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Dealing with Big Data

Compute a smaller summary quickly, and use summary instead of
original data

@ Sampling

@ Sketching

@ Dimensionality reduction (JL, Subspacee embeddings)
@ Streaming summaries

® .-
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Dealing with Big Data

Compute a smaller summary quickly, and use summary instead of
original data

@ Sampling

@ Sketching

@ Dimensionality reduction (JL, Subspacee embeddings)
@ Streaming summaries

® .-

Today: Coresets a technique from computational geometry
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Coresets

P: a collection of n points in RY

Want to compute some function f(P)

@ k-cluster P according to some objective (k-means, k-median,
k-center etc)

@ find smallest radius ball that encloses P
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Coresets

P: a collection of n points in RY

Want to compute some function f(P)

@ k-cluster P according to some objective (k-means, k-median,
k-center etc)

@ find smallest radius ball that encloses P

Coreset: Q s.t. |Q| small and f(Q) ~ f(P)

@ Depends on f
@ Ideally, @ should be computable quickly
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Coresets
P: a collection of n points in RY

Want to compute some function f(P)

@ k-cluster P according to some objective (k-means, k-median,

k-center etc)

@ find smallest radius ball that encloses P

Coreset: Q s.t. |Q| small and f(Q) ~ f(P)

@ Depends on f
@ Ideally, @ should be computable quickly

Originally @ C P (or a weighted subset) and hence name coreset
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Part |

Minimum Enclosing Ball

Chandra (UIUC) CS498ABD 4 Fall 2020 4/19



Minimum Enclosing Ball

Given n points P € R find smallest radius ball B(x, r) that
P C B(x,r)
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Minimum Enclosing Ball

Given n points P € R find smallest radius ball B(x, r) that
P C B(x,r)

Exact computation is difficult especially when d is large. Can reduce
to convex quadratic optimization leading to arbitrarily good
approximation.
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Minimum Enclosing Ball

Given n points P € R find smallest radius ball B(x, r) that
P C B(x,r)

Exact computation is difficult especially when d is large. Can reduce
to convex quadratic optimization leading to arbitrarily good
approximation.

For any P € R there is a set Q@ C P such that |Q| < 2/€ and
MEB of Q is a 11 approximation to MEB of P.

Q is an e-coreset for P.
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Minimum Enclosing Ball

Given n points P € R find smallest radius ball B(x, r) that
P C B(x,r)

Exact computation is difficult especially when d is large. Can reduce
to convex quadratic optimization leading to arbitrarily good
approximation.

For any P € R there is a set Q@ C P such that |Q| < 2/€ and
MEB of Q is a 11 approximation to MEB of P.

Q is an e-coreset for P.

No dependence on n or d! Differs from sampling/sketching

approaches
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MEB Algorithm

MEB-Coreset:
S; « {arbitrary p € P}
for i=2 to T do
Cc; < MEB center of S;_1

pi <— argmax,-p d(p; ci)

Si=Si_1U{p}
end for
Output St
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MEB Algorithm

MEB-Coreset:
S; « {arbitrary p € P}
for i=2 to T do
Cc; < MEB center of S;_1

pi <— argmax,-p d(p; ci)

Si=Si_1U{p}
end for
Output St

Claim: If T = 2/€ then St is an e-coreset for P.
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Analysis: basic lemma about MEB

Suppose MEB of ‘P is defined by center ¢ and radius R. Then for
every closed half space H containing c there is a point p € PN H
such that d(p,c) = R.
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Analysis: basic lemma about MEB

Suppose MEB of ‘P is defined by center ¢ and radius R. Then for
every closed half space H containing c there is a point p € PN H
such that d(p,c) = R.

Proof by contradiction: if not true, for some é > 0,

d(p,c) < R — 4 for all p € P N H (using closedness here).
Consider ball of radius R around c. Shifting ball by § /2 orthogonal
to H will create new ball with all points in P strictly contained inside
it. Implies we can shrink ball contradicting the optimality of R.
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Analysis of coreset algorithm
c; MEB center of S; and r; radius for S;.

