
CS 498ABD: Algorithms for Big Data

Graph Streaming and

Sketching

Lecture 20
Nov 10, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 1

H

Part I

Matchings

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 1

Matchings

Definition

A matching M ✓ E in a graph G = (V ,E) is a set of edges that
do not intersect (share vertices).

Definition

A matching M ✓ E in a graph G = (V ,E) is a perfect matching if
all vertices are matched.

Given a graph G does it have a perfect matching?
Find a maximum cardinality matching.
Find a maximum weight matching.
Find a minimum cost perfect matching.
Count number of (perfect) matchings.

Matching theory: extensive, fundamental in theory and practice,
beautiful, · · ·

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 1

Matchings

Definition

A matching M ✓ E in a graph G = (V ,E) is a set of edges that
do not intersect (share vertices).

Definition

A matching M ✓ E in a graph G = (V ,E) is a perfect matching if
all vertices are matched.

Given a graph G does it have a perfect matching?
Find a maximum cardinality matching.
Find a maximum weight matching.
Find a minimum cost perfect matching.
Count number of (perfect) matchings.

Matching theory: extensive, fundamental in theory and practice,
beautiful, · · ·

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 1

Algorithms

Given a graph G does it have a perfect matching?

Find a maximum cardinality matching.

Find a maximum weight matching.

Find a minimum cost perfect matching.

Count number of (perfect) matchings.

All of the above solvable in polynomial time.

Bipartite graphs: via flow techniques

Non-bipartite/general graphs: more advanced techniques

Classical topics in combinatorial optimization

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 1

c-,

Semi-streaming setting

Edges e1, e2, . . . , em come in some (adversarial) order

Questions:

With Õ(n) memory approximate maximum cardinality matching

With Õ(n) memory approximate maximum weight matching

Multiple passes

Estimate size of maximum cardinality matching

· · ·
Substantial literature on upper and lower bounds

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 1

Maximum cardinality

Definition

A matching M is maximal if for all e 2 E \ M , M + e is not a
matching.

Lemma

If M is maximal then |M| � |M⇤|/2 for any matching M⇤
. Hence,

a maximal matching is a 1/2-approximation.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 1

-•-→•-

•= maximal .

•-
art

•-Ht

Maximal matching in streams

M = ;
While (stream is not empty) do

e is next edge in stream

If (M + e) is a matching

M M + e
EndWhile

Output M

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 1

Maximum-weight matching

O✏ine algorithm: greedy after sorting.

Sort edges such that w(e1) � w(e2) � . . . � w(em)

M = ;
For (i = 1 to m) do

If (M + ei) is a matching

M M + ei

EndWhile

Output M

Claim: w(M) � w(M⇤
)/2.

Streaming setting? Cannot sort!

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 1

•-atf .

go
'

T.ge#oo-oKooqt
8

Maximum-weight matching

O✏ine algorithm: greedy after sorting.

Sort edges such that w(e1) � w(e2) � . . . � w(em)

M = ;
For (i = 1 to m) do

If (M + ei) is a matching

M M + ei

EndWhile

Output M

Claim: w(M) � w(M⇤
)/2.

Streaming setting? Cannot sort!

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 1

Maximum-weight matching

O✏ine algorithm: greedy after sorting.

Sort edges such that w(e1) � w(e2) � . . . � w(em)

M = ;
For (i = 1 to m) do

If (M + ei) is a matching

M M + ei

EndWhile

Output M

Claim: w(M) � w(M⇤
)/2.

Streaming setting? Cannot sort!

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 1

NIL

100

÷oToTiHr

in-at¥

Z

O•n⇐÷ao→-=
T②=,
]

IEEE
weight of new edge should be

"hgcautI
more than weight of edges being keeled

out

Too Too

ioI⑤-

Maximum-weight matching

M = ;
For (i = 1 to m) do

C = {e0 2 M | e0 \ ei 6= ;}
If (w(ei) > w(C)) then

M M � C + ei

EndWhile

Output M

Can be arbitrarily bad compared to optimum weight.

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 1

Maximum-weight matching

M = ;
For (i = 1 to m) do

C = {e0 2 M | e0 \ ei 6= ;}
If (w(ei) > w(C)) then

M M � C + ei

EndWhile

Output M

Can be arbitrarily bad compared to optimum weight.

