
CS 498ABD: Algorithms for Big Data

Fast and Space E�cient

NLA, Compressed Sensing

Lecture 24
Dec 1, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 28

Some topics today

We have seen fast “approximation” algorithms for matrix
multiplication

random sampling

Using JL

Today:

Subspace embeddings for faster linear least squares and low-rank
approximation

Frequent directions algorithms for one/two pass approximate
SVD

Compressed Sensing

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 28

→

=

Subspace Embedding

Question: Suppose we have linear subspace E of Rn of dimension
d . Can we find a projection ⇧ : Rd ! Rk such that for every
x 2 E , k⇧xk2 = (1 ± ✏)kxk2?

Not possible if k < d .

Possible if k = `. Pick ⇧ to be an orthonormal basis for E .
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 28

(n

d

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn
of dimension d . Let ⇧ be a

DJL matrix ⇧ 2 Rk⇥d
with k = O(

d

✏2
log(1/�)) rows. Then with

probability (1� �) for every x 2 E ,

k
1
p

k
⇧xk2 = (1 ± ✏)kxk2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 28

in

a- Etf]
IT rn

Part I

Faster algorithms via subspace

embeddings

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 28

¥
:

To FYI

Linear least squares/Regression

Linear least squares: Given A 2 Rn⇥d and b 2 Rd find x to
minimize kAx � bk2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A

so it is “obvious” geometrically. How do we find it?

Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection c as c =

P
r

j=1
hb, zjizj and output answer as kb � ck2.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

=

- b .

ith
z n s>

d

HA*-bks =

=
u = D=

Ax = Kai IX. ai t - + *d-Haid
#

Project b into fretsaw of R
"

spanned by ai , ai , . ., aid

rid
'

d
'

1- mhzCA)
=

Eli 'T 'll ±
C- Rn

IT [A b) q
'

as
'

-
- ad

'

b
'

*

If Rk
""

e Rk
.

e- detent

Linear least squares/Regression

Linear least squares: Given A 2 Rn⇥d and b 2 Rd find x to
minimize kAx � bk2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A

so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection c as c =

P
r

j=1
hb, zjizj and output answer as kb � ck2.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Linear least squares via Subspace

embeddings

Let a1, a2, . . . , ad be the columns of A and let E be the subspace
spanned by {a1, a2, . . . , ad , b}

E has dimension at most d + 1.

Use subspace embedding on E . Applying JL matrix ⇧ with
k = O(

d

✏2
) rows we reduce a1, a2, . . . , ad , b to a

0
1
, a0

2
, . . . , a0

d
, b0

which are vectors in Rk .

Solve minx02RdkA0
x
0 � b

0k2

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 28

" ,

Low-rank approximation

Recall: Given A 2 Rn⇥d and integer k want to find best rank
matrix B to minimize kA� BkF

SVD gives optimum for all k . If A = UDV
T
=

P
d

i=1
�iuiv

T

i

then Ak =
P

k

i=1
�iuiv

T

i
is optimum for every k .

kA� Akk2F =
P

i>k
�2

i
.

v1, v2, . . . , vk are k orthogonal unit vectors from Rd and
maximize the sum of squares of the projection of the rows of A

onto the space spanned by them

u1, u2, . . . , uk are k orthogonal unit vectors from Rn that
maximize the sum of squares of the projections of the columns

of A onto the space spanned

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 28

AE Rtd

()
want to find a low rank matrix B

to approx A .

win HA-Bl
B
,
eenklb.tk VT

- I, -

su± A -

-
UDUT

f- u;-]'

.

- Td-

Kui - - vie E Rd
.

A x ER
"

x c- Rd

Ciii a Et

what are UT
,
k
,
. . , Td

a

÷.i:*
.

it = ¥
,

Cai
,

i5=9
-

it , vi. -.

.
Hi

aims

Low-rank approximation via subspace

embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E)  d obviously.

Wlog u1, u2, . . . , uk 2 E . Why?

