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Some topics today

We have seen fast “approximation” algorithms for matrix
multiplication

@ random sampling

e Using JL
Today:
@ Subspace embeddings for faster linear least squares and low-rank
o el S

. . —_—
approximation

@ Frequent directions algorithms for one/two pass approximate
—? SVD

@ Compressed Sensing
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection I : R¥"— R¥ such that for every
x € E, [[Nx]l2 = (1 £ €)|lx][2?

@ Not possible if kK < d.

@ Possible if k =£ Pick N to be an orthonormal basis for E.
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of R" of dimension d. Let I be a
DJL matrix N € R*>*®yith k = O(;i2 log(1/d)) rows. Then with
probability (1 — &) for every x € E,

1
II\/—F”XIIz = (1 % ¢)|lx]]2-

In other words JL Lemma extends from one dimension to arbitrary

number of dimensions in a graceful way. 62_1'1
WO |
9 -
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Part |

Faster algorithms via subspace
embeddings
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||2.

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is

closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||2.

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z1, z3, . . . , z, for the columns of A. Compute
projection ¢ as ¢ = } ;_, (b, zj) z; and output answer as ||b — c|[>.
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Linear least squares via Subspace
embeddings

Let a1, a2,...,aq be the columns of A and let E be the subspace
spanned by {a1, a2, ..., aq, b}

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix I with
k = O(g) rows we reduce ay, az,...,aq, b to aj,aj,...,al, b’
which are vectors in R

TA 4

(=]
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Low-rank approximation

Recall: Given A € R™*9 and integer k want to find best rank
matrix B to minimize ||A — B]||r

o SVD gives optimum for all k. If A= UDVT = "% oiuv]
then Ay = Zf.‘zl 0',-u,-v,.T is optimum for every k.
2 _ 2
o ||A—Allr =2iskoi
® vi, Vo, ...,V are k orthogonal unit vectors from R and

maximize the sum of squares of the projection of the rows of A
onto the space spanned by them

@ uy, Uy, ..., U are k orthogonal unit vectors from R" that
maximize the sum of squares of the projections of the columns
of A onto the space spanned
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Low-rank approximation via subspace
embeddings

Column view of SVD: uy, up, . .., ux are k orthogonal unit
vectors from R” that maximize the sum of squares of the projections

of the columns of A onto the space spanned

Let ay, a2,...,ay be the columns of A and let E be subspace
spanned by them. dim(E) < d obviously.

Wilog uy, upy ..., ux € E. Why?
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Low-rank approximation via subspace
embeddings

Column view of SVD: uy, up, . .., ux are k orthogonal unit
vectors from R” that maximize the sum of squares of the projections

of the columns of A onto the space spanned

Let ay, a2,...,ay be the columns of A and let E be subspace
spanned by them. dim(E) < d obviously.

Wilog uy, upy ..., ux € E. Why?
If uy, upy ..., ug fixed then vi, vo, ..., v are determined. Why?
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Low-rank approximation via subspace
embeddings
Column view of SVD: uy, up, . .., ux are k orthogonal unit

vectors from R” that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let ay, a2,...,ay be the columns of A and let E be subspace
spanned by them. dim(E) < d obviously.

Wilog uy, upy ..., ux € E. Why?
If uy, upy ..., ug fixed then vi, vo, ..., v are determined. Why?
Let I be an e-approximate subspace preserving embedding for E

Claim: [|(MA) — (NA)llr < (1+ €)l|A — Allr
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Analysis

Claim: [|(NA) — (MA)lr < (1 + )| A — Acllr
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Analysis
Claim: [|(MA) — (NA)«l[r < (1 + €)[|A— Aillr

Proof sketch: Let aj, ..., a], be columns of A and let
ujy...,u be Muy, ... MNug.
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Analysis
Claim: [|(MA) — (NA)«l[r < (1 + €)[|A— Aillr

Proof sketch: Let aj, ..., a], be columns of A and let
ujy...,u be Muy, ... MNug.

d K :
1A = Al = Xisillai — Zj=1 vi (1) ;i3
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Analysis
Claim: [|(MA) — (NA)«l[r < (1 + €)[|A— Aillr

Proof sketch: Let aj, ..., a], be columns of A and let
ujy...,u be Muy, ... MNug.

d K :
1A = Al = Xisillai — Zj=1 vi (1) ;i3

From subspace embedding property of I1,
k . K .
IM(a;i — > vi(Du)lle < (X +€e)llai — X2, vi(Dyjll2

Since uj, uj, ..., u, is a feasible solution for k-rank approximation
to MA.
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Analysis
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k . K .
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Since uj, uj, ..., u, is a feasible solution for k-rank approximation
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Claim: [|(NA) — (MA)[lF > (1 €)[|A — Acllr.
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Analysis
Claim: [|(MA) — (NA)«l[r < (1 + €)[|A— Aillr

Proof sketch: Let aj, ..., a], be columns of A and let
ujy...,u be Muy, ... MNug.

d K :
1A = Al = Xisillai — Zj=1 vi (1) ;i3

From subspace embedding property of I1,
k . K .
IM(a;i — > vi(Du)lle < (X +€e)llai — X2, vi(Dyjll2

Since uj, uj, ..., u, is a feasible solution for k-rank approximation
to MA.