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 1

-
e w Ceo)

>wk)
+ Y
=

Maximum-weight matching

M = ;
For (i = 1 to m) do

C = {e0 2 M | e0 \ ei 6= ;}
If (w(ei) > (1 + �)w(C)) then

M M � C + ei

EndWhile

Output M

Theorem

w(M) � f (�)w(M⇤
).

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 1

-÷⇒e ''Ii

•
e.¥Ei_ . .

. ."÷Y
-

Maximum-weight matching

M = ;
For (i = 1 to m) do

C = {e0 2 M | e0 \ ei 6= ;}
If (w(ei) > (1 + �)w(C)) then

M M � C + ei

EndWhile

Output M

Theorem

w(M) � f (�)w(M⇤
).

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 1

= =

Analysis

Consider edge e 2 M at end of algorithm. Let Te set of edges in G
that were “killed” by e.

Claim: w(Te)  w(e)/�.

e = C0 killed C1 which killed C2 . . . killed Ch

w(Ci) � (1 + �)w(Ci+1) for i � 0 and adding up

w(e) + w(Te) � (1 + �)w(Te)

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 1

Analysis

Consider edge e 2 M at end of algorithm. Let Te set of edges in G
that were “killed” by e.

Claim: w(Te)  w(e)/�.

e = C0 killed C1 which killed C2 . . . killed Ch

w(Ci) � (1 + �)w(Ci+1) for i � 0 and adding up

w(e) + w(Te) � (1 + �)w(Te)

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 1

Analysis

Consider edge e 2 M at end of algorithm. Let Te set of edges in G
that were “killed” by e.

Claim: w(Te)  w(e)/�.

e = C0 killed C1 which killed C2 . . . killed Ch

w(Ci) � (1 + �)w(Ci+1) for i � 0 and adding up

w(e) + w(Te) � (1 + �)w(Te)

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 1

Analysis

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Fix any f 2 M⇤.

If f 2 M at some point then f 2 Te for some e 2 M . or
f 2 M . Charge f to itself.

When f considered it was not added to M . Let Cf conflicting
edges at that time. w(f)  (1 + �)w(Cf).

If |Cf | = 1 charge f to single edge e 2 Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e0 and e0 gets killed by e00, transfer charge of f
from e0 to e00.

If e 2 M can be charged twice hence total is 2(1 + �)w(e)
If e0 2 Te then only one edge of M⇤ leaves charge on e0. Why?

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 1

Analysis

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Fix any f 2 M⇤.

If f 2 M at some point then f 2 Te for some e 2 M . or
f 2 M . Charge f to itself.

When f considered it was not added to M . Let Cf conflicting
edges at that time. w(f)  (1 + �)w(Cf).

If |Cf | = 1 charge f to single edge e 2 Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e0 and e0 gets killed by e00, transfer charge of f
from e0 to e00.

If e 2 M can be charged twice hence total is 2(1 + �)w(e)
If e0 2 Te then only one edge of M⇤ leaves charge on e0. Why?

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 1

Analysis

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Fix any f 2 M⇤.

If f 2 M at some point then f 2 Te for some e 2 M . or
f 2 M . Charge f to itself.

When f considered it was not added to M . Let Cf conflicting
edges at that time. w(f)  (1 + �)w(Cf).

If |Cf | = 1 charge f to single edge e 2 Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e0 and e0 gets killed by e00, transfer charge of f
from e0 to e00.

If e 2 M can be charged twice hence total is 2(1 + �)w(e)

If e0 2 Te then only one edge of M⇤ leaves charge on e0. Why?

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 1

Analysis

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Fix any f 2 M⇤.

If f 2 M at some point then f 2 Te for some e 2 M . or
f 2 M . Charge f to itself.

When f considered it was not added to M . Let Cf conflicting
edges at that time. w(f)  (1 + �)w(Cf).

If |Cf | = 1 charge f to single edge e 2 Cf .
If |Cf | = 2 charge f in proportion to weights of edges in Cf .
If f charges e0 and e0 gets killed by e00, transfer charge of f
from e0 to e00.

