
CS 498ABD: Algorithms for Big Data

Topics in Streaming

Lecture 18 and 19
October 27 and 29, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 44

Topics in Streaming

Fp estimation for p 2 (0, 2] via p-stable distributions and
pseudorandom generators

Priority Sampling

Precision Sampling and Applications to `2 sampling in streams

`0 Sampling

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 44

Part III

Sampling according to frequency

moments

Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 44

Sampling

Sampling problem: given x 2 Rn in (strict) turnstile setting, at the
end output random (I ,R) where I 2 [n] and R 2 R such that
Pr[I = i] ' |xi |pP

j |xj |p
and R = xi if I = i .

Sampling is generally a more challenging problem than estimation

Approximation: Pr[I = i] = (1 ± ✏) |xi |pP
j |xj |p

+ 1/poly(n) for some

small ✏ and R = (1 ± ✏)xi .

Can do `0, `2 and `p for 0 < p < 2 in polylog space using ideas
from sketching. Works in (strict) turnstile models.

Several important applications

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 44

-

-

Hit
'

X -- (o, o, - . -

,
O) Tix

1- Z

- 3

- 10

→ 100

"too , ⇒

h """"

Sampling

Sampling problem: given x 2 Rn in (strict) turnstile setting, at the
end output random (I ,R) where I 2 [n] and R 2 R such that
Pr[I = i] ' |xi |pP

j |xj |p
and R = xi if I = i .

Sampling is generally a more challenging problem than estimation

Approximation: Pr[I = i] = (1 ± ✏) |xi |pP
j |xj |p

+ 1/poly(n) for some

small ✏ and R = (1 ± ✏)xi .

Can do `0, `2 and `p for 0 < p < 2 in polylog space using ideas
from sketching. Works in (strict) turnstile models.

Several important applications

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 44

Sampling

Sampling problem: given x 2 Rn in (strict) turnstile setting, at the
end output random (I ,R) where I 2 [n] and R 2 R such that
Pr[I = i] ' |xi |pP

j |xj |p
and R = xi if I = i .

Sampling is generally a more challenging problem than estimation

Approximation: Pr[I = i] = (1 ± ✏) |xi |pP
j |xj |p

+ 1/poly(n) for some

small ✏ and R = (1 ± ✏)xi .

Can do `0, `2 and `p for 0 < p < 2 in polylog space using ideas
from sketching. Works in (strict) turnstile models.

Several important applications

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 44

Sampling

Sampling problem: given x 2 Rn in (strict) turnstile setting, at the
end output random (I ,R) where I 2 [n] and R 2 R such that
Pr[I = i] ' |xi |pP

j |xj |p
and R = xi if I = i .

Sampling is generally a more challenging problem than estimation

Approximation: Pr[I = i] = (1 ± ✏) |xi |pP
j |xj |p

+ 1/poly(n) for some

small ✏ and R = (1 ± ✏)xi .

Can do `0, `2 and `p for 0 < p < 2 in polylog space using ideas
from sketching. Works in (strict) turnstile models.

Several important applications

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 44

Part IV

`2 Sampling

Chandra (UIUC) CS498ABD 29 Fall 2020 29 / 44

X = (I , -3, 10 , 5, 0,3)
w . you

- -
Wm

(I , 9, 100,25, 0,9) .

✓11×115=50011+9+100 - -
-) .

i
wi

2 with 9- W .

11×115 911×11 .'

`2 Sampling

Based on precision sampling which has similarities to priority
sampling.

High-level Algorithm:
x = (x1, x2, . . . , xn) is the vector being updated
Can estimate kxk2 using F2 estimation. Assume kxk2 = 1 for
normalization purposes/simplicity
Consider y = (y1, y2, . . . , yn) where yi = xi/

p
ui where

u1, u2, . . . , un are independent random variables from [0, 1].
For some threshold t to be chosen, return (i , x2

i) if i is the
unique index such that y

2

i � t.

Questions:

How should we choose t? Why does it work?
How do we implement in streaming setting?
Chandra (UIUC) CS498ABD 30 Fall 2020 30 / 44

c-
xuI.Fwi@wia.s, I-

Choosing threshold

Let wi = x
2

i and hence we have w1,w2, . . . ,wn and
W =

P
i wi = kxk2

2
. Normalize such that W = 1

Recall priority sampling where we pick u1, . . . , un 2 [0, 1]
independently and store the largest k amongst wi/ui values. Here
we think of storing only largest. Also y

2

i = x
2

i /ui = wi/ui

Fix threshold t. What is probability that i is returned?

