CS 498ABD: Algorithms for Big Data

Graph Streaming and
Sketching

Lecture 24
Nov 10, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1/1

Part |

Matchings

Chandra (UIUC) CS498ABD 2 Fall 2020 2/1

Matchings

Definition
A matching M C E in a graph G = (V, E) is a set of edges that
do not intersect (share vertices).

Definition
A matching M C E in a graph G = (V, E) is a perfect matching if
all vertices are matched.

| A

o’

Chandra (UIUC) CS498ABD 3 Fall 2020 3 /1

Matchings

A matching M C E in a graph G = (V, E) is a set of edges that
do not intersect (share vertices).

Definition
A matching M C E in a graph G = (V, E) is a perfect matching if
all vertices are matched.

| A

o’

@ Given a graph G does it have a perfect matching?
@ Find a maximum cardinality matching.
@ Find a maximum weight matching.
@ Find a minimum cost perfect matching.
@ Count number of (perfect) matchings.
Matching theory: extensive, fundamental in theory and practice,

beautiful, - - -
Chandra (UIUC) CS498ABD 3 Fall 2020 3 /1

Algorithms

@ Given a graph G does it have a perfect matching?
@ Find a maximum cardinality matching.

@ Find a maximum weight matching.

@ Find a minimum cost perfect matching.

oCCount number of (perfect) matchings)

All of the above solvable in polynomial time.
@ Bipartite graphs: via flow techniques
@ Non-bipartite/general graphs: more advanced techniques

@ Classical topics in combinatorial optimization

Chandra (UIUC) CS498ABD 4 Fall 2020

4/1

Semi-streaming setting
Edges e, €3, . . ., €, come in some (adversarial) order

Questions:
@ With O(n) memory approximate maximum cardinality matching
@ With O(n) memory approximate maximum weight matching
@ Multiple passes
@ Estimate size of maximum cardinality matching
@ .-

Substantial literature on upper and lower bounds

Chandra (UIUC) CS498ABD 5 Fall 2020 5/1

Maximum cardinality

Definition
A matching M is maximal if for all e € E\ M, M + e is not a

matching. -

If M is maximal then |M| > |M*|/2 for any matching M*. Hence,
a maximal matching is a 1/2-approximation.

‘.———‘-—-"’__—’

+—v

Chandra (UIUC) CS498ABD 6 Fall 2020 6/1

Maximal matching in streams

Chandra (UIUC)

M=10
While (stream is not empty) do
e is next edge in stream
If (M + e) is a matching
M+~ M+e
EndWhile
Qutput M

CS498ABD 7

Fall 2020

7/1

Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that w(e;) > w(ex) > ... > w(en)
M=0
For (i =1 to m) do
If (M + e) is a matching
M — M + e
EndWhile
Qutput M

LI

\D
¢ © 7

“so

Chandra (UIUC) CS498ABD 8 Fall 2020

8/1

Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that w(e1) > w(e) > ... > w(en)
M=0
For (i =1 to m) do
If (M + e) is a matching
M — M + e
EndWhile
Qutput M

Claim: w(M) > w(M*)/2.

Chandra (UIUC) CS498ABD 8 Fall 2020

8/1

Maximum-weight matching

Offline algorithm: greedy after sorting.

Sort edges such that w(e1) > w(e) > ... > w(en)
M=0
For (i =1 to m) do
If (M + e) is a matching
M — M + e
EndWhile
Qutput M

Claim: w(M) > w(M*)/2.

Streaming setting? Cannot sort!

Chandra (UIUC) CS498ABD 8 Fall 2020

8/1

Maximum-weight matching

M=0
For (i=1 to m) do
C={efeM]|ene #0}
If (w(e;) > w(C)) then
M+~ M—C+ e
EndWhile
OQutput M

Chandra (UIUC) CS498ABD 9 Fall 2020 9/1

Maximum-weight matching

Can be arbitrarily bad compared to optimum weight.