If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?
Let ⇧ be an ✏-approximate subspace preserving embedding for E

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

" iiiiis :÷÷÷÷÷÷:
UT is directive

that maximizes
d
E Lai, a- 72
it I

Let E- be sup space spanned by
ai
,
ai
,
- -

,
a-d red

iii. in . - - i-ua.EE

Use Sop space embedding to

map ai
,
ai
,
. . , Ed to ai, . -a'd

C- Nk

ko#lust) .

Low-rank approximation via subspace

embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E)  d obviously.

Wlog u1, u2, . . . , uk 2 E . Why?
If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?

Let ⇧ be an ✏-approximate subspace preserving embedding for E

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Low-rank approximation via subspace

embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E)  d obviously.

Wlog u1, u2, . . . , uk 2 E . Why?
If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?

Let ⇧ be an ✏-approximate subspace preserving embedding for E

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Low-rank approximation via subspace

embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E)  d obviously.

Wlog u1, u2, . . . , uk 2 E . Why?
If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?
Let ⇧ be an ✏-approximate subspace preserving embedding for E

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Analysis

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Proof sketch: Let a
0
1
, . . . , a0

d
be columns of ⇧A and let

u
0
1
, . . . , u0

k
be ⇧u1, . . . ,⇧uk .

kA� Akk2F =
P

d

i=1
kai �

P
k

j=1
vj(i)ujk22

From subspace embedding property of ⇧,
k⇧(ai �

P
k

j=1
vj(i)uj)k2  (1 + ✏)kai �

P
k

j=1
vj(i)ujk2

Since u
0
1
, u0

2
, . . . , u0

k
is a feasible solution for k-rank approximation

to ⇧A.

Claim: k(⇧A)� (⇧A)kkF � (1� ✏)kA� AkkF . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

÷÷M "

Analysis

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Proof sketch: Let a
0
1
, . . . , a0

d
be columns of ⇧A and let

u
0
1
, . . . , u0

k
be ⇧u1, . . . ,⇧uk .

kA� Akk2F =
P

d

i=1
kai �

P
k

j=1
vj(i)ujk22

From subspace embedding property of ⇧,
k⇧(ai �

P
k

j=1
vj(i)uj)k2  (1 + ✏)kai �

P
k

j=1
vj(i)ujk2

Since u
0
1
, u0

2
, . . . , u0

k
is a feasible solution for k-rank approximation

to ⇧A.

Claim: k(⇧A)� (⇧A)kkF � (1� ✏)kA� AkkF . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Proof sketch: Let a
0
1
, . . . , a0

d
be columns of ⇧A and let

u
0
1
, . . . , u0

k
be ⇧u1, . . . ,⇧uk .

kA� Akk2F =
P

d

i=1
kai �

P
k

j=1
vj(i)ujk22

From subspace embedding property of ⇧,
k⇧(ai �

P
k

j=1
vj(i)uj)k2  (1 + ✏)kai �

P
k

j=1
vj(i)ujk2

Since u
0
1
, u0

2
, . . . , u0

k
is a feasible solution for k-rank approximation

to ⇧A.

Claim: k(⇧A)� (⇧A)kkF � (1� ✏)kA� AkkF . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Proof sketch: Let a
0
1
, . . . , a0

d
be columns of ⇧A and let

u
0
1
, . . . , u0

k
be ⇧u1, . . . ,⇧uk .

kA� Akk2F =
P

d

i=1
kai �

P
k

j=1
vj(i)ujk22

From subspace embedding property of ⇧,
k⇧(ai �

P
k

j=1
vj(i)uj)k2  (1 + ✏)kai �

P
k

j=1
vj(i)ujk2

Since u
0
1
, u0

2
, . . . , u0

k
is a feasible solution for k-rank approximation

to ⇧A.

Claim: k(⇧A)� (⇧A)kkF � (1� ✏)kA� AkkF . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Proof sketch: Let a
0
1
, . . . , a0

d
be columns of ⇧A and let

u
0
1
, . . . , u0

k
be ⇧u1, . . . ,⇧uk .

kA� Akk2F =
P

d

i=1
kai �

P
k

j=1
vj(i)ujk22

From subspace embedding property of ⇧,
k⇧(ai �

P
k

j=1
vj(i)uj)k2  (1 + ✏)kai �

P
k

j=1
vj(i)ujk2

Since u
0
1
, u0

2
, . . . , u0

k
is a feasible solution for k-rank approximation

to ⇧A.