Pr
⇥
y
2

i � t
⇤Y

j 6=i

Pr

h
y
2

j < t

i
=

x
2

i

t

Y

j 6=i

(1 �
x
2

j

t
).

If t large then above is ' x2

i
t

Probability some item is output is ' 1

t . Hence repeat ⌦(t log(1/�))
times to ensure output with prob at least (1 � �).

Chandra (UIUC) CS498ABD 31 Fall 2020 31 / 44

-

I =

Choosing threshold

Let wi = x
2

i and hence we have w1,w2, . . . ,wn and
W =

P
i wi = kxk2

2
. Normalize such that W = 1

Recall priority sampling where we pick u1, . . . , un 2 [0, 1]
independently and store the largest k amongst wi/ui values. Here
we think of storing only largest. Also y

2

i = x
2

i /ui = wi/ui

Fix threshold t. What is probability that i is returned?

Pr
⇥
y
2

i � t
⇤Y

j 6=i

Pr

h
y
2

j < t

i
=

x
2

i

t

Y

j 6=i

(1 �
x
2

j

t
).

If t large then above is ' x2

i
t

Probability some item is output is ' 1

t . Hence repeat ⌦(t log(1/�))
times to ensure output with prob at least (1 � �).

Chandra (UIUC) CS498ABD 31 Fall 2020 31 / 44

d

÷:c. ?
""

O
"ow.uioexfcu.no ETI -- we

Tai 'll - I =
e'¥
✓

.

• e-
EI tallow .

-(W-Wii.)
e
F

-

X= C- , . . - -
)

y -- (stfu , .
- .)

Xie Xi

Yi t Yi + OiTui
→

Choosing threshold and identifying i

t should be large compared to
P

i x
2

i = kxk2

2
. Probability of output

is 1/t so need t attempts. Thus choose t = O(log n)kxk2

2
.

Need to store y
2

1
, y 2

2
, . . . , y 2

n? But we only need the two largest to
decide if largest is above threshold. Hence can use Count Sketch on
y to store only heavy hitters.

Issues:

Count Sketch gives heavy hitters with additive error that
depends on kyk2.

Threshold t is with respect to kxk2

2
.

How do we store independent u1, . . . , un to sketch y?

Chandra (UIUC) CS498ABD 32 Fall 2020 32 / 44

=

Choosing threshold and identifying i

t should be large compared to
P

i x
2

i = kxk2

2
. Probability of output

is 1/t so need t attempts. Thus choose t = O(log n)kxk2

2
.

Need to store y
2

1
, y 2

2
, . . . , y 2

n?

But we only need the two largest to
decide if largest is above threshold. Hence can use Count Sketch on
y to store only heavy hitters.

Issues:

Count Sketch gives heavy hitters with additive error that
depends on kyk2.

Threshold t is with respect to kxk2

2
.

How do we store independent u1, . . . , un to sketch y?

Chandra (UIUC) CS498ABD 32 Fall 2020 32 / 44

Choosing threshold and identifying i

t should be large compared to
P

i x
2

i = kxk2

2
. Probability of output

is 1/t so need t attempts. Thus choose t = O(log n)kxk2

2
.

Need to store y
2

1
, y 2

2
, . . . , y 2

n? But we only need the two largest to
decide if largest is above threshold. Hence can use Count Sketch on
y to store only heavy hitters.

Issues:

Count Sketch gives heavy hitters with additive error that
depends on kyk2.

Threshold t is with respect to kxk2

2
.

How do we store independent u1, . . . , un to sketch y?

Chandra (UIUC) CS498ABD 32 Fall 2020 32 / 44

=

Choosing threshold and identifying i

t should be large compared to
P

i x
2

i = kxk2

2
. Probability of output

is 1/t so need t attempts. Thus choose t = O(log n)kxk2

2
.

Need to store y
2

1
, y 2

2
, . . . , y 2

n? But we only need the two largest to
decide if largest is above threshold. Hence can use Count Sketch on
y to store only heavy hitters.

Issues:

Count Sketch gives heavy hitters with additive error that
depends on kyk2.

Threshold t is with respect to kxk2

2
.

How do we store independent u1, . . . , un to sketch y?