Chandra (UIUC)

M =
For

EndWhile
Qutput M

CS498ABD 9

W [ec)
> ()
+ X

Fall 2020 9/1

Maximum-weight matching

M=0
For (i=1 to m) do
C={eeM]|ene #0}
If (w(ej) > (1 4+ v)w(C)) then
M~ M — + e
EndWhile
OQutput M

Y=ol
= |

—

Chandra (UIUC) CS498ABD 10 Fall 2020 10 /1

Maximum-weight matching

M=0
For (i=1 to m) do
C={eecM|ene #0}
If (w(ej) > (1 4+ v)w(C)) then
M+ M—C+ ¢
EndWhile
OQutput M

w(M) > f(y)w(M~). \

h—N o

Chandra (UIUC) CS498ABD 10 Fall 2020 10 /1

Analysis

Consider edge e € M at end of algorithm. Let T, set of edges in G
that were “killed” by e.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 /1

Analysis

Consider edge e € M at end of algorithm. Let T, set of edges in G
that were “killed” by e.

Claim: w(T.) < w(e)/~.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 /1

Analysis

Consider edge e € M at end of algorithm. Let T, set of edges in G
that were “killed” by e.

Claim: w(T.) < w(e)/~.
e = (killed C; which killed G, ... killed Cp
w(GC) > (1 4+ v)w(Cit1) for i > 0 and adding up

w(e) + w(Te) = (1 +v)w(Te)

Chandra (UIUC) CS498ABD 11 Fall 2020 11 /1

Analysis

Claim: w(M*) < (14 7) X cem(w(Te) + 2w(e)).

Chandra (UIUC) CS498ABD 12 Fall 2020 12/1

Analysis

Claim: w(M*) < (14 7) X cem(w(Te) + 2w(e)).

Fix any f € M*.
e If f € M at some point then f € T, for some e € M. or
f € M. Charge f to itself.
@ When f considered it was not added to M. Let C¢ conflicting
edges at that time. w(f) < (1 4+ v)w(Cy).
o If |Cr| = 1 charge f to single edge e € Cs.
e If |C¢| = 2 charge f in proportion to weights of edges in Cf.
o If f charges €’ and e’ gets killed by e/, transfer charge of f
from e’ to e”.

Chandra (UIUC) CS498ABD 12 Fall 2020 12 /1

Analysis

Claim: w(M*) < (14 7) X cem(w(Te) + 2w(e)).

Fix any f € M*.
e If f € M at some point then f € T, for some e € M. or
f € M. Charge f to itself.

@ When f considered it was not added to M. Let C¢ conflicting
edges at that time. w(f) < (1 4+ v)w(Cy).
o If |Cr| = 1 charge f to single edge e € Cs.
e If |C¢| = 2 charge f in proportion to weights of edges in Cf.
o If f charges €’ and e’ gets killed by e/, transfer charge of f
from e’ to e”.

@ If e € M can be charged twice hence total is 2(1 + v)w/(e)

Chandra (UIUC) CS498ABD 12 Fall 2020 12 /1

Analysis
Claim: w(M*) < (1 4+ %) ZeGM(W(Te) + 2w(e)).

Fix any f € M*.
e If f € M at some point then f € T, for some e € M. or
f € M. Charge f to itself.

@ When f considered it was not added to M. Let C¢ conflicting
edges at that time. w(f) < (1 4+ v)w(Cy).
o If |Cr| = 1 charge f to single edge e € Cy.
e If |C¢| = 2 charge f in proportion to weights of edges in Cf.
o If f charges €’ and e’ gets killed by e/, transfer charge of f
from e’ to e”.

@ If e € M can be charged twice hence total is 2(1 + v)w/(e)
o If e € T, then only one edge of M* leaves charge on e’. Why?

Chandra (UIUC) CS498ABD 12 Fall 2020 12/1

Analysis
Claim: w(T.) < w(e)/~.