If e 2 M can be charged twice hence total is 2(1 + �)w(e)
If e0 2 Te then only one edge of M⇤ leaves charge on e0. Why?

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 1

Analysis

Claim: w(Te)  w(e)/�.

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Setting � = 1 we obtain w(M⇤
)  6w(M).

A clever and simple (
1

2
� ✏)-approximation [Paz-Schwartzman’17]

Stores more than a matching and then postprocesses.

Many other results on matchings in streaming: multipass, random
arrival order, lower bounds, ...

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 1

I

-=
I

f- WCM
#I

Analysis

Claim: w(Te)  w(e)/�.

Claim: w(M⇤
)  (1 + �)

P
e2M

(w(Te) + 2w(e)).

Setting � = 1 we obtain w(M⇤
)  6w(M).

A clever and simple (
1

2
� ✏)-approximation [Paz-Schwartzman’17]

Stores more than a matching and then postprocesses.

Many other results on matchings in streaming: multipass, random
arrival order, lower bounds, ...

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 1

D

Part II

Cut Sparsifiers

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 1

Graph Sparsification

G = (V ,E) input graph and could be dense

n is reasonable to store

n2 may be unreasonable to store

edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V ,E) create a sparse graph
H = (V , F) such that H mimics G for some property of interest

Connectivity

Distances (spanners and variants)

Cuts (cut sparsifiers)

...

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 1

Graph Sparsification

G = (V ,E) input graph and could be dense

n is reasonable to store

n2 may be unreasonable to store

edges are some times implicit and may be generated on the fly

Sparsification: Given G = (V ,E) create a sparse graph
H = (V , F) such that H mimics G for some property of interest

Connectivity

Distances (spanners and variants)

Cuts (cut sparsifiers)

...

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 1

Cut Sparsifier

Definition

Given an edge weighted graph G = (V ,E) with w : E ! R+ an
edge weighted graph H = (V , F) with w 0

: F ! R+ is an
✏-approximate cut sparsifier if for all S ⇢ V ,
(1� ✏)w(�G(S))  w 0

(�H(S))  (1 + ✏)w(�G(S)).

Very important concept and many powerful applications in graph
algorithms and beyond

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 1

Cut Sparsifier

Definition

Given an edge weighted graph G = (V ,E) with w : E ! R+ an
edge weighted graph H = (V , F) with w 0

: F ! R+ is an
✏-approximate cut sparsifier if for all S ⇢ V ,
(1� ✏)w(�G(S))  w 0

(�H(S))  (1 + ✏)w(�G(S)).

Very important concept and many powerful applications in graph
algorithms and beyond

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 1

Cut Sparsifier

Definition

Given an edge weighted graph G = (V ,E) with w : E ! R+ an
edge weighted graph H = (V , F) with w 0

: F ! R+ is an
✏-approximate cut sparsifier if for all S ⇢ V ,
(1� ✏)w(�G(S))  w 0

(�H(S))  (1 + ✏)w(�G(S)).

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 1

←

⇐

Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in randomized O(m log
3 n) time a

cut-sparsifier with O(
1

✏2
n log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in deterministic polynomial time a

cut-sparsifier with O(
1

✏2
n) edges.

What is a cut-sparsifier of a complete graph Kn? An expander graph!

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 1

Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in randomized O(m log
3 n) time a

cut-sparsifier with O(
1

✏2
n log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in deterministic polynomial time a

cut-sparsifier with O(
1

✏2
n) edges.

What is a cut-sparsifier of a complete graph Kn?

An expander graph!

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 1

no

.ie#.:in:.=

Fundamental results

Theorem (Benczur-Karger’00)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in randomized O(m log
3 n) time a

cut-sparsifier with O(
1

✏2
n log n) edges.

Theorem (Batson-Spielman-Srivastava’08)

Given a graph G = (V ,E) on m edges and n nodes and any

✏ > 0, one can construct in deterministic polynomial time a

cut-sparsifier with O(
1

✏2
n) edges.

What is a cut-sparsifier of a complete graph Kn? An expander graph!