Chandra (UIUC) CS498ABD 32 Fall 2020 32 / 44

0

⇐
- !--

=

Resolving issues

Note that y
2

i � x
2

i for all i , hence kyk2

2
� kxk2

2
.

Lemma

With probability � (1 � �) we have kyk2

2
 1

�
c ln nkxk2

2
for some

fixed c .

Prove above as exercise. Thus kyk2 is not much larger than kxk2.

Recall Count Sketch for y gives estimate ỹi for each i such that
|ỹi � yi |2  ✏2kyk2

2
and space is O(

1

✏2
log n). Choose

✏ = ✏0/ log n and hence we have |ỹi � yi |2  ✏0

log nkxk
2

2

Above implies that ỹi is a close mutiplicative approximation of yi if
yi is su�ciently large compared to kxk2

2

Chandra (UIUC) CS498ABD 33 Fall 2020 33 / 44

=

y -- Cff , Er
.
,

-
- i En) .

Yo? xi÷ a Xc? nie Con) .

11911,711×112

Resolving issues

Note that y
2

i � x
2

i for all i , hence kyk2

2
� kxk2

2
.

Lemma

With probability � (1 � �) we have kyk2

2
 1

�
c ln nkxk2

2
for some

fixed c .

Prove above as exercise. Thus kyk2 is not much larger than kxk2.

Recall Count Sketch for y gives estimate ỹi for each i such that
|ỹi � yi |2  ✏2kyk2

2
and space is O(

1

✏2
log n). Choose

✏ = ✏0/ log n and hence we have |ỹi � yi |2  ✏0

log nkxk
2

2

Above implies that ỹi is a close mutiplicative approximation of yi if
yi is su�ciently large compared to kxk2

2

Chandra (UIUC) CS498ABD 33 Fall 2020 33 / 44

O
- '

-15i
- Yit 'II,i n yki e fEnplans .*"i

Resolving issues

Note that y
2

i � x
2

i for all i , hence kyk2

2
� kxk2

2
.

Lemma

With probability � (1 � �) we have kyk2

2
 1

�
c ln nkxk2

2
for some

fixed c .

Prove above as exercise. Thus kyk2 is not much larger than kxk2.

Recall Count Sketch for y gives estimate ỹi for each i such that
|ỹi � yi |2  ✏2kyk2

2
and space is O(

1

✏2
log n). Choose

✏ = ✏0/ log n and hence we have |ỹi � yi |2  ✏0

log nkxk
2

2

Above implies that ỹi is a close mutiplicative approximation of yi if
yi is su�ciently large compared to kxk2

2

Chandra (UIUC) CS498ABD 33 Fall 2020 33 / 44

Resolving issues

Recall threshold t = c log nkxk2

2
. Implies that

Su�cient to keep track of small number of heavy hitters in y

hence Count Sketch for y needs only poly(log n/✏2) space.

Can keep track of kxk2 and kyk2 to check if heavy hitters are
su�ciently large and hence estimates are accurate even if
additive error

Output i if ỹi
2 � t and is unique.

Since we use ỹi which is an estimate of yi , the probability of i being

output is proportional to
(1±✏)x2

i
kxk2

2

.

Chandra (UIUC) CS498ABD 34 Fall 2020 34 / 44

Resolving issues

Recall threshold t = c log nkxk2

2
. Implies that

Su�cient to keep track of small number of heavy hitters in y

hence Count Sketch for y needs only poly(log n/✏2) space.

Can keep track of kxk2 and kyk2 to check if heavy hitters are
su�ciently large and hence estimates are accurate even if
additive error

Output i if ỹi
2 � t and is unique.

Since we use ỹi which is an estimate of yi , the probability of i being

output is proportional to
(1±✏)x2

i
kxk2

2

.

Chandra (UIUC) CS498ABD 34 Fall 2020 34 / 44

Resolving issues

How do we sketch y without storing u1, . . . , un? Recall analysis
crucially relied on independence.

Use k-wise independence for su�ciently large k and redo
analysis

Use hammer of pseudorandom generators

Chandra (UIUC) CS498ABD 35 Fall 2020 35 / 44

Resolving issues

How do we sketch y without storing u1, . . . , un? Recall analysis
crucially relied on independence.