Claim: w(M*) < (1+7) Yocp(w(Te) + 2w(e)).

Setting v = 1 we obtain w(M*) < 6w(M).

r— '———-— ”)
A WM

Chandra (UIUC) CS498ABD 13 Fall 2020

13/1

Analysis
Claim: w(T.) < w(e)/~.
Claim: w(M*) < (1 +7) Cecn(w(Te) + 2w(e)).

Setting v = 1 we obtain w(M*) < 6w(M).

A clever and simpl % — €)-gpproximation [Paz-Schwartzman'17]
Stores more than a Mg and then postprocesses.

Many other results on matchings in streaming: multipass, random
arrival order, lower bounds, ...

Chandra (UIUC) CS498ABD 13 Fall 2020 13 /1

Part Il

Cut Sparsifiers

Chandra (UIUC) CS498ABD 14 Fall 2020 14 /1

Graph Sparsification

G = (V, E) input graph and could be dense
@ n is reasonable to store

2

@ n“ may be unreasonable to store

@ edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V/, E) create a sparse graph
H = (V, F) such that H mimics G for some property of interest

Chandra (UIUC) CS498ABD 15 Fall 2020 15/1

Graph Sparsification

G = (V, E) input graph and could be dense
@ n is reasonable to store

2

@ n“ may be unreasonable to store

@ edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V/, E) create a sparse graph
H = (V, F) such that H mimics G for some property of interest

@ Connectivity

@ Distances (spanners and variants)
@ Cuts (cut sparsifiers)

° ..

Chandra (UIUC) CS498ABD 15 Fall 2020 15/1

Cut Sparsifier

Definition

Given an edge weighted graph G = (V/, E) with w : E — R, an
edge weighted graph H = (V, F) with w’ : F — R, is an
e-approximate cut sparsifier if for all S C V,

(1 — ew(ds(S)) < w'(9n(S)) < (1 + €)w(ds(S))-
W: E——?IZ

S <
(s,v-<)

Chandra (UIUC) CS498ABD 16 Fall 2020 16 /1

(-")

Cut Sparsifier

Definition

Given an edge weighted graph G = (V/, E) with w : E — R, an
edge weighted graph H = (V, F) with w’ : F — R, is an
e-approximate cut sparsifier if for all S C V,

(1 — ew(ds(S)) < w'(9n(S)) < (1 + €)w(ds(S))-

Very important concept and many powerful applications in graph
algorithms and beyond

Chandra (UIUC) CS498ABD 16 Fall 2020 16 /1

Cut Sparsifier

Definition

Given an edge weighted graph G = (V/, E) with w : E — R, an
edge weighted graph H = (V, F) with w’ : F — R, is an
e-approximate cut sparsifier if for all S C V,

L=8w(56(S)) < w'(0u(S5)) < (1 +)w(dc(S)).
S

Chandra (UIUC) CS498ABD 17 Fall 2020 17 /1

Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V, E) on m edges and n nodes and any
€ > 0, one can construct in randomized O(mlog> n) time a
cut-sparsifier with O(elzn log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V, E) on m edges and n nodes and any
€ > 0, one can construct in deterministic polynomial time a
cut-sparsifier with O(én) edges.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 /1

Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V, E) on m edges and n nodes and any
€ > 0, one can construct in randomized O(mlog> n) time a
cut-sparsifier with O(elzn log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V, E) on m edges and n nodes and any
€ > 0, one can construct in deterministic polynomial time a
cut-sparsifier with O(én) edges.

What is a cut-sparsifier of a complete graph K,,?

Chandra (UIUC) CS498ABD 18 Fall 2020 18 /1

Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V, E) on m edges and n nodes and any
€ > 0, one can construct in randomized O(mlog> n) time a
cut-sparsifier with O(elzn log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V, E) on m edges and n nodes and any
€ > 0, one can construct in deterministic polynomial time a
cut-sparsifier with O(én) edges.

