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Matrix data

Lot of data can be viewed as defining a matrix. We have already seen
vectors modeling data/signals. More generally we can use tensors too.

n data items and each data item a; is a vector over some features
(say m features)

A is the matrix defined by the n data items.
Assuming ai, ..., a, are columns then A is a m X n matrix

Combinatorial objects such as graphs can also be modeled via graphs
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Numerical Linear Algebra

Basic problems in linear algebra:

@ Matrix vector product: compute Ax
@ Matrix multiplication: compute AB

@ Linear equations: solve Ax = b

@ Matrix inversion: compute A~!

@ Least squares: solve min,||Ax — b||
°

Singular value decomposition, eigen values, principal component
analysis, low-rank approximations

Fundamental in all areas of applied mathematics and engineering.
Many applications to statistics and data analysis.
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Numerical Linear Algebra

NLA has a vast literature

In practice iterative methods are used that converge to an optimum
solution. They can take advantage of sparsity in the input data
better than exact methods

Some TCS contributions in the recent past:

@ randomized NLA for faster algorithms with provable
approximation guarantees - sampling and JL based techniques
and others

@ revisit preconditioning methods for Laplacians and beyond

@ Many powerful applications in theory and practice
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Norms and matrix norms

Definition

A norm |||| in a real vector space V is a real valued function that has
three properties: (i) ||x|| > 0 for all x € V and ||x|| = 0 implies

x =0, (i) ||ax|| = |a|||x]| for all scalars a (iii)

x4+ yll < x|l + [lyll

Familiar vector norms: ||x||, = (3, |xi|P)Y/?

If A is a injective linear transformation ||Ax|| is also a norm in the
original space.

Norms and metrics: d(x,y) = ||x — y|| is a metric
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Matrix norms

Consider vector space of all matrices A € R™*"

What are useful norms over matrices?
@ Treat matrix like a vector of dimension m X n and apply vector
norm. For instance [|A||¢ (Frobenius norm) is (3_; ; |A; j|2)Y/2.

@ Treat matrix as linear operator and see what it does to norms of
vectors it operates on. Spectral norm is sup),=1[Ax]|2.

@ Schatten p-norms based on singular values of A
@ Trace norm, nuclear norm, ...

@ Norms are related in some cases (different perspective on the
same norm)
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Frobenus and Spectral norms

Some other properties:

IABllr < [|AllFlIBIlF

IABl2 < [|All2| Bll2
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Matrix Multiplication

Problem: Given matrices A € R™*" and B € R"*" compute the
matrix AB

@ Standard algorithm based on definition: O(mnh) time

@ Faster algorithms via non-trivial Strassen-like divide and conquer.
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Matrix Multiplication

Problem: Given matrices A € R™*" and B € R"*" compute the
matrix AB

@ Standard algorithm based on definition: O(mnh) time

@ Faster algorithms via non-trivial Strassen-like divide and conquer.

Approximation: Compute D € R™*" suych that |D — AB)|| is
small in some appropriate matrix norm.

Two methods
@ random sampling

@ random projections (fast JL)
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Matrix Multiplication

Problem: Given matrices A € R™*" and B € R"*" compute the
matrix AB

Notation: M) for j'th column of M and M;iy for i'th row of M
both interpreted as vectors

From textbook definition: D;; = (A, BUW)Y = >"V_, A; kB

Consider AT consisting of m column vectors from R” and B as h
column vectors from R”

We want to compute all mh inner products of these vectors.