Claim: ||(MA) — (NA)|[r > (1 — €)||A — Ag||¢. Prove it!
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Running Time

@ A has d columns in R” and MA has d columns in R¥ where

k = O(;i2 In(1/6)). Hence dimensionality reduction from n to
k and one can run SVD on MA.

@ A can be computed fast in time roughly proportional to
nnz(A) (number of non-zeroes of A).
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Part Il

Frequent Directions Algorithm
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Low-rank approximation

Faster low-rank approximation algorithms based on randomized
algorithm: sampling and subspace embeddings

@ Can we find a deterministic algorithm?

@ Streaming algorithm? A
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Low-rank approximation and SVD

Given matrix A € R™%? and (small) integer k

Row view of SVD: vy, vy, ..., vk are k orthogonal unit vectors
from R that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, @2, ..., a, be the rows of A (treated as vectors in ]Rd)

o7 =Y i(aivp)? and |A — Adll; = sk 0f
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Low-rank approximation and SVD

Given matrix A € R™%? and (small) integer k

Row view of SVD: vy, vy, ..., vk are k orthogonal unit vectors

from R that maximize the sum of squares of the projections of the

rows A onto the space spanned
Let ay, a, - - ., a, be the rows of A (treated as vectors in RY)

of =3 (ai,vi)? and [|A — Allf = Yjsi 07

Consider matrix Dy VkT whose rows are o1Vvy, 02V, .« .y O V.

k
”DkaT”%-' = Zj:] a’f = ||Ak||%:
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Frequent Directions Algorithm
[Liberty] and analyzed for relative error guarantee by
[Ghashami-Phillips]

Liberty inspired by Misra-Greis frequent items algorithm.

Rows of A come one by one

Algorithm maintains a matrix @ € R®*9 wherelﬂ = k(1+ l/e).J
Hence memory is O(kd/¢€) ,\

At end of algorithm let Qx be best rank k-approximation for Q.
Then [|A — Projg, (A)llr < (1 + €)[|A — AxllFr.

Thus a (1 + €)-approximate k-dimensional subspace for rows of A
be identified by storing O(k/€) rows.
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FD Algorithm

Frequent-Directions
Initialize Q° as an all zeroes £ X d matrix
For each row a; € A do
Set Q4 < Q'~! with last row replaced by a;
Compute SVD of Q4 as UDVT
C' = DVT (for analysis)
d; = 02 (for analysis)

D'. = diag(\/af — &, \/0'3 — Biyenns ,/af_l — 4;,0)

Q =DVT —
EndFor
Return Q = Q"

If £ = [k(1+ 1/€)] and QX is the rank k approximation to output
Q then

|A — Projq (A)llr < (1 + €)||A — AxllF
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Running time

@ One pass algorithm but requires second pass to compute actual
singular values etc

@ Space O(kd/¢€)
@ Run time: n computations of SVD on k/€ X d matrix. Can be
improved (see home work problem).

Interesting even when k = 1. Alternative to power method to find
top singular value/vector. Deterministic.
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Part Il

Compressed Sensing
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Sparse recovery

Recall:

Vector x € R" and integer k

x updated in streaming setting one coordinate at a time (can be

positive or negative changes)

Want to find best k-sparse vector X that approximates x.

miny y0<k|ly — x||2. Optimum solution is clear: take y to be

the largest k coordinates of x in absolute value.

Using Count-Sketch: O(G%polylog(n)) space one can find

k-sparse z such that ||z — x||2 < (1 4+ €)||y* — x||2 with high
o —_

probability.

Count-Sketch can be seen as Mx for some M € R™*" where

m = O(fzpolylog(n)).
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Compressed Sensing

Compressed sensing: we want to create projection matrix I'l such
that o‘@ e can create from lNx a good k-sparse approximation

to x —_— N -

Doable! With I that has O(k log(n/k)) rows. Creating I requires
randomization but once found it can be used. Called RIP matrices.
First due to Candes, Romberg, Tao and Donoho. Lot of work in
signal processing and algorithms.