What is a cut-sparsifier of a complete graph K,,? An expander graph!

Chandra (UIUC) CS498ABD 18 Fall 2020 18 /1

Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

—
S —

Can use cut-sparsifier algorithms as a black box.

Chandra (UIUC) CS498ABD 19 Fall 2020 19/1

Merge and Reduce

Observation (Merge): If H; = (V, F;) is a a-approximate
sparsifier for Gy = (V/, E1) and H, = (V, F,) is a a-approximate
cut-sparsifier for G, = (V, E3) then Hy U H, = (V,FL U F) is a
a-approximate cut-sparsifier for Gy U G, = (V, E; U E).

Chandra (UIUC) CS498ABD 20 Fall 2020 20/1

Merge and Reduce

Observation (Merge): If H; = (V, F;) is a a-approximate
sparsifier for Gy = (V/, E1) and H, = (V, F,) is a a-approximate
cut-sparsifier for G, = (V, E3) then Hy U H, = (V,FL U F) is a
a-approximate cut-sparsifier for Gy U G, = (V, E; U E).

Observation (Reduce): If H = (V, F) is a a-approximate

sparsifier for G = (V, E;) and H" = (V, F’) is a (3-approximate
cut-sparsifier for H then H’ is a (aﬁ)—approximate cut-sparsifier for

EEr @

Chandra (UIUC) CS498ABD Fall 2020 20 /1

Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.
Merge and Reduce via a binary tree approach over the m edges in

the stream. Seen this approach twice already: range queries in
CountMin sketch and quantile summaries.

Chandra (UIUC) CS498ABD 21 Fall 2020 21 /1

(1+¢') £ (ne)

— ?“.‘m-
boliv e)x elns) £
I
1 !
&P $ x £ £’=_§—
A = lan.
" W Ly
€7 [=)l

Cut sparsifiers in streaming

@ Split stream of m edges into k graphs of m/k edges each. Let
Gy, Gy, . .., Gk be the k graphs. Assume for simplicity that k
is a power of 2.

@ Imagine a binary tree with Gy, ..., Gk as leaves

@ Build a sparsifier bottom up. At each internal node merge the
sparisfiers and reduce with approximation «

Chandra (UIUC) CS498ABD 22 Fall 2020 22 /1

Cut sparsifiers in streaming

@ Split stream of m edges into k graphs of m/k edges each. Let
Gy, Gy, . .., Gk be the k graphs. Assume for simplicity that k
is a power of 2.

@ Imagine a binary tree with Gy, ..., Gk as leaves

@ Build a sparsifier bottom up. At each internal node merge the
sparisfiers and reduce with approximation «

Questions:
@ What is ¢ to ensure that final sparsifier is e-approximate?
@ How much space needed in streaming setting?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 /1

Cut sparsifiers in streaming

@ What is « to ensure that final sparsifier is e-approximate?

@ How much space needed in streaming setting?

Depth of tree is < log(m/n) < log n. Due to reduce operations
final approximation is (1 + a)?. Hence (1 + a)? < (1 + €) implies
a ~ e/(ed) ~ €/(elog n)

Chandra (UIUC) CS498ABD 23 Fall 2020 23/1

Cut sparsifiers in streaming

@ What is « to ensure that final sparsifier is e-approximate?

@ How much space needed in streaming setting?

Depth of tree is < log(m/n) < log n. Due to reduce operations
final approximation is (1 + a)?. Hence (1 + a)? < (1 + €) implies
a ~ e/(ed) ~ €/(elog n)

Memory analysis: Sparsifier size with & = €/ log n is

O(nlog? n/€?) (if one uses BSS sparsifier, otherwise another log
factor for Benczur-Karger sparsifier).

Need another log n factor to store sparsfiers at log n levels for
streaming.

Chandra (UIUC) CS498ABD 23 Fall 2020 23/1

