CS 498ABD: Algorithms for Big Data

Topics in Streaming

Lecture 18 and 19
October 27 and 29, 2020
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Topics in Streaming

@ F, estimation for p € (0, 2] via p-stable distributions and
pseudorandom generators

@ Priority Sampling
@ Precision Sampling and Applications to £, sampling in streams
@ /o Sampling
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Part |lI

Sampling according to frequency
moments

Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 44



Sampling

Sampling problem: given x € R"” in{striet) turnstile setting, at the
end output random (/, R) where I € [n] and R € R such that

Pr[l_l]_z!xi and R=x; if | = i. )X;()
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Sampling

Sampling problem: given x € R" in (strict) turnstile setting, at the
end output random (/, R) where I € [n] and R € R such that

Pr[l_l]_z|xi and R=x; if | = i.

Sampling is generally a more challenging problem than estimation
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Sampling

Sampling problem: given x € R" in (strict) turnstile setting, at the
end output random (/, R) where I € [n] and R € R such that
|x;]P
Pr[l_l]_z| n and R = x; if I = i.
Sampling is generally a more challenging problem than estimation

Approximation: Pr[l = i] = (1 + €)Z|X|_L”|p
T

small e and R = (1 & €)x;.

+ 1/poly(n) for some
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Sampling

Sampling problem: given x € R" in (strict) turnstile setting, at the

end output random (/, R) where I € [n] and R € R such that

Pr[l_l]_z|xi and R=x; if | = i.

Sampling is generally a more challenging problem than estimation

Approximation: Pr[l = i] = (1 + €)Z|XI—LPI" + 1/poly(n) for some
j 17

small e and R = (1 & €)x;.

Can do £y, £; and £, for 0 < p < 2 in polylog space using ideas
from sketching. Works in (strict) turnstile models.

Several important applications

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 44



Part IV

£> Sampling
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£> Sampling

Based on precision sampling which has similarities to priority
sampling.

High-level Algorithm:
@ X = (X1.X0,....Xzn) is the vector being updated

@ Can estimate ||x||2 using F; estimation. Assume ||x|[ = 1 for
normalization purposes/simplicity

@ Consider y = (y1, Y2, . Yn) Where y; = x;/+/u; where
Uy, Up, ..., U, are independent random variables from [0, 1].
@ For some threshold t to be chosen, return g, x,2) if 1 is the

unique index such that y? > t. ﬁgw e o |-
uc Ye ™7
Questions:

@ How should we choose t? Why does it work?

@ How do we implement in streaming setting?
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Choosing threshold

Let Wi = x and hence we have wy, wh, ..., w, and
W= Z w; = ||x||3. Normalize such that W =1

=
Recall priority sampling where we pick uy, ..., u, € [0,1]
independently and store the largest k amongst w;/u; values. Here
we think of storing only largest. Also y? = x?/u; = w;/u;
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Choosing threshold

Let w; = x,.2 and hence we have wy, wh, ..., w, and
W = Y, w; = ||x||3. Normalize such that W =1

Recall priority sampling where we pick uy, ..., u, € [0,1]

independently and store the largest k amongst w;/u; values. Here

we think of storing only largest. Also y? = x?/u; = w;/u;
210

Fix threshold t. What is probability that i is returned?

ﬁo,e— Pry? > t] HPry <t ( {@
uc T = i#i
uc'bﬁx‘r

If t large then above is ~ N -F'
Probability some item is output is ~ = Hence repeat Q(t log(1/4))
times to ensure output with prob at Ieast (1 —9).
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Choosing threshold and identifying i

t should be large compared to >, x? = ||x||3. Probability of output
is 1/t so need t attempts. Thus choose t = O(log n)||x||2.
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Choosing threshold and identifying i

t should be large compared to >, x? = ||x||3. Probability of output
is 1/t so need t attempts. Thus choose t = O(log n)||x||2.

Need to store yZ,y2,...,y2?
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Choosing threshold and identifying i

t should be large compared to >, x? = ||x||3. Probability of output
is 1/t so need t attempts. Thus choose t = O(log n)||x||2.

Need to store y12, y22, ceey y,f? But we only need the two largest to
decide if largest is above threshold. Hence can use Count Sketch on

y to store only heavy hitters.
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Choosing threshold and identifying i

t should be large compared to >, x? = ||x||3. Probability of output
is 1/t so need t attempts. Thus choose t = O(log n)||x||2.

Need to store ylz,yzz, ce ,y,f? But we only need th to
oun

decide if largest is above threshold. Hence can use C etch on
y to store only heavy hitters.