Let R be optimum radius for P. We have r; < R for all i since
S; CP. Also riy1 > r; for all i since S; C S;y1.
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Analysis of coreset algorithm

c; MEB center of S; and r; radius for S;.

Let R be optimum radius for P. We have r; < R for all i since
S; CP. Also riy1 > r; for all i since S; C S;y1.

Observation: Let g € P \ S; be farthest point from ¢;. If
d(ci, q) = r; then R < r; which implies r; = R.
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Analysis of coreset algorithm
c; MEB center of S; and r; radius for S;.

Let R be optimum radius for P. We have r; < R for all i since
S; CP. Also riy1 > r; for all i since S; C S;y1.

Observation: Let g € P \ S; be farthest point from ¢;. If
d(ci, q) = r; then R < r; which implies r; = R.

Hence interesting case is when d(c;, @) > r;. Which implies
riy1 > r;. How much bigger does r; 1 get?

Define \; =

ri
R
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Analysis of coreset algorithm

1422

Either r;y = R or Ajy1 > o

Assuming lemma and solving recurrence, A; > (1 — 14%—) Thus, if
2

T=2/e At > 1=
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Proof of Lemma

Exists ¢ € P \ S; such that d(c;, q) > R. Let §; = d(cit1, ci) be
amount that center moves. §; > 0 since d(c;, q) > R.
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Proof of Lemma

Exists ¢ € P \ S; such that d(c;, q) > R. Let §; = d(cit1, ci) be
amount that center moves. §; > 0 since d(c;, q) > R.

Two lower bounds on r;y;

@ By triangle inequality between c;, cjy+1, g we have
d(ci, ci+1) + d(ci+1,q) > d(ci, g) which implies that
6; + rit1 Z R and hence rit1 2 R — 5,’.
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Proof of Lemma

Exists ¢ € P \ S; such that d(c;, q) > R. Let §; = d(cit1, ci) be
amount that center moves. §; > 0 since d(c;, q) > R.

Two lower bounds on r;y;
@ By triangle inequality between c;, cjy+1, g we have
d(ci, ci+1) + d(ci+1,q) > d(ci, g) which implies that
6; + rit1 Z R and hence rit1 2 R — 5,’.
@ Consider closed half space H containing ¢; orthogonal to line
segement connecting ¢; and ¢;4; (and not containing ¢;41). By
basic lemma there exists p € S; such that d(c;, p) = r;.

Implies rit1 Z d(c;+1,p) Z \/r,? + 5,2
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Proof of Lemma

Exists ¢ € P \ S; such that d(c;, q) > R. Let §; = d(cit1, ci) be
amount that center moves. §; > 0 since d(c;, q) > R.

Two lower bounds on r;y;

@ By triangle inequality between c;, cjy+1, g we have
d(ci, ci+1) + d(ci+1,q) > d(ci, g) which implies that
6; + rit1 Z R and hence rit1 2 R — 5,’.

@ Consider closed half space H containing ¢; orthogonal to line
segement connecting ¢; and ¢;4; (and not containing ¢;41). By
basic lemma there exists p € S; such that d(c;, p) = r;.

Implies rit1 Z d(c;+1,p) Z \/r,? + 5,2
Therefore A\jyy = =8 > %max(R — &iy\/r? + 62).
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Proof of Lemma

; 1
Aip1 = r,_: > Emax{R — 8j 4/ 1? +6,.2}

Minimized when R — §; = \/r? + 82 = \/A?R? + 7 which is

_ @=-2)R
when §; = —.
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Proof of Lemma

; 1
Aip1 = r,_: > Emax{R — 8j 4/ 1? +6,.2}

Minimized when R — §; = \/r? + 82 = \/A?R? + 7 which is

when §; = w

Thus 1R
r; R — —>— 14 N2
R — R - 2

which finishes the proof.
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Streaming Coresets

Suppose p1, P25 .- -5 Pn cOmMe in a stream. Can we compute a small
coreset for P?
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Streaming Coresets

Suppose p1, P25 .- -5 Pn cOmMe in a stream. Can we compute a small
coreset for P?

