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Some topics today

We have seen fast “approximation” algorithms for matrix
multiplication

random sampling

Using JL

Today:

Subspace embeddings for faster linear least squares and low-rank
approximation

Frequent directions algorithms for one/two pass approximate
SVD

Compressed Sensing
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Subspace Embedding

Question: Suppose we have linear subspace E of Rn of dimension
d . Can we find a projection ⇧ : Rd ! Rk such that for every
x 2 E , k⇧xk2 = (1 ± ✏)kxk2?

Not possible if k < d .

Possible if k = `. Pick ⇧ to be an orthonormal basis for E .
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn
of dimension d . Let ⇧ be a

DJL matrix ⇧ 2 Rk⇥d
with k = O(

d

✏2
log(1/�)) rows. Then with

probability (1� �) for every x 2 E ,

k
1
p

k
⇧xk2 = (1 ± ✏)kxk2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Part I

Faster algorithms via subspace

embeddings

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 28



¥
:

To FYI



Linear least squares/Regression

Linear least squares: Given A 2 Rn⇥d and b 2 Rd find x to
minimize kAx � bk2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A

so it is “obvious” geometrically. How do we find it?

Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection c as c =

P
r

j=1
hb, zjizj and output answer as kb � ck2.
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Linear least squares via Subspace

embeddings

Let a1, a2, . . . , ad be the columns of A and let E be the subspace
spanned by {a1, a2, . . . , ad , b}

E has dimension at most d + 1.

Use subspace embedding on E . Applying JL matrix ⇧ with
k = O(

d

✏2
) rows we reduce a1, a2, . . . , ad , b to a

0
1
, a0

2
, . . . , a0

d
, b0

which are vectors in Rk .

Solve minx02RdkA0
x
0 � b

0k2
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Low-rank approximation

Recall: Given A 2 Rn⇥d and integer k want to find best rank
matrix B to minimize kA� BkF

SVD gives optimum for all k . If A = UDV
T
=

P
d

i=1
�iuiv

T

i

then Ak =
P

k

i=1
�iuiv

T

i
is optimum for every k .

kA� Akk2F =
P

i>k
�2

i
.

v1, v2, . . . , vk are k orthogonal unit vectors from Rd and
maximize the sum of squares of the projection of the rows of A

onto the space spanned by them

u1, u2, . . . , uk are k orthogonal unit vectors from Rn that
maximize the sum of squares of the projections of the columns

of A onto the space spanned
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Low-rank approximation via subspace

embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E)  d obviously.

Wlog u1, u2, . . . , uk 2 E . Why?

If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?
Let ⇧ be an ✏-approximate subspace preserving embedding for E

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF
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Analysis

Claim: k(⇧A)� (⇧A)kkF  (1 + ✏)kA� AkkF

Proof sketch: Let a
0
1
, . . . , a0

d
be columns of ⇧A and let

u
0
1
, . . . , u0

k
be ⇧u1, . . . ,⇧uk .

kA� Akk2F =
P

d

i=1
kai �

P
k

j=1
vj(i)ujk22

From subspace embedding property of ⇧,
k⇧(ai �

P
k

j=1
vj(i)uj)k2  (1 + ✏)kai �

P
k

j=1
vj(i)ujk2

Since u
0
1
, u0

2
, . . . , u0

k
is a feasible solution for k-rank approximation

to ⇧A.

Claim: k(⇧A)� (⇧A)kkF � (1� ✏)kA� AkkF . Prove it!
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Running Time

A has d columns in Rn and ⇧A has d columns in Rk where
k = O(

d

✏2
ln(1/�)). Hence dimensionality reduction from n to

k and one can run SVD on ⇧A.

⇧A can be computed fast in time roughly proportional to
nnz(A) (number of non-zeroes of A).
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Part II

Frequent Directions Algorithm
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Low-rank approximation

Faster low-rank approximation algorithms based on randomized
algorithm: sampling and subspace embeddings

Can we find a deterministic algorithm?

Streaming algorithm?
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Low-rank approximation and SVD

Given matrix A 2 Rn⇥d and (small) integer k

Row view of SVD: v1, v2, . . . , vk are k orthogonal unit vectors
from Rd that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, a2, . . . , an be the rows of A (treated as vectors in Rd )

�2

j
=

P
n

i=1
hai , vji2 and kA� Akk2F =

P
j>k

�2

j

Consider matrix DkV
T

k
whose rows are �1v1,�2v2, . . . ,�kvk .

kDkV
T

k
k2

F
=

P
k

j=1
�2

j
= kAkk2F
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Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by
[Ghashami-Phillips]
Liberty inspired by Misra-Greis frequent items algorithm.

Rows of A come one by one

Algorithm maintains a matrix Q 2 R`⇥d where ` = k(1 + 1/✏).
Hence memory is O(kd/✏)

At end of algorithm let Qk be best rank k-approximation for Q.
Then kA� ProjQk

(A)kF  (1 + ✏)kA� AkkF .

