CS 498ABD: Algorithms for Big Data
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Singular Value Decomposition (SVD)

Let A be a m X n real-valued matrix

@ a; denotes vector corresponding to row i
@ m rows. think of each row as a data point in R”
@ Data applications: m > n

@ Other notation: A is a n X d matrix.

Chandra (UIUC) CS498ABD 2 Fall 2020

2/18



Singular Value Decomposition (SVD)

Let A be a m X n real-valued matrix

@ a; denotes vector corresponding to row i

@ m rows. think of each row as a data point in R”
@ Data applications: m > n

@ Other notation: Ais a n X d matrix.

SVD theorem: A can be written as UDV' T where
@ V is a n X n orthonormal matrix

@ D is a m X n diagonal matrix with < min{m, n} non-zeroes
called the singular values of A

@ U is a m X m orthonormal matrix
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SVD

Let d = min{m, n}.
@ uy, Uy, ..., Uy columns of U, left singular vectors of A
@ vy, Vo, ..., V, columns of V (rows of VT) right singular

vectors of A
@ 01 >0y > ...,> 04 are singular values where
d = min{m, n}. And o; = D;;

d
A= E O';U,'V,-T
i=1
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SVD

Let d = min{m, n}.
@ uy, Uy, ..., Uy columns of U, left singular vectors of A
@ vy, Vo, ..., V, columns of V (rows of VT) right singular

vectors of A
@ 01 >0y > ...,> 04 are singular values where
d = min{m, n}. And o; = D;;

d
A= Z O';U,'V,-T
i=1
We can in fact restrict attention to r the rank of A.

r
A= E a,-u,-v,.T
i=1
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SVD

Interpreting A as a linear operator A : R" — R™

@ Columns of V is an orthonormal basis and hence VT x for
x € R" expresses x in the V basis. Note that V7 x is a rigid
transformation (does not change length of x).

@ Let y = VTz. D is a diagonal matrix which only stretches y
along the coordinate axes. Also adjusts dimension to go from n
to m with right number of zeroes.

@ Let z = Dy. Then Uz is a rigid transformation that expresses
z in the basis corresponding to rows of U.

Thus any linear operator can be broken up into a sequence of three
simpler/basic type of transformations
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Low rank approximation property of SVD

Question: Given A € R™*" and integer k find a matrix B of rank
at most k such that ||A — B]|| is minimized
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Low rank approximation property of SVD

Question: Given A € R™*" and integer k find a matrix B of rank
at most k such that ||A — B]|| is minimized

Fact: For Frobenius norm optimum for all k is captured by SVD.
That is, A, = Zf.;l 0',-u,-v,.T is the best rank k approximation to A

1A= Adlr = _min_[[A— B
B:rank(B)<k
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Low rank approximation property of SVD

Question: Given A € R™*" and integer k find a matrix B of rank
at most k such that ||A — B]|| is minimized

Fact: For Frobenius norm optimum for all k is captured by SVD.
That is, A, = Zf.;l 0',-u,-v,.T is the best rank k approximation to A

1A= Adlr = _min_[[A— B
B:rank(B)<k

Why this magic? Frobenius norm and basic properties of vector
projections
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Geometric meaning

Consider kK = 1. What is the best rank 1 matrix B that minimizes
|A— Bllr

Since Bisrank 1, B = uv” where v € R" and u € R™
Wilog v is a unit vector
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Geometric meaning

Consider kK = 1. What is the best rank 1 matrix B that minimizes
|A— Bllr

Since Bisrank 1, B = uv” where v € R" and u € R™
Wilog v is a unit vector

m
IA— w7 =) [lai — u(i)v]?
i=1
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Geometric meaning

Consider kK = 1. What is the best rank 1 matrix B that minimizes
|A— Bllr

Since Bisrank 1, B = uv” where v € R" and u € R™
Wilog v is a unit vector

m
IA— w7 =) [lai — u(i)v]?
i=1

If we know v then best u to minimize above is determined. Why?
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Geometric meaning