Use k-wise independence for su�ciently large k and redo
analysis

Use hammer of pseudorandom generators

Chandra (UIUC) CS498ABD 35 Fall 2020 35 / 44

Algorithm again

x is vector being updated. Keep track of kxk2

Use Count Sketch to sketch y where yi = xi/
p

ui with ui
drawn independently from [0, 1]. Use sketch to obtain estimates
ỹi for heavy hitters in y

Output i if ỹ
2

i is the unique heavy hitter that is above threshold
t where t = c log nkxk2

2
. If no such i then declare FAIL.

Repeat above in parallel O(log
2
n) times to guarantee high

probability of obtaining a good sample.

Space is for Count Sketch and to store generate ui values
pseudorandomly.

Algorithm uses poly(log n/✏)) space and with high probability
outputs i 2 [n] such that
Pr[i is output] = (1 ± ✏)x2

i /kxk2

2
+ 1/nc .

Chandra (UIUC) CS498ABD 36 Fall 2020 36 / 44

Algorithm again

x is vector being updated. Keep track of kxk2

Use Count Sketch to sketch y where yi = xi/
p

ui with ui
drawn independently from [0, 1]. Use sketch to obtain estimates
ỹi for heavy hitters in y

Output i if ỹ
2

i is the unique heavy hitter that is above threshold
t where t = c log nkxk2

2
. If no such i then declare FAIL.

Repeat above in parallel O(log
2
n) times to guarantee high

probability of obtaining a good sample.

Space is for Count Sketch and to store generate ui values
pseudorandomly.

Algorithm uses poly(log n/✏)) space and with high probability
outputs i 2 [n] such that
Pr[i is output] = (1 ± ✏)x2

i /kxk2

2
+ 1/nc .

Chandra (UIUC) CS498ABD 36 Fall 2020 36 / 44

Algorithm again

x is vector being updated. Keep track of kxk2

Use Count Sketch to sketch y where yi = xi/
p

ui with ui
drawn independently from [0, 1]. Use sketch to obtain estimates
ỹi for heavy hitters in y

Output i if ỹ
2

i is the unique heavy hitter that is above threshold
t where t = c log nkxk2

2
. If no such i then declare FAIL.

Repeat above in parallel O(log
2
n) times to guarantee high

probability of obtaining a good sample.

Space is for Count Sketch and to store generate ui values
pseudorandomly.

Algorithm uses poly(log n/✏)) space and with high probability
outputs i 2 [n] such that
Pr[i is output] = (1 ± ✏)x2

i /kxk2

2
+ 1/nc .

Chandra (UIUC) CS498ABD 36 Fall 2020 36 / 44

Application of `2 sampling to Fp estimation

For p > 2 AMS-Sampling gives algorithm to estimate Fp using
Õ(n

1�1/p
) space. Optimal space is Õ(n

1�2/p
).

Use `2 sampling algorithm to generate (i , |x̃i |)
Estimate kxk2

2

Output T = kx2k2|x̃i |p�2 as estimate

To simplify analysis/notation assume sampling is exact.

E[T] = kxk2

2

P
i

x2

i
kxk2

2

|xi |p�2
=

P
i |xi |p

Var [T]  kxk4

2

P
i

x2

i
kxk2

2

x
2(p�2)

i  kxk2

2

P
i x

2p�2

i 
n
1�2/p

(
P

i |xi |p)2.
Now do average plus median.

Chandra (UIUC) CS498ABD 37 Fall 2020 37 / 44

⇐← =€
can estimate Ep or lp & tn p

-
- o

and p t (0,23 in poly↳ space

H A- (n'IF) .-
→

Application of `2 sampling to Fp estimation

For p > 2 AMS-Sampling gives algorithm to estimate Fp using
Õ(n

1�1/p
) space. Optimal space is Õ(n

1�2/p
).

Use `2 sampling algorithm to generate (i , |x̃i |)
Estimate kxk2

2

Output T = kx2k2|x̃i |p�2 as estimate

To simplify analysis/notation assume sampling is exact.

E[T] = kxk2

2

P
i

x2

i
kxk2

2

|xi |p�2
=

P
i |xi |p

Var [T]  kxk4

2

P
i

x2

i
kxk2

2

x
2(p�2)

i  kxk2

2

P
i x

2p�2

i 
n
1�2/p

(
P

i |xi |p)2.
Now do average plus median.