Can use Merge and Reduce approach for MEB to maintain an
2
€-coreset storing O("’gT") points
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Part Il

Clustering
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Clustering

Given n objects/items P and integer k find partition of P into k
clusters Cy, ..., Cx of similar items

Huge topic with many approaches based on domain/application

Center based metric-space clustering:
e (P, d) is metric space. d(p, q) is distance between p and g

@ find centers S = {c1, ¢, . .., Ck} such that
Ci = {p € P : ¢ is closest center to p}.

o different objectives define different optimization problems:
k-median, k-means, k-center etc

@ choice of centers: S C P or S can be in ambient space if
P € RY. Typically within factor of 2 in objective but clustering
quality and algorithmic difficulty can be different.
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k-median, k-means, k-center

Given P and k find k centers S such that
® k-median: minimize 3 d(p, S)
@ k-means: minimize » . (d(p, S))?
@ k-center: minimize max,cp d(p, S)

@ spacial cases of £, clustering: minimze > . (d(p, S))* for
some p > 1.
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Coresets for Clustering

Given P, k and e find weighted point set Q such that clustering cost
of Q is e-approximation to that of P.

Two techniques:

@ In geometric settings of low dimension via gridding techniques
[HarPeled-Mazumdar]

@ Higher dimensions and metric spaces [Chen, Feldman-Langberg]
and many others using importance sampling

Many results including very recent work: size of coreset, running time
to build coreset, dependence on d vs k, etc etc
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Coresets for Clustering

Given P, k and € find weighted point set Q such that clustering cost

of Q is e-approximation to that of P.

Some known results:

@ O(poly(k,log n,1/€) for a e-approximate core set for
k-median and k-means in general metric spaces [Chen'09]

e O(kd/€?) for points in R? [Feldman-Langberg'11]
@ O(poly(k,1/€)) independent of dimension
[Feldman-Schmidt-Sohler'13, Sohler-Woodruff'19]

@ Dimension reduction to O(k log k/€?) dimensions
[Makarychev-Makarychev-Razenshteyn'19]
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Importance Sampling for Coresets

High-level idea: Start with a crude approximation and use it for

sampling [Chen]. Refined substantially later [Feldman-Langberg] and
follow up work.

(ax, B)-bicriteria-approximation for k-clustering:
@ centers S such that |S| < ak

@ cost(S,P) < B-cost(S*, P) where S* is an optimal center set
Here a, 3 > 1. Both # of centers and cost approximate

Computing (a, 3)-approximation fast is possible using various ideas.
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Coresets for k-median

Suppose S is an («, (3)-bicriteria-approximation for k-median
S ={ca,c,...,cn} partitions P into P1,..., P

COSt(S, P) = Z?:l COSt(Cia P,)
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Coresets for k-median

Suppose S is an («, (3)-bicriteria-approximation for k-median
S ={ca,c,...,cn} partitions P into P1,..., P

COSt(S, P) = Z?:l COSt(Cia P,)

Intuitively treat as h separate 1-median problems.
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Coresets for k-median

Suppose S is an («, (3)-bicriteria-approximation for k-median
S ={ca,c,...,cn} partitions P into P1,..., P

COSt(S, P) = Z?:l COSt(Cia Pl)

Intuitively treat as h separate 1-median problems.
Consider ¢; and P1. cost(c1, P1) = > _,cp, d(p; 1) Hence sample

a point p € P; with probability d(p, c1)/cost(c1, P1). Take several
samples to control variance etc.
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Coresets for k-median

Suppose S is an («, (3)-bicriteria-approximation for k-median
S ={ca,c,...,cn} partitions P into P1,..., P

COSt(S, P) = Z?:l COSt(Cia P,)

Intuitively treat as h separate 1-median problems.

Consider ¢; and P;. cost(cy, P1) = ZPE,PI d(p, c1) Hence sample
a point p € P; with probability d(p, c1)/cost(c1, P1). Take several
samples to control variance etc.

Actual scheme and analysis more tricky. Have to argue that sampling
is good for potentially (Z) clusterings; coreset size becomes

poly(k, log n). Geometry/VC-Dimension analysis to avoid
dependence on n and reduce to d. Can change d to k via
dimensionality reduction (not easy).
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