WA S kLﬂ?Vl /J X[Z’
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Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matri T )c_R™*" with

m = O(klog(n/k)) and anlztime algorithm fsuch that for any
x € R", the algorithm given Mx outputs a k-sparse vector X such
that ||X — x||2 < O(%)tha,'/(k)“]. In particular it recovers x
exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices
(restricted isometry property)

)| &Il 2 OGZ Jlxgd

Closely connected to JL matrices
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Understanding RIP matrices

Suppose x, x’ are two distinct k-sparse vectors in R"
== —

—

Basic requirement: TMx # MNx’ otherwise cannot recover exactly

Let S, S’ C [n] be the indices in the support of x, x” respectively.
Mx is in the span of columns of Mg and Mx’ is in the span of

R

columns of Mg/ —

Thus we need columns of Mgyss to be linearly independent for any
S,S" with S # S’ and |S| < k and |S’| < k. Any 2k columns of
M should be linearly independent.

g S

(B30 e
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Chandra (UIUC) CS498ABD 22 Fall 2020 22 /28




Understanding RIP matrices

Suppose x, x’ are two distinct k-sparse vectors in R"”

Basic requirement: TMx # MNx’ otherwise cannot recover exactly

Let S, S’ C [n] be the indices in the support of x, x” respectively.
Mx is in the span of columns of Mg and Mx’ is in the span of
columns of Mg/

Thus we need columns of Mgyss to be linearly independent for any
S,S" with S # S’ and |S| < k and |S’| < k. Any 2k columns of
N should be linearly independent.

Sufficient information theoretically. Computationally?
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Recovery

Suppose we have I such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have INx. How do we recover x?

Solve the following:

min||z|lp such that Mz = MNx

=
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Recovery

Suppose we have I such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have INx. How do we recover x?

Solve the following:

min||z|lp such that Mz = MNx

Guaranteed to recover x by uniqueness but NP-Hard!
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Recovery
Instead of solving T)-X'—' Tx '
x_ >

min||z|lp such that Mz = MNx

solve

—

> min||z||; such that Mz = MNx

which is a linear/convex programming problem and hence can be
solved in polynomial-time.

\f I satisfies additional properties then one can show that above
recovers X. >
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RIP Property

Definition

A m X n matrix N has the (€, k)-RIP property if for every k-sparse
x € R",

(1 = e)llxllz < IINx]lz < (1 + €)llx]l;

——— mm—
g—

Equivalent, whenever |S| < k we have ﬁ N
||n;ns—/k||2§€ ; ? & §

which is equivalent to saying that if oy and o are the largest and
smallest singular value of Mg then (1+¢€) —n‘
RY

e—

Every k columns of N are approximately orthonormal.
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Recovery theorem

Suppose I'IZS (€, 2k)-RIP with € i@and let X be optimum
solution to the following LP

min||z||; such that Mz = MNx ’
hen 1% — xlla < OC ) xaign - )

Called €, /¢, guarantee. Proof is somewhat similar to the one for
sparse recovery with Count-Sketch.

More efficient “combinatorial” algorithms that avoid solving LP.
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RIP matrices and subspace embeddings

Definition

A m X n matrix N has the (€, k)-RIP property if for every k-sparse
x € R",
(1 —e)llxll; < [IMx]l3 < (1 + €)lIx]l3

Fix S C [n] with |S| = k. S defines a subspace of k-sparse vectors.

—— m—
o—— —

Total o’dlfferent subspaces. Want to preserve the length of
vectors Il of these subspaces.

_ 2 e loc wadinse 4
Cg = ua %%Mmg
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Fix S C [n] with |S| = k. S defines a subspace of k-sparse vectors.

Total of (}) different subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if I is JL matrix
with m = O(d/€?) rows we have the property that for every

x € W: ||Nx||3 =~ (1 £ €)||x||2. Via a net argument where net
size is @9(k).

If we want to preserve (Z) different subspaces need to preserve nets
of all subspaces

pion bound we get m = O(Z log(e®® (7))) which is

/ZM-M[‘ - Ké%
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Fix S C [n] with |S| = k. S defines a subspace of k-sparse vectors.
Total of (}) different subspaces. Want to preserve the length of
vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if I is JL matrix
with m = O(d/€?) rows we have the property that for every

x € W: ||Nx||3 =~ (1 £ €)||x||2. Via a net argument where net
size is @9(k).

If we want to preserve (Z) different subspaces need to preserve nets
of all subspaces

Hence via union bound we get m = O(Z log(e®®(}))) which is
O(f2 log n).

Other techniques give m = O(k?/€?).
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