Claim: k(⇧A)� (⇧A)kkF � (1� ✏)kA� AkkF .

Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Proof sketch: Let a
0
1
, . . . , a0

d
be columns of ⇧A and let

u
0
1
, . . . , u0

k
be ⇧u1, . . . ,⇧uk .

kA� Akk2F =
P

d

i=1
kai �

P
k

j=1
vj(i)ujk22

From subspace embedding property of ⇧,
k⇧(ai �

P
k

j=1
vj(i)uj)k2  (1 + ✏)kai �

P
k

j=1
vj(i)ujk2

Since u
0
1
, u0

2
, . . . , u0

k
is a feasible solution for k-rank approximation

to ⇧A.

Claim: k(⇧A)� (⇧A)kkF � (1� ✏)kA� AkkF . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Running Time

A has d columns in Rn and ⇧A has d columns in Rk where
k = O(

d

✏2
ln(1/�)). Hence dimensionality reduction from n to

k and one can run SVD on ⇧A.

⇧A can be computed fast in time roughly proportional to
nnz(A) (number of non-zeroes of A).

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 28

Part II

Frequent Directions Algorithm

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 28

Low-rank approximation

Faster low-rank approximation algorithms based on randomized
algorithm: sampling and subspace embeddings

Can we find a deterministic algorithm?

Streaming algorithm?

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 28

°÷÷÷÷

EE::

¥¥⇒⇐.
"

Low-rank approximation and SVD

Given matrix A 2 Rn⇥d and (small) integer k

Row view of SVD: v1, v2, . . . , vk are k orthogonal unit vectors
from Rd that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, a2, . . . , an be the rows of A (treated as vectors in Rd)

�2

j
=

P
n

i=1
hai , vji2 and kA� Akk2F =

P
j>k

�2

j

Consider matrix DkV
T

k
whose rows are �1v1,�2v2, . . . ,�kvk .

kDkV
T

k
k2

F
=

P
k

j=1
�2

j
= kAkk2F

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

Low-rank approximation and SVD

Given matrix A 2 Rn⇥d and (small) integer k

Row view of SVD: v1, v2, . . . , vk are k orthogonal unit vectors
from Rd that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, a2, . . . , an be the rows of A (treated as vectors in Rd)

�2

j
=

P
n

i=1
hai , vji2 and kA� Akk2F =

P
j>k

�2

j

Consider matrix DkV
T

k
whose rows are �1v1,�2v2, . . . ,�kvk .

kDkV
T

k
k2

F
=

P
k

j=1
�2

j
= kAkk2F

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by
[Ghashami-Phillips]
Liberty inspired by Misra-Greis frequent items algorithm.

Rows of A come one by one

Algorithm maintains a matrix Q 2 R`⇥d where ` = k(1 + 1/✏).
Hence memory is O(kd/✏)

At end of algorithm let Qk be best rank k-approximation for Q.
Then kA� ProjQk

(A)kF  (1 + ✏)kA� AkkF .

Thus a (1 + ✏)-approximate k-dimensional subspace for rows of A

be identified by storing O(k/✏) rows.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 28

-

y
= A

Miis algorithm
stream ai , ar , - -y an of ileum

and goin k . want to find the

k heavy hittin
'

> nz
Maintain. K counters

and killin in a data structure .

I , 2 , 10, 10,1 ,
I
,
10
,
5, I , 10, 5, 2, 3, . .

K"
c, •

I let 10
,
I

Cr ⑧ ⑧ 12

FD Algorithm

Frequent-Directions

Initialize Q0 as an all zeroes `⇥ d matrix
For each row ai 2 A do

Set Q+ Q i�1 with last row replaced by ai

Compute SVD of Q+ as UDV T

C i
= DV T (for analysis)

�i = �2

` (for analysis)

D0
= diag(

q
�2

1
� �i ,

q
�2

2
� �i , . . . ,

q
�2

`�1
� �i , 0)

Q i
= D0V T

EndFor
Return Q = Qn

If ` = dk(1 + 1/✏)e and Qk is the rank k approximation to output
Q then

kA� ProjQk
(A)kF  (1 + ✏)kA� AkkF

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 28

=

Ii
,

- - -

, a-n l = Katz)

• E
¥

computer SUD N Q . vi. is , -→ lie
.

ri ri - - re
-

¥÷÷ re
.