Chandra (UIUC) CS498ABD 9 Fall 2020 9/33



Part |

Random Sampling for Approx
Matrix Mult
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Approximate Matrix Multiplication

Want to approximate AB in the Frobenius norm “additively”.
Want D such that |D — AB||r < €||AB]||¢ but instead will settle
for [[D — AB||r < €||All||Bl|F

Alternate definition of matrix multiplication based on outer product:

AB = Zn: AU B,

j=1

AU)BU) is a m X h matrix of rank 1
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Importance Sampling

AB = Z AY By

j=1

@ Pick a probability distribution over [n], p1 + p2+ ...+ pa =1

@ For £ =1 to t do pick an index j, € [n] according to
distribution p (independent with replacement)

@ Output C = %Zzzl éAU‘)BUZ)
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Importance Sampling

AB = Z AY By

j=1

@ Pick a probability distribution over [n], p1 + p2+ ...+ pa =1

@ For £ =1 to t do pick an index j, € [n] according to
distribution p (independent with replacement)

@ Output C = %Zzzl éAU‘)BUZ)

C = %Zz C; where E[C,] = AB.
By linearity of expectation: E[C] = AB
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Importance Sampling

Question: How should we choose p1, p2y ..., Pn?
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Importance Sampling

Question: How should we choose p1, p2, ..., pn? pj should
correspond to contribution of AW B;) to ||AB]|¢
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Importance Sampling

Question: How should we choose p1, p2, ..., pn? pj should
correspond to contribution of AW B;) to ||AB]|¢

Use spectral norm of AU)BU) which is ||AU)BU)||2
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Importance Sampling

Question: How should we choose p1, p2, ..., pn? pj should
correspond to contribution of AW B;) to ||AB]|¢

Use spectral norm of AU)BU) which is ||AU)BU)||2

Claim: [|ADB;) |2 = ||AD||2]| By 2.

14D 12| B 12

Choose P = = s
Pi = 5, 1a®15]1B) Iz

Due to [Drineas-Kannan-Mahoney|
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Running time

For all j compute ||AY)||, and || Bg;)||2. Takes one pass over A
and B

Allows one to compute p1, P2y .+« Pn
1t 1 A
0o C=1:D EAW)BUU

At most O(tmh + Na + Ng) time where N and Npg is
number of non-zeroes in A and B.

@ Full computation takes O(nmh) time.
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Analysis of approximation

We would ideally like to know Pr[||C — ABJ||r > €||AB||¢]. Hard
to understand ||AB||f. Instead analyse
Pr[||C — AB||r > €||All¢||Bl|f] since ||AB||r < ||All]| B¢
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Analysis of approximation

We would ideally like to know Pr[||C — ABJ||r > €||AB||¢]. Hard
to understand ||AB||f. Instead analyse

PrlIC — ABJ|r > €[|Allr||Bl|f] since [|AB||r < [|All£]|Bl|F.

Using Markov:

E[lIC — ABJ|Z]

Pr[||C — AB||r > €||A|l]|Blle] <
e2||AllZ||BIF

. 2
E[IC — ABJ2] < 1 (ZillAV|1IBg2) — LIABI2

Proof later.
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Analysis continued

E[lIC — ABJ|Z]
el AllEIBIIE

Pr[l|C — AB||r > €l|AllFl[BllF] <

2

n . 1
Elc—ABIZ) < - S 1AVILIBgI | — S IaBIE
j=1
< Lariee
= 7 F E*

Thus, if t = -L then

— €5

Pr[liC — ABJ|r > €[|All¢]|BllF] < o.
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Median trick

Recall that we used median trick to improve dependence on § from

1/6 to log(1/96).
If t = 63—2 then

Pr[||C — AB||r > €||A||lr||B]lF] < 1/3.

Repeat independently to obtain Cy, Gy, ..., C, where
r = ©(log(1/9))

By Chernoff bounds majority of estimators are good. How do we pick
the “median” matrix?
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Median trick

If t = 2 then
€

Pr[||C — AB||r > €||A|lr||B]|lF] < 1/3.

Repeat independently to obtain C;, Gy, ..., C, where
r = O(log(1/4))

For each 1 < i < r compute

pi =i lj#i1G— Gll < 2¢||All¢]|Bll}|

Output Cs such that ps > r/2

[Clarkson-Woodruff]
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Median trick

For each 1 < i < r compute
pi={JlJi#i,lG— Gl < 2€||Allr||Bllr}|
Output C; such that ps > r/2

Correctness follows from triangle inequality.