Chandra (UIUC) CS498ABD 37 Fall 2020 37 / 44

×

-=÷¥÷
I I =

Application of `2 sampling to Fp estimation

For p > 2 AMS-Sampling gives algorithm to estimate Fp using
Õ(n

1�1/p
) space. Optimal space is Õ(n

1�2/p
).

Use `2 sampling algorithm to generate (i , |x̃i |)
Estimate kxk2

2

Output T = kx2k2|x̃i |p�2 as estimate

To simplify analysis/notation assume sampling is exact.

E[T] = kxk2

2

P
i

x2

i
kxk2

2

|xi |p�2
=

P
i |xi |p

Var [T]  kxk4

2

P
i

x2

i
kxk2

2

x
2(p�2)

i  kxk2

2

P
i x

2p�2

i 
n
1�2/p

(
P

i |xi |p)2.
Now do average plus median.

Chandra (UIUC) CS498ABD 37 Fall 2020 37 / 44

4%9. .

=
hi-it

Part V

`0 Sampling

Chandra (UIUC) CS498ABD 38 Fall 2020 38 / 44

`0 Sampling

Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate i among all
non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register
model

Goal: illustrate a simple algorithm via two powerful hammers

Chandra (UIUC) CS498ABD 39 Fall 2020 39 / 44

X -- (o, O, O, O)

(O , -1 , I , O)

(O, O, 2, O)

(I , O,
← I ,
- b)

(-11,0 , O , 34

`0 Sampling

Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate i among all
non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register
model

Goal: illustrate a simple algorithm via two powerful hammers

Chandra (UIUC) CS498ABD 39 Fall 2020 39 / 44

Sparse Recovery

Recall sparse recovery using Count Sketch.

Theorem

There is a linear sketch with size O(
k
✏2
polylog(n)) that returns z

such that kzk0  k and with high probability
kx � zk2  (1 + ✏)errk

2
(x).

errk
2
(x) = min

z :kzk0k
kx � zk2

Hence space is proportional to desired output. Assumption k is
typically quite small compared to n, the dimension of x .

Note that if x is k-sparse vector is exactly reconstructed
Chandra (UIUC) CS498ABD 40 Fall 2020 40 / 44

I

⇒

Random Sampling plus Sparse Recovery

x is updated in turnstile streaming fashion. Let J be the non-zero
indices of x

Suppose we knew |J| is small, say  s. Then can use sparse
recovering with Õ(s) space to completely recover x and can then
sample uniformly.

What if |J| is large?
Guess |J| to within factor of 2.

More formally, for j = 0 to log n let Ij be n/2j coordinates of
[n] sampled uniformly at random. Note I0 = [n].

Let y
j be vector obtained by restricting x to coordinates in Ij .

y
0
= x .

Chandra (UIUC) CS498ABD 41 Fall 2020 41 / 44

Ca (-1,0, 0,3, O)
= 5=11,43 .

+
spchylnlul

Random Sampling plus Sparse Recovery

x is updated in turnstile streaming fashion. Let J be the non-zero
indices of x

Suppose we knew |J| is small, say  s. Then can use sparse
recovering with Õ(s) space to completely recover x and can then
sample uniformly.

What if |J| is large?
Guess |J| to within factor of 2.

More formally, for j = 0 to log n let Ij be n/2j coordinates of
[n] sampled uniformly at random. Note I0 = [n].

Let y
j be vector obtained by restricting x to coordinates in Ij .

y
0
= x .

Chandra (UIUC) CS498ABD 41 Fall 2020 41 / 44

I E

=

X -- C Xi , Xz, - - ; Xs) ⑧Io=#

yo = (Xi , Xs, . . , Xg) Io -- Cn]

=
y
'
= (Xi , x. , Xu. Xo)

rand

.fi?y,Yz7hy~--(XzgXy)

y
'
= (Xs)

Random Sampling plus Sparse Recovery

Choose s = ⌦(log(1/�)).

For j = 0, 1, . . . , log n

Use s-sparse recovery on y
j .

If y
j is not s-sparse discard. Else pick a random non-zero

coordinate in y
j and output it. And stop.

Uses O(log n) s-sparse recovery data structures and hence space is
poly-logarithmic assuming � is ⌦(n

�c
) for some fixed constant c .

How can we implement random coordinates of x? Cannot store them.
So how can we run sparse recovery on y

j? Use Nisan’s generator!

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 44

- =
too

Random Sampling plus Sparse Recovery

Choose s = ⌦(log(1/�)).