Consider kK = 1. What is the best rank 1 matrix B that minimizes
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Since Bisrank 1, B = uv” where v € R" and u € R™
Wilog v is a unit vector

m
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Geometric meaning

Consider kK = 1. What is the best rank 1 matrix B that minimizes
|A— Bllr

Since Bisrank 1, B = uv” where v € R" and u € R™
Wilog v is a unit vector

m
IA— w7 =) [lai — u(i)v]?
i=1

If we know v then best u to minimize above is determined. Why?
For fixed v, u(i) = (a;, v)
llai — {(ai, v)v||2 is distance of a; from line described by v.
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Geometric meaning
What is the best rank 1 matrix B that minimizes ||A — B||r

It is to find unit vector/direction v to minimize
m
> llai — (ai, v)vl|?
i=1

which is same as finding unit vector v to maximize

Z(aiv V>2
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Geometric meaning

What is the best rank 1 matrix B that minimizes ||A — B||r

It is to find unit vector/direction v to minimize
m
> llai — (ai, v)vl|?
i=1

which is same as finding unit vector v to maximize

Z(aiv V>2

How to find best v? Not obvious: we will come to it a bit later
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Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes
|A— Bllr

Since B has rank 2 we can assume without loss of generality that

B =uwu vlT + va where vy, v, are orthogonal unit vectors (span a
space of dimension 2)
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Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes
|A— Bllr

Since B has rank 2 we can assume without loss of generality that
B =uwu vlT + va where vy, v, are orthogonal unit vectors (span a
space of dimension 2)

Minimizing ||A — B||2 is same as finding orthogonal vectors v, v,
to maximize

Z((ai, vi)? + (a;i, va)?)
i=1

in other words the best fit 2-dimensional space
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Greedy algorithm

@ Find v; as the best rank 1 approximation. That is
— m 2
Vi = argmax, |, |,=1 > iz1ais v)

m 2
@ For v, solve argmax, |, i1,=1 >oimifai, v)*©.

Alternatively: let a} = a; — (a;, vi)vi. Let
— m / 2
Vo = argmax, ,|,=1 Z;=1<a;> v)
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Greedy algorithm

@ Find v; as the best rank 1 approximation. That is
— m 2
Vi = argmax, |, |,=1 > iz1ais v)

m 2
@ For v, solve argmax, |, i1,=1 >oimifai, v)*©.

Alternatively: let a} = a; — (a;, vi)vi. Let
— m / 2
Vo = argmax, ,|,=1 Z;=1<a;> v)

Greedy algorithm works!
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Greedy algorithm correctness

Proof that Greedy works for k = 2.

Suppose wy, Wy are orthogonal unit vectors that form the best fit 2-d
space. Let H be the space spanned by wy, ws.

Suffices to prove that

m

Z((ai, vi)? + (ai, v2)?) > Z((ai, wa)? + (aj, wa)?)

i=1 i=1
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Greedy algorithm correctness

Proof that Greedy works for k = 2.

Suppose wy, Wy are orthogonal unit vectors that form the best fit 2-d
space. Let H be the space spanned by wy, ws.

Suffices to prove that

m

Z((ai, vi)? + (ai, v2)?) > Z((ai, wa)? + (aj, wa)?)

i=1 i=1

If vi C H then done because we can assume wlog that w3 = v; and
Vv, is at least as good as wy.
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Greedy algorithm correctness

Suppose vi € H. Let v{ be projection of vy onto H and
v;’ = v1 — v{ be the component of v; orthogonal to H.
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Greedy algorithm correctness

Suppose vi € H. Let v{ be projection of vy onto H and
v;’ = v1 — v{ be the component of v; orthogonal to H. Note that
Ivill2 + 11113 = lwll3 = 1.

1

Wlog we can assume by rotation that wy = Wvl’ and ws is
1

orthogonal to vj. Hence w; is orthogonal to v;.
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Greedy algorithm correctness

Suppose vi € H. Let v{ be projection of vy onto H and

v;’ = v1 — v{ be the component of v; orthogonal to H. Note that
Ivill2 + 11113 = lwll3 = 1.