¥4 Fire . ui

Fire - E
'

- :

Leifer ie.

o
'

f
- if

d .
-o-

'

÷:

⑨

a

"

÷÷
ATA

- a ,
-
fi

n dem n a

"" " ah
- au - fu

uchi space.
- :
- i

k elements Uh - - " Uk - an - th
.

that wax {¥a
=

Running time

One pass algorithm but requires second pass to compute actual
singular values etc

Space O(kd/✏)

Run time: n computations of SVD on k/✏⇥ d matrix. Can be
improved (see home work problem).

Interesting even when k = 1. Alternative to power method to find
top singular value/vector. Deterministic.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 28

Part III

Compressed Sensing

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 28

sun TEs ↳u.

G-

store the fund signal.

I compressed .

I is a high dim signal

C- Rn

compressed signal 5
C- Rk fm some

Kk un

actual signal is Spain in a higher

dimensional space

-- x E R
"

y is K- sparse .

Sparse recovery

Recall:

Vector x 2 Rn and integer k

x updated in streaming setting one coordinate at a time (can be
positive or negative changes)

Want to find best k-sparse vector x̃ that approximates x .
miny ,kyk0kky � xk2. Optimum solution is clear: take y to be
the largest k coordinates of x in absolute value.

Using Count-Sketch: O(
k

✏2
polylog(n)) space one can find

k-sparse z such that kz � xk2  (1 + ✏)ky⇤ � xk2 with high
probability.

Count-Sketch can be seen as ⇧x for some ⇧ 2 Rm⇥n where
m = O(

k

✏2
polylog(n)).

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 28

=

=

Compressed Sensing

Compressed sensing: we want to create projection matrix ⇧ such
that for any x we can create from ⇧x a good k-sparse approximation
to x

Doable! With ⇧ that has O(k log(n/k)) rows. Creating ⇧ requires
randomization but once found it can be used. Called RIP matrices.
First due to Candes, Romberg, Tao and Donoho. Lot of work in
signal processing and algorithms.

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 28

= =

*
-

m: ha "

III.÷.
.

Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix ⇧ 2 Rm⇥n
with

m = O(k log(n/k)) and a polytime algorithm such that for any

x 2 Rn
, the algorithm given ⇧x outputs a k-sparse vector x̃ such

that kx̃ � xk2  O(
1p
k
)kxtail(k)k1. In particular it recovers x

exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices
(restricted isometry property)

Closely connected to JL matrices

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 28

O
1€

y -- ITI f
RM

HE- xHE0¥11YEH

Understanding RIP matrices

Suppose x, x 0 are two distinct k-sparse vectors in Rn

Basic requirement: ⇧x 6= ⇧x
0 otherwise cannot recover exactly

Let S, S 0 ⇢ [n] be the indices in the support of x, x 0 respectively.
⇧x is in the span of columns of ⇧S and ⇧x

0 is in the span of
columns of ⇧S0

Thus we need columns of ⇧S[S0 to be linearly independent for any
S, S 0 with S 6= S

0 and |S|  k and |S 0|  k . Any 2k columns of
⇧ should be linearly independent.

Su�cient information theoretically. Computationally?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 28

= = =

=

* Chili I is:*'
- IS

'Kk

Understanding RIP matrices

Suppose x, x 0 are two distinct k-sparse vectors in Rn

Basic requirement: ⇧x 6= ⇧x
0 otherwise cannot recover exactly

Let S, S 0 ⇢ [n] be the indices in the support of x, x 0 respectively.
⇧x is in the span of columns of ⇧S and ⇧x

0 is in the span of
columns of ⇧S0

Thus we need columns of ⇧S[S0 to be linearly independent for any
S, S 0 with S 6= S

0 and |S|  k and |S 0|  k . Any 2k columns of
⇧ should be linearly independent.