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 1

Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 1

=

Merge and Reduce

Observation (Merge): If H1 = (V , F1) is a ↵-approximate
sparsifier for G1 = (V ,E1) and H2 = (V , F2) is a ↵-approximate
cut-sparsifier for G2 = (V ,E2) then H1 [H2 = (V , F1 [F2) is a
↵-approximate cut-sparsifier for G1 [G2 = (V ,E1 [E2).

Observation (Reduce): If H = (V , F) is a ↵-approximate
sparsifier for G = (V ,E1) and H 0

= (V , F 0
) is a �-approximate

cut-sparsifier for H then H 0 is a (↵�)-approximate cut-sparsifier for
G .

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 1

is
Hi Hu

Merge and Reduce

Observation (Merge): If H1 = (V , F1) is a ↵-approximate
sparsifier for G1 = (V ,E1) and H2 = (V , F2) is a ↵-approximate
cut-sparsifier for G2 = (V ,E2) then H1 [H2 = (V , F1 [F2) is a
↵-approximate cut-sparsifier for G1 [G2 = (V ,E1 [E2).

Observation (Reduce): If H = (V , F) is a ↵-approximate
sparsifier for G = (V ,E1) and H 0

= (V , F 0
) is a �-approximate

cut-sparsifier for H then H 0 is a (↵�)-approximate cut-sparsifier for
G .

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 1

Cut sparsifiers in streaming

Question: Can we create a cut-sparsifier on the fly in roughly
O(npolylog(n)) space as edges come by?

Can use cut-sparsifier algorithms as a black box.

Merge and Reduce via a binary tree approach over the m edges in
the stream. Seen this approach twice already: range queries in
CountMin sketch and quantile summaries.

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 1

rn edges 9 , ez , . - , em

M E U2

A- E Freedom

Reduce(Megha , ,aD)/ \
⇐ it
4TH MM
e; {z

i - i
r

.
. . .

. -

rem
nee
-

I

d
(H E- CHEF

given .

Ebulk E
')- lnCd a Ed.
da s

'

= I . E-In
.

¥¥ xian

Cut sparsifiers in streaming

Split stream of m edges into k graphs of m/k edges each. Let
G1,G2, . . . ,Gk be the k graphs. Assume for simplicity that k
is a power of 2.

Imagine a binary tree with G1, . . . ,Gk as leaves

Build a sparsifier bottom up. At each internal node merge the
sparisfiers and reduce with approximation ↵

Questions:

What is ↵ to ensure that final sparsifier is ✏-approximate?

How much space needed in streaming setting?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 1

Cut sparsifiers in streaming

Split stream of m edges into k graphs of m/k edges each. Let
G1,G2, . . . ,Gk be the k graphs. Assume for simplicity that k
is a power of 2.

Imagine a binary tree with G1, . . . ,Gk as leaves

Build a sparsifier bottom up. At each internal node merge the
sparisfiers and reduce with approximation ↵

Questions:

What is ↵ to ensure that final sparsifier is ✏-approximate?

How much space needed in streaming setting?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 1

Cut sparsifiers in streaming

What is ↵ to ensure that final sparsifier is ✏-approximate?

How much space needed in streaming setting?

Depth of tree is  log(m/n)  log n. Due to reduce operations
final approximation is (1 + ↵)

d . Hence (1 + ↵)
d  (1 + ✏) implies

↵ ' ✏/(ed) ' ✏/(e log n)

Memory analysis: Sparsifier size with ↵ = ✏/ log n is
O(n log

2 n/✏2) (if one uses BSS sparsifier, otherwise another log
factor for Benczur-Karger sparsifier).
Need another log n factor to store sparsfiers at log n levels for
streaming.

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 1

Cut sparsifiers in streaming

What is ↵ to ensure that final sparsifier is ✏-approximate?

How much space needed in streaming setting?

Depth of tree is  log(m/n)  log n. Due to reduce operations
final approximation is (1 + ↵)

d . Hence (1 + ↵)
d  (1 + ✏) implies

↵ ' ✏/(ed) ' ✏/(e log n)

Memory analysis: Sparsifier size with ↵ = ✏/ log n is
O(n log

2 n/✏2) (if one uses BSS sparsifier, otherwise another log
factor for Benczur-Karger sparsifier).
Need another log n factor to store sparsfiers at log n levels for
streaming.

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 1