IGi — Gillr < |IG — AB|lr + [IG; — AB||¢

and
IC — Gillr = ||Gi — ABJ|r — ||C; — AB||F.
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Median trick

For each 1 < i < r compute
pi={ilJj#i,[IG— Gl < 2¢€||Allrl|BllF}|

Output C; such that ps > r/2

Correctness follows from triangle inequality.

IGi — Gillr < |IG — ABllr + |G — AB||¢

More than half of C;'s have ||C; — AB||r < €||A||e||B||e- If Csis
good then ps > r/2.
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Median trick
For each 1 < i < r compute

pi =i lj#iG— Gll < 2¢||All¢]|Bll}|

Output C; such that ps > r/2

Correctness follows from triangle inequality.

G = Gillr 2 |G — ABJ[r — |G — ABl|¢.

More than half of C;'s have |C; — AB||r < €||A||e||B||e. If Csis
bad (||Cs — AB||r > 3||Al|£[|B]|£) then
IICs — G|l > 2€||Al|¢||B]|r which means ps < r/2.
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Running time again

e For all j compute ||AU)||, and || Byj||2. Takes one pass over A
and B

@ Allows one to compute p1, P2y« Pn
1t 1 a(
o C =1 > o1 EAW)BUU
@ At most O(tmh + Nj + Npg) time where Ny and Ng is
number of non-zeroes in A and B.
@ Full computation takes O(nmh) time.

Either we choose t = 5 or we choose t = elz In(1/6) but then we
need to do pairwise matrix computations so effectively

t= e% log?(1/9).
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Proof of Lemma

i 2
E[IC — ABIE] < 2 (S7Ll1A0]21IBgll2)” — HIABIZ

— t j

Recall C is sum of t independent estimators so the lemma is
basically about t = 1.

E[IIC — ABIIZ] = 32, E[(Cey — (AB)xy)?]
Fix x,y. Let Z = Cy,,. We have E[Z] = (AB)y,,. Hence

Var[Z] = E[Z?] — (AB)’, = E[(Cxy — (AB)y,)’]
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Proof of Lemma

E[Z%] = X7 pi(AxiBiy)?/P} = 371 (AxjBiy)*/pj

Thus E[||C — AB||Z] =32, , >i_1(AxiBiy)?/pi — || AB||%

Simplifying the first term:
Y oxy it (Axi))2(Biy)/pi = 371 5 IAD |21 B; |17

i=1p;
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Proof of Lemma

E[Zz] = Zj’:l pJ(AXaJ Jay)z/p = Z::](Axa]Bj’_Y)z/pJ
Thus E“|C - ABH%} = Zx,y Z;=1(Axu J,y)z/PJ - ||AB||2

Simplifying the first term:
Yoy 21 (A (Biy)2/pi = 30 5 1AV 1211 By 17

|AD [ B; ll
> elIA®[[| Byl

N 2
Thus E[J|C — ABI12] = (ZjLI1AV11B) 1) — I ABIE.

Recall: p; =
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Proof of Lemma

E[Z%] = X7 pi(AxiBiy)?/P} = 371 (AxjBiy)*/pj
Thus E[||C — AB|13] = X2, , >i-1(AxiBiy)?/pi — |AB|%-

Simplifying the first term:
Yoy 21 (A (Biy)2/pi = 30 5 1AV 1211 By 17

|AD [ B; ll
> elIA®[[| Byl

N 2
Thus E[J|C — ABI12] = (ZjLI1AV11B) 1) — I ABIE.

J

Recall: p; =

One can show that the choice of p; values is optimum for reducing
variance in the simple importance sampling scheme.
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Sampling matrix view

AB = Z AY By

j=1

@ Pick a probability distribution over [n], p1 + p2+ ...+ pa =1

@ For £ =1 to t do pick an index j, € [n] according to
distribution p (independent with replacement)

@ Output C = %Zzzl éAU‘)BUZ)

C = (AST)(SB) where S € R™%t is a sampling matrix:

Sij= —L_ if column j is picked in i'th sample else Sij=0

= e
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Part 1l

Random Projection for Approx
Matrix Mult
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JL Approach for Approx Matrix
Multiplication

[Sarlos]

Output C = (AST)(SB) where S is a (fast) JL matrix. Works!