Su�cient information theoretically. Computationally?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 28

Recovery

Suppose we have ⇧ such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have ⇧x . How do we recover x?

Solve the following:

minkzk0 such that ⇧z = ⇧x

Guaranteed to recover x by uniqueness but NP-Hard!

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 28

=

Recovery

Suppose we have ⇧ such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have ⇧x . How do we recover x?

Solve the following:

minkzk0 such that ⇧z = ⇧x

Guaranteed to recover x by uniqueness but NP-Hard!

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 28

Recovery

Instead of solving

minkzk0 such that ⇧z = ⇧x

solve

minkzk1 such that ⇧z = ⇧x

which is a linear/convex programming problem and hence can be
solved in polynomial-time.

If ⇧ satisfies additional properties then one can show that above
recovers x .

Chandra (UIUC) CS498ABD 24 Fall 2020 24 / 28

I

-

⇐

RIP Property

Definition

A m ⇥ n matrix ⇧ has the (✏, k)-RIP property if for every k-sparse
x 2 Rn,

(1� ✏)kxk2
2
 k⇧xk2

2
 (1 + ✏)kxk2

2

.

Equivalent, whenever |S|  k we have

k⇧T

S
⇧S � Ikk2  ✏

which is equivalent to saying that if �1 and �k are the largest and

smallest singular value of ⇧S then
�2

1

�2

k

 (1 + ✏)

Every k columns of ⇧ are approximately orthonormal.

Chandra (UIUC) CS498ABD 25 Fall 2020 25 / 28

=-_
I

' CI 's it]
①
= Its

Recovery theorem

Suppose ⇧ is (✏, 2k)-RIP with ✏ <
p
2� 1 and let x̃ be optimum

solution to the following LP

minkzk1 such that ⇧z = ⇧x

Then kx̃ � xk2  O(
1p
k
)kxtail(k)k1.

Called `2/`1 guarantee. Proof is somewhat similar to the one for
sparse recovery with Count-Sketch.

More e�cient “combinatorial” algorithms that avoid solving LP.

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 28

0¥
-

RIP matrices and subspace embeddings

Definition

A m ⇥ n matrix ⇧ has the (✏, k)-RIP property if for every k-sparse
x 2 Rn,

(1� ✏)kxk2
2
 k⇧xk2

2
 (1 + ✏)kxk2

2

.

Fix S ⇢ [n] with |S| = k . S defines a subspace of k-sparse vectors.

Total of
�
n

k

�
di↵erent subspaces. Want to preserve the length of

vectors in all of these subspaces.

Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 28

= I

0 =

Es = all linear
combination of

vector with Geppert in S .

Fix S ⇢ [n] with |S| = k . S defines a subspace of k-sparse vectors.
Total of

�
n

k

�
di↵erent subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if ⇧ is JL matrix
with m = O(d/✏2) rows we have the property that for every
x 2 W : k⇧xk2

2
' (1 ± ✏)kxk2

2
. Via a net argument where net

size is e
O(k).

If we want to preserve
�
n

k

�
di↵erent subspaces need to preserve nets

of all subspaces

Hence via union bound we get m = O(
1

✏2
log(e

O(k)
�
n

k

�
)) which is

O(
k

✏2
log n).

Other techniques give m = O(k
2/✏2).

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 28

bunk -
- alien

Fix S ⇢ [n] with |S| = k . S defines a subspace of k-sparse vectors.
Total of

�
n

k

�
di↵erent subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if ⇧ is JL matrix
with m = O(d/✏2) rows we have the property that for every
x 2 W : k⇧xk2

2
' (1 ± ✏)kxk2

2
. Via a net argument where net

size is e
O(k).

If we want to preserve
�
n

k

�
di↵erent subspaces need to preserve nets

of all subspaces

Hence via union bound we get m = O(
1

✏2
log(e

O(k)
�
n

k

�
)) which is

O(
k

✏2
log n).

Other techniques give m = O(k
2/✏2).

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 28