Wlog we can assume by rotation that wy = ——v/ and ws is
_ llvill2 1
orthogonal to vj. Hence w; is orthogonal to v;.

Therefore v, is at least as good as wsp, and v, is at least as good as
wy which implies the desired claim.
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Greedy algorithm for general k

@ Find v; as the best rank 1 approximation. That is
— m o N2
Vi = arg max, |,|,=1 Yoiq(aiyv)
k 2 . .
©® For vk solve argmax, |, u, v 1 lvlo=1 Doi=1({@i> V)* Which is
same as solving k = 1 with vectors aj, a3, ..., a’ that are

: SV k—1
residuals. That is aj = a; — >, (@i, vj);

Proof of correctness is via induction and is a straight forward
generalization of the proof for k = 2
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Summarizing

m
of =) (ai )’

i=1

By greedy contruction oy > o3. ..,

Let r be the (row) rank of A. vq, va,..., Vv, span the row space of
Aand o =0forj > r

uy determined by vy and u, determined by vy, v» and so on. Can
show that they are orthogonal.

r
A= E O','U,'V,-T
i=1
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Power method

Thus SVD relies on being able to solve k = 1 case
Given m vectors ay, @z, ..., am € R" solve

max (a;, v)?
veR,||v||2=1

How do we solve the above problem?

Let B = AT A Then

m r

B = (Za‘;v;uiT)(Za',-u,-viT)
i=1 i=1
r

— 2, T
= E o ViV,

i=1
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Power method continued

Let B = AT A Then

r r
B? = (Zo‘?v;vir)(Za?v,-viT)
r

_ .
= E o;viv; .

i=1

More generally
r

B¥ = E a;‘v,-v,.T

i=1
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Power method continued

Let B = AT A Then

r r
B? = (Zo‘?v;vir)(Za?v,-viT)
r

_ .
= E o;viv; .

i=1

More generally
r

B¥ = E O'fv,-v,.T

i=1

If o1 > o then B¥ converges to o¥vqv]" and we can identify vy

from B¥. But expensive to compute B¥
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Power method continued

Pick a random (unit) vector x € R". Then x = Y 7 | A;v; since
Vi, V2, ..., V, is a basis for R".

r d
BkX = (Z G'{(V,'VI-T)(Z )\,'V,') — ofk)\lvl

Can obtain v; by normalizing B*¥x to a unit vector.
Computing B*x is easier via a series of matrix vector multiplications
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Power method continued

Pick a random (unit) vector x € R". Then x = Y 7 | A;v; since
Vi, V2, ..., V, is a basis for R".

r d
BkX = (Z G'{(V,'VI-T)(Z )\,'V,') — ofk)\lvl

Can obtain v; by normalizing B*¥x to a unit vector.
Computing B*x is easier via a series of matrix vector multiplications

Why random x?

What if o1 ~ 037 Power method still works. See references.

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 18



Linear least square/Regression and SVD

Linear least squares: Given A € R™*" and b € R™ find x to
minimize ||Ax — b||2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.
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minimize ||Ax — b||2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is

closest to vector b in £, norm.
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Linear least square/Regression and SVD

Linear least squares: Given A € R™*" and b € R™ find x to
minimize ||Ax — b||2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z1, z3, . . . , z, for the columns of A. Compute
projection b’ as b’ = >i_, (b, z;)z; and output answer as

b — b'|l2.
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Linear least square/Regression and SVD

Linear least squares: Given A € R™*" and b € R™ find x to
minimize ||Ax — b||2.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. Find an orthonormal basis

Z1, 22, .. . 4 Z, for the columns of A. Compute projection b’ as

b = Z;=1<b’ zj)z; and output answer as ||b — b||2.

Finding the basis is the expensive part. Recall SVD gives

Vi, Vo, ..., Vv, Which form a basis for the row space of A but then
u/,uy,...,ul form a basis for the column space of A. Hence SVD
gives us all the information to find b’. In fact we have

minllAx — bIE = 3 (u], b
i=r+1
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