Thus a (1 + ✏)-approximate k-dimensional subspace for rows of A

be identified by storing O(k/✏) rows.
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FD Algorithm

Frequent-Directions

Initialize Q0 as an all zeroes `⇥ d matrix
For each row ai 2 A do

Set Q+  Q i�1 with last row replaced by ai

Compute SVD of Q+ as UDV T

C i
= DV T (for analysis)

�i = �2

` (for analysis)

D0
= diag(

q
�2

1
� �i ,

q
�2

2
� �i , . . . ,

q
�2

`�1
� �i , 0)

Q i
= D0V T

EndFor
Return Q = Qn

If ` = dk(1 + 1/✏)e and Qk is the rank k approximation to output
Q then

kA� ProjQk
(A)kF  (1 + ✏)kA� AkkF
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Running time

One pass algorithm but requires second pass to compute actual
singular values etc

Space O(kd/✏)

Run time: n computations of SVD on k/✏⇥ d matrix. Can be
improved (see home work problem).

Interesting even when k = 1. Alternative to power method to find
top singular value/vector. Deterministic.
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Part III

Compressed Sensing
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Sparse recovery

Recall:

Vector x 2 Rn and integer k

x updated in streaming setting one coordinate at a time (can be
positive or negative changes)

Want to find best k-sparse vector x̃ that approximates x .
miny ,kyk0kky � xk2. Optimum solution is clear: take y to be
the largest k coordinates of x in absolute value.

Using Count-Sketch: O(
k

✏2
polylog(n)) space one can find

k-sparse z such that kz � xk2  (1 + ✏)ky⇤ � xk2 with high
probability.

Count-Sketch can be seen as ⇧x for some ⇧ 2 Rm⇥n where
m = O(

k

✏2
polylog(n)).
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Compressed Sensing

Compressed sensing: we want to create projection matrix ⇧ such
that for any x we can create from ⇧x a good k-sparse approximation
to x

Doable! With ⇧ that has O(k log(n/k)) rows. Creating ⇧ requires
randomization but once found it can be used. Called RIP matrices.
First due to Candes, Romberg, Tao and Donoho. Lot of work in
signal processing and algorithms.
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Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix ⇧ 2 Rm⇥n
with

m = O(k log(n/k)) and a polytime algorithm such that for any

x 2 Rn
, the algorithm given ⇧x outputs a k-sparse vector x̃ such

that kx̃ � xk2  O(
1p
k
)kxtail(k)k1. In particular it recovers x

exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices
(restricted isometry property)

Closely connected to JL matrices
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Understanding RIP matrices

Suppose x, x 0 are two distinct k-sparse vectors in Rn

Basic requirement: ⇧x 6= ⇧x
0 otherwise cannot recover exactly

Let S, S 0 ⇢ [n] be the indices in the support of x, x 0 respectively.
⇧x is in the span of columns of ⇧S and ⇧x

0 is in the span of
columns of ⇧S0

Thus we need columns of ⇧S[S0 to be linearly independent for any
S, S 0 with S 6= S

0 and |S|  k and |S 0|  k . Any 2k columns of
⇧ should be linearly independent.

Su�cient information theoretically. Computationally?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 28
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Recovery

Suppose we have ⇧ such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have ⇧x . How do we recover x?

Solve the following:

minkzk0 such that ⇧z = ⇧x

Guaranteed to recover x by uniqueness but NP-Hard!

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 28
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Recovery

Instead of solving

minkzk0 such that ⇧z = ⇧x

solve

minkzk1 such that ⇧z = ⇧x

which is a linear/convex programming problem and hence can be
solved in polynomial-time.

If ⇧ satisfies additional properties then one can show that above
recovers x .
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RIP Property

Definition

A m ⇥ n matrix ⇧ has the (✏, k)-RIP property if for every k-sparse
x 2 Rn,

(1� ✏)kxk2
2
 k⇧xk2

2
 (1 + ✏)kxk2

2

.

Equivalent, whenever |S|  k we have

k⇧T

S
⇧S � Ikk2  ✏

which is equivalent to saying that if �1 and �k are the largest and

smallest singular value of ⇧S then
�2

1

�2

k

 (1 + ✏)

Every k columns of ⇧ are approximately orthonormal.
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Recovery theorem

Suppose ⇧ is (✏, 2k)-RIP with ✏ <
p
2� 1 and let x̃ be optimum

solution to the following LP

minkzk1 such that ⇧z = ⇧x

Then kx̃ � xk2  O(
1p
k
)kxtail(k)k1.

Called `2/`1 guarantee. Proof is somewhat similar to the one for
sparse recovery with Count-Sketch.

More e�cient “combinatorial” algorithms that avoid solving LP.
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RIP matrices and subspace embeddings

Definition

A m ⇥ n matrix ⇧ has the (✏, k)-RIP property if for every k-sparse
x 2 Rn,

(1� ✏)kxk2
2
 k⇧xk2

2
 (1 + ✏)kxk2

2

.

Fix S ⇢ [n] with |S| = k . S defines a subspace of k-sparse vectors.

Total of
�
n

k

�
di↵erent subspaces. Want to preserve the length of

vectors in all of these subspaces.
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Fix S ⇢ [n] with |S| = k . S defines a subspace of k-sparse vectors.
Total of

�
n

k

�
di↵erent subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if ⇧ is JL matrix
with m = O(d/✏2) rows we have the property that for every
x 2 W : k⇧xk2

2
' (1 ± ✏)kxk2

2
. Via a net argument where net

size is e
O(k).

If we want to preserve
�
n

k

�
di↵erent subspaces need to preserve nets

of all subspaces

Hence via union bound we get m = O(
1

✏2
log(e

O(k)
�
n

k

�
)) which is

O(
k

✏2
log n).

Other techniques give m = O(k
2/✏2).
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