For j = 0, 1, . . . , log n

Use s-sparse recovery on y
j .

If y
j is not s-sparse discard. Else pick a random non-zero

coordinate in y
j and output it. And stop.

Uses O(log n) s-sparse recovery data structures and hence space is
poly-logarithmic assuming � is ⌦(n

�c
) for some fixed constant c .

How can we implement random coordinates of x? Cannot store them.
So how can we run sparse recovery on y

j? Use Nisan’s generator!

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 44

Random Sampling plus Sparse Recovery

Choose s = ⌦(log(1/�)).

For j = 0, 1, . . . , log n

Use s-sparse recovery on y
j .

If y
j is not s-sparse discard. Else pick a random non-zero

coordinate in y
j and output it. And stop.

Uses O(log n) s-sparse recovery data structures and hence space is
poly-logarithmic assuming � is ⌦(n

�c
) for some fixed constant c .

How can we implement random coordinates of x? Cannot store them.
So how can we run sparse recovery on y

j?

Use Nisan’s generator!

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 44

Random Sampling plus Sparse Recovery

Choose s = ⌦(log(1/�)).

For j = 0, 1, . . . , log n

Use s-sparse recovery on y
j .

If y
j is not s-sparse discard. Else pick a random non-zero

coordinate in y
j and output it. And stop.

Uses O(log n) s-sparse recovery data structures and hence space is
poly-logarithmic assuming � is ⌦(n

�c
) for some fixed constant c .

How can we implement random coordinates of x? Cannot store them.
So how can we run sparse recovery on y

j? Use Nisan’s generator!

Chandra (UIUC) CS498ABD 42 Fall 2020 42 / 44

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose |J|  s then algorithm outputs a uniform non-zero
coordinate of x with high probability.

y
0
= x is s-sparse. Sparse recovery algorithm succeeds with high

probability.

Lemma

Assume |J| > s. There is an index k such that with probability
(1 � �), y

k is s-sparse and has at least one non-zero coordinate.

Expected number of coordinates of J in y
j is |J|/2j . Find j such

that expected number is between s/4 and s and use Cherno↵ bound.

Chandra (UIUC) CS498ABD 43 Fall 2020 43 / 44

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose |J|  s then algorithm outputs a uniform non-zero
coordinate of x with high probability.

y
0
= x is s-sparse. Sparse recovery algorithm succeeds with high

probability.

Lemma

Assume |J| > s. There is an index k such that with probability
(1 � �), y

k is s-sparse and has at least one non-zero coordinate.

Expected number of coordinates of J in y
j is |J|/2j . Find j such

that expected number is between s/4 and s and use Cherno↵ bound.

Chandra (UIUC) CS498ABD 43 Fall 2020 43 / 44

HT J= 100=0
,

K

-K

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose |J|  s then algorithm outputs a uniform non-zero
coordinate of x with high probability.

y
0
= x is s-sparse. Sparse recovery algorithm succeeds with high

probability.

Lemma

Assume |J| > s. There is an index k such that with probability
(1 � �), y

k is s-sparse and has at least one non-zero coordinate.

Expected number of coordinates of J in y
j is |J|/2j . Find j such

that expected number is between s/4 and s and use Cherno↵ bound.

Chandra (UIUC) CS498ABD 43 Fall 2020 43 / 44

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose |J|  s then algorithm outputs a uniform non-zero
coordinate of x with high probability.

y
0
= x is s-sparse. Sparse recovery algorithm succeeds with high

probability.

Lemma

Assume |J| > s. There is an index k such that with probability
(1 � �), y

k is s-sparse and has at least one non-zero coordinate.

Expected number of coordinates of J in y
j is |J|/2j . Find j such

that expected number is between s/4 and s and use Cherno↵ bound.

Chandra (UIUC) CS498ABD 43 Fall 2020 43 / 44

Analysis continued

Lemma

Assume |J| > s. There is an index k such that with probability
(1 � �), y

k is s-sparse and has at least one non-zero coordinate.

s-sparse recovery of y
k will reconstruct it exactly. y

k has random
sample of coordinates of x hence has random sample of non-zero
coordinates as well. Output random non-zero coordinate of y

k .

Algorithm fails only if every y
j fails sparse recovery and |J| > 0 but

we see that y
k+1 succeeds with probability at least (1 � �).

Chandra (UIUC) CS498ABD 44 Fall 2020 44 / 44

