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Part I

Matchings
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Matchings

Definition

A matching M ✓ E in a graph G = (V ,E) is a set of edges that
do not intersect (share vertices).

Definition

A matching M ✓ E in a graph G = (V ,E) is a perfect matching if
all vertices are matched.

Given a graph G does it have a perfect matching?
Find a maximum cardinality matching.
Find a maximum weight matching.
Find a minimum cost perfect matching.
Count number of (perfect) matchings.

Matching theory: extensive, fundamental in theory and practice,
beautiful, · · ·
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Algorithms

Given a graph G does it have a perfect matching?

Find a maximum cardinality matching.

Find a maximum weight matching.

Find a minimum cost perfect matching.

Count number of (perfect) matchings.

All of the above solvable in polynomial time.

Bipartite graphs: via flow techniques

Non-bipartite/general graphs: more advanced techniques

Classical topics in combinatorial optimization
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Semi-streaming setting

Edges e1, e2, . . . , em come in some (adversarial) order

Questions:

With Õ(n) memory approximate maximum cardinality matching

With Õ(n) memory approximate maximum weight matching

Multiple passes

Estimate size of maximum cardinality matching

· · ·
Substantial literature on upper and lower bounds
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Maximum cardinality

Definition

A matching M is maximal if for all e 2 E \ M , M + e is not a
matching.

Lemma

If M is maximal then |M| � |M⇤|/2 for any matching M⇤
. Hence,

a maximal matching is a 1/2-approximation.
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Maximal matching in streams

M = ;
While (stream is not empty) do

e is next edge in stream

If (M + e) is a matching

M  M + e
EndWhile

Output M
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Maximum-weight matching

O✏ine algorithm: greedy after sorting.

Sort edges such that w(e1) � w(e2) � . . . � w(em)

M = ;
For (i = 1 to m) do

If (M + ei ) is a matching

M  M + ei

EndWhile

Output M

Claim: w(M) � w(M⇤
)/2.

Streaming setting? Cannot sort!
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Maximum-weight matching

M = ;
For (i = 1 to m) do

C = {e0 2 M | e0 \ ei 6= ;}
If (w(ei ) > w(C)) then

M  M � C + ei

EndWhile

Output M

Can be arbitrarily bad compared to optimum weight.
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Maximum-weight matching

M = ;
For (i = 1 to m) do

C = {e0 2 M | e0 \ ei 6= ;}
If (w(ei ) > (1 + �)w(C)) then

M  M � C + ei

EndWhile

Output M

Theorem

w(M) � f (�)w(M⇤
).
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Analysis

Consider edge e 2 M at end of algorithm. Let Te set of edges in G
that were “killed” by e.

Claim: w(Te)  w(e)/�.

e = C0 killed C1 which killed C2 . . . killed Ch

w(Ci) � (1 + �)w(Ci+1) for i � 0 and adding up

w(e) + w(Te) � (1 + �)w(Te)
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Analysis

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Fix any f 2 M⇤.

If f 2 M at some point then f 2 Te for some e 2 M . or
f 2 M . Charge f to itself.

When f considered it was not added to M . Let Cf conflicting
edges at that time. w(f )  (1 + �)w(Cf ).

If |Cf | = 1 charge f to single edge e 2 Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e0 and e0 gets killed by e00, transfer charge of f
from e0 to e00.

If e 2 M can be charged twice hence total is 2(1 + �)w(e)
If e0 2 Te then only one edge of M⇤ leaves charge on e0. Why?
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Analysis

Claim: w(Te)  w(e)/�.

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Setting � = 1 we obtain w(M⇤
)  6w(M).

A clever and simple (
1

2
� ✏)-approximation [Paz-Schwartzman’17]

Stores more than a matching and then postprocesses.

Many other results on matchings in streaming: multipass, random
arrival order, lower bounds, ...

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 1

I

-=
I

f- WCM
#I



Analysis

Claim: w(Te)  w(e)/�.

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Setting � = 1 we obtain w(M⇤
)  6w(M).

A clever and simple (
1

2
� ✏)-approximation [Paz-Schwartzman’17]

Stores more than a matching and then postprocesses.

Many other results on matchings in streaming: multipass, random
arrival order, lower bounds, ...

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 1

D



Part II

Cut Sparsifiers
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Graph Sparsification

G = (V ,E) input graph and could be dense

n is reasonable to store

n2 may be unreasonable to store

edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V ,E) create a sparse graph
H = (V , F ) such that H mimics G for some property of interest

Connectivity

Distances (spanners and variants)

Cuts (cut sparsifiers)

...
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Cut Sparsifier

Definition

Given an edge weighted graph G = (V ,E) with w : E ! R+ an
edge weighted graph H = (V , F ) with w 0

: F ! R+ is an
✏-approximate cut sparsifier if for all S ⇢ V ,
(1� ✏)w(�G(S))  w 0

(�H(S))  (1 + ✏)w(�G(S)).

Very important concept and many powerful applications in graph
algorithms and beyond
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Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in randomized O(m log
3 n) time a

cut-sparsifier with O(
1

✏2
n log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in deterministic polynomial time a

cut-sparsifier with O(
1

✏2
n) edges.

What is a cut-sparsifier of a complete graph Kn? An expander graph!
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Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.
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Merge and Reduce

Observation (Merge): If H1 = (V , F1) is a ↵-approximate
sparsifier for G1 = (V ,E1) and H2 = (V , F2) is a ↵-approximate
cut-sparsifier for G2 = (V ,E2) then H1 [ H2 = (V , F1 [ F2) is a
↵-approximate cut-sparsifier for G1 [ G2 = (V ,E1 [ E2).

Observation (Reduce): If H = (V , F ) is a ↵-approximate
sparsifier for G = (V ,E1) and H 0

= (V , F 0
) is a �-approximate

cut-sparsifier for H then H 0 is a (↵�)-approximate cut-sparsifier for
G .
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Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.

Merge and Reduce via a binary tree approach over the m edges in
the stream. Seen this approach twice already: range queries in
CountMin sketch and quantile summaries.
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Cut sparsifiers in streaming

Split stream of m edges into k graphs of m/k edges each. Let
G1,G2, . . . ,Gk be the k graphs. Assume for simplicity that k
is a power of 2.

Imagine a binary tree with G1, . . . ,Gk as leaves

Build a sparsifier bottom up. At each internal node merge the
sparisfiers and reduce with approximation ↵

Questions:

What is ↵ to ensure that final sparsifier is ✏-approximate?

How much space needed in streaming setting?
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Cut sparsifiers in streaming

What is ↵ to ensure that final sparsifier is ✏-approximate?

How much space needed in streaming setting?

Depth of tree is  log(m/n)  log n. Due to reduce operations
final approximation is (1 + ↵)

d . Hence (1 + ↵)
d  (1 + ✏) implies

↵ ' ✏/(ed) ' ✏/(e log n)

Memory analysis: Sparsifier size with ↵ = ✏/ log n is
O(n log

2 n/✏2) (if one uses BSS sparsifier, otherwise another log
factor for Benczur-Karger sparsifier).
Need another log n factor to store sparsfiers at log n levels for
streaming.
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