Advantage?
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JL Approach for Approx Matrix
Multiplication

[Sarlos]

Output C = (AST)(SB) where S is a (fast) JL matrix. Works!

Advantage? Oblivious to A, B. Can update them etc.
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Recalling JL

Lemma (Distributional JL Lemma)

Fix vector x € R and let M € R**9 matrix where each entry Nn;is
chosen independently according to standard normal distribution
N(0,1) distribution. If k = S'Z(el2 log(1/4d)), then with probability
(1 — &) we have ||%I'Ix||2 = (1 £ €)||x]|2.

Can choose entries from {—1,1} as well.

Let D be a distribution over m X n matrices. D is said to have
(€, 6) JL moment property if for any unit vector x € R",

En~p||INx||3 — 1] < €d.

Chandra (UIUC) CS498ABD 28 Fall 2020 28/ 33



JL Property

If 11 comes from (e, d) JL moment distribution then for all unit
vectors x, y € R", [(Mx, MNy) — (x,y)|*> < ce?§.
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Using JL

Theorem

Suppose N is chosen from a distribution D that satisfies (e, d) JL
moment property then

Pr [1AB — (ANT)(BM) | > 3el|All<[|B|F] < 6.
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Using JL

Theorem

Suppose N is chosen from a distribution D that satisfies (e, d) JL
moment property then

Pr [1AB — (ANT)(BM) | > 3el|All<[|B|F] < 6.

Let C = (ANT)(BN).

E[|AB — C||2]
Pr[||AB — C||Z > 3€||All¢]|B||%] < .
F F1 = (3ellAllF]| Bl F)?
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Analysis
Cij = (MA@, NBY) while (AB);; = (A, BY)

Notation: a; for Ag;y and b; for BY)
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Analysis
Cij = (MA@, NBY) while (AB);; = (A, BY)
Notation: a; for Ag;y and b; for BY)

IAB — C||2 = 3=, [(Na;, Nb;) — (a;, b;)|?
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Analysis

C,"j = <|-|A(,'), I'IBU)) while (AB);’J' = <A(,'), BU)>
Notation: a; for Ag;y and b; for BY)

|AB — C||} = >;; |[{Na;, Nb;) — (ai, bj)|?

Term by term: i i
|<naia nbj> (a,, J>|2 - al(” nm> - <||:||2$ ||bjj||2>|2

Ia.IIz

where av = ||a;]|3]| bj |3
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Analysis

C,"j = <|-|A(,'), I'IBU)) while (AB);J = <A(,'), BU)>
Notation: a; for Ag;y and b; for BY)

|AB — C||} = >;; |[{Na;, Nb;) — (ai, bj)|?

Term by term: i i
|(|'|a,-, nbj> (a,, J>|2 - al(” nm> - <||:||2$ ||bjj||2>|2

Ia.IIz

where av = ||a;]|3]| bj |3

Applying JL property and linearity of expectation

E[IIAB — CIIF] < (ce)*s ) _llaill3lIbill; < (ce?)ollAlIIBIE

iJ
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Analysis

E[IIAB — C||2]
Pr[||AB — C||z > 3¢||All¢||BI|Z] < .
F F1 = (3ellAllF]| Bl F)?

and

E[IIAB — CIIF] < (ce)*s ) _llaill3lIbill; < (ce?)ollAlIIBIZ

iJ

hence
Pr[|AB — C||7 > 3¢||All£l|BIIF] < 6.
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Running time

Roughly speaking: Il converts vectors of dimension n into vectors of
dimension d = O(El—2 log(1/6)).

Need to compute MAT and MB and then compute dot products.

mbh inner products of vectors of dimension d which is O(mhd?)
time in the worst case

Using Fast JL with very sparse 'l one can improve running time
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