACEMENT(K):

Fori =1 to mdo
0; < uniform random number in interval (0, 1)
w/ = 0,-1/Wi
endFor
Sort items in decreasing order according to w/ values
Output the first k items from the sorted order

Exercise: describe a streaming implementation with O(k) space.
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Analysis

For1 < j < m let X; = 6;'". Then Pr[X; = max; Xj] = w;/W.
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Analysis

For1 < j < m let X; = 6;'". Then Pr[X; = max; Xj] = w;/W.

Assuming lemma: picking top k values amongst Xi, ..., X, is same
as picking in sequence without replacement due to independence in
the choice of 0; values.

More formally

Pr[X; is second largest | X; is largest] = wy /(W — w;)
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Analysis

For1 < j < m let X; = 6;'". Then Pr[X; = max; Xj] = w;/W.

Assuming lemma: picking top k values amongst Xi, ..., X, is same
as picking in sequence without replacement due to independence in
the choice of 0; values.

More formally

Pr[X; is second largest | X; is largest] = wy /(W — w;)
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A simpler claim

Claim
Let ri, r, be independent unformly distributed random variables over
[0,1] and let X; = r;/™ and X, = r;’** where w1, wy, > 0. Then

w,
PI’[XQZX;[]:W +W.
1 2

Suppose X = r*/" where w > 0 is fixed and r is chosen uniformly
at random from [0, 1]. What are the cumulative density function Fx
and density function fx of X? Note that X € [0, 1].
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A simpler claim

Claim

Let ri, r, be independent unformly distributed random variables over

[0,1] and let X; = r;/™ and X, = r;’** where w1, wy, > 0. Then
w»

PF[X22X112W+W.
1 2

Suppose X = r*/" where w > 0 is fixed and r is chosen uniformly
at random from [0, 1]. What are the cumulative density function Fx
and density function fx of X? Note that X € [0, 1].

Fx(t) = Pr[X < t] = Prir/" < t] = Pr[r < t*] = t*.
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A simpler claim

Claim

Let ri, r, be independent unformly distributed random variables over

[0,1] and let X; = r;/™ and X, = r;’** where w1, wy, > 0. Then
w»

PF[X22X112W+W.
1 2

Suppose X = r*/" where w > 0 is fixed and r is chosen uniformly
at random from [0, 1]. What are the cumulative density function Fx
and density function fx of X? Note that X € [0, 1].

Fx(t) = Pr[X < t] = Prir/" < t] = Pr[r < t*] = t*.

Hence fx(t) = SFx(t) = wt* ™.
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Proof of Claim

PX, < X] — /1 Fr (£)fi,(t)dt

1
= / t" wyt" " dt
0

wi + W

Chandra (UIUC) CS498ABD 27 Fall 2022  27/33



Proof of Lemma

Pr[X; is max] = /O [ Fx () | A(t)dt
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Part |11

Mean and Median via Sampling
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Mean and Median

Suppose we have a list of n numbers a;, a>,...,a,
. —_ n .
@ Mean: average value = >, a;/n

@ Median: middle number after sorting
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Mean and Median

Suppose we have a list of n numbers a;, a>,...,a,
. —_ n .
@ Mean: average value = >, a;/n

@ Median: middle number after sorting

Two important statistics about numerical data. Can be computed in
O(n) time. Mean is trivial. Median is not so obvious.
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Mean and Median

Suppose we have a list of n numbers a;, a>,...,a,
. —_ n .
@ Mean: average value = >, a;/n

@ Median: middle number after sorting

Two important statistics about numerical data. Can be computed in
O(n) time. Mean is trivial. Median is not so obvious.

Can we compute them in streaming setting? How do we estimate if
data is not easily accessible or very large?

Chandra (UIUC) CS498ABD 30 Fall 2022 30/33



Median estimation via Sampling

@ Sample k elements from aj, as,...,a,. Let S be sample.

@ Compute median of S and output it
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Median estimation via Sampling

@ Sample k elements from aj, as,...,a,. Let S be sample.

@ Compute median of S and output it

Will see soon proof of the following.

Ifk = Q(e—l2 log %) algorithm outputs an e-approximate median with
probability at least (1 — §).
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Mean estimation via Sampling

Assume a;,...,a, >0
@ Sample k elements from a;, a»,...,a,. Let S be sample.

@ Compute mean of S and output it

Question: Can uniform sampling give a good estimate?
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Mean estimation via Sampling

Assume a;,...,a, >0

@ Sample k elements from a;, a»,...,a,. Let S be sample.

@ Compute mean of S and output it

Question: Can uniform sampling give a good estimate?
Mean is sensitive to outliers. How do we overcome this?

@ Show that estimation works when there are no outliers

@ Use importance sampling if /when possible
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