Issues:
@ Count Sketch gives heavy hitters with additive error thaj
X.

depends on ||y||2. 1

@ Threshold t is with respect to ||x||3.
- =

@ How do we store independent uy, ..., u, to sketch y?
_— —_
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Resolving issues

Note that y? > x? for all i, hence ||y||2 > ||x]|2.

With probability > (1 — &) we have ||y||3 < %cln n||x||2 for some

fixed c. —————

Prove above as exercise. Thus ||y||2 is not much larger than ||x||2.

ff"— (ﬁ‘:’)%}} - E‘-’-’—)
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Resolving issues

Note that y? > x? for all i, hence ||y||2 > ||x]|2.

With probability > (1 — &) we have ||y||3 < %cln n||x||2 for some
fixed c.

Prove above as exercise. Thus ||y||2 is not much larger than ||x||2.

Recall Count Sketch for y gives estimator each i such that
|7 — vil> < €*]|y||? and space is O(% log n). Ch’?ose
- |2

= Iogn” ”2

[ -4l e 60" Nyl 2 E1 g sl
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Resolving issues

Note that y? > x? for all i, hence ||y||2 > ||x]|2.

With probability > (1 — &) we have ||y||3 < %cln n||x||2 for some
fixed c.

Prove above as exercise. Thus ||y||2 is not much larger than ||x||2.

Recall Count Sketch for y gives estimate y; for each i such that
|7 — vil*> < €|ly||3 and space is O(Z log n). Choose

e = €’/ log n and hence we have |y; — y;|? < @Hx”%

Above implies that y; is a close mutiplicative approximation of y; if
yi is sufficiently large compared to ||x||3
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Resolving issues

Recall threshold t = c log n||x||3. Implies that

e Sufficient to keep track of small number of heavy hitters in y
hence Count Sketch for y needs only poly(log n/e?) space.

@ Can keep track of ||x||2 and ||y]|2 to check if heavy hitters are
sufficiently large and hence estimates are accurate even if
additive error

@ Output i if ;> > t and is unique.
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Resolving issues

Recall threshold t = c log n||x||3. Implies that

e Sufficient to keep track of small number of heavy hitters in y
hence Count Sketch for y needs only poly(log n/e?) space.

@ Can keep track of ||x||2 and ||y]|2 to check if heavy hitters are
sufficiently large and hence estimates are accurate even if
additive error

@ Output i if ;> > t and is unique.

Since we use y; which is an estimate of y;, the probability of i being
(1te)x?
llx113

output is proportional to
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Resolving issues

How do we sketch y without storing uy, ..., u,? Recall analysis
crucially relied on independence.
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Resolving issues

How do we sketch y without storing uy, ..., u,? Recall analysis
crucially relied on independence.

@ Use k-wise independence for sufficiently large k and redo
analysis

@ Use hammer of pseudorandom generators
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Algorithm again

@ x is vector being updated. Keep track of ||x||2
@ Use Count Sketch to sketch y where y; = x;/+/u; with u;
drawn independently from [0, 1]. Use sketch to obtain estimates
y; for heavy hitters in y
e Output i if §? is the unique heavy hitter that is above threshold
t where t = clog nl|x||3. If no such i then declare FAIL.
Repeat above in parallel O(Iog2 n) times to guarantee high
probability of obtaining a good sample.
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Algorithm again

@ x is vector being updated. Keep track of ||x||2
@ Use Count Sketch to sketch y where y; = x;/+/u; with u;
drawn independently from [0, 1]. Use sketch to obtain estimates
y; for heavy hitters in y
e Output i if §? is the unique heavy hitter that is above threshold
t where t = clog nl|x||3. If no such i then declare FAIL.
Repeat above in parallel O(Iog2 n) times to guarantee high
probability of obtaining a good sample.

Space is for Count Sketch and to store generate u; values
pseudorandomly.
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Algorithm again

@ x is vector being updated. Keep track of ||x||2
@ Use Count Sketch to sketch y where y; = x;/+/u; with u;
drawn independently from [0, 1]. Use sketch to obtain estimates
y; for heavy hitters in y
e Output i if §? is the unique heavy hitter that is above threshold
t where t = clog nl|x||3. If no such i then declare FAIL.
Repeat above in parallel O(Iog2 n) times to guarantee high
probability of obtaining a good sample.

Space is for Count Sketch and to store generate u; values
pseudorandomly.

Algorithm uses poly(log n/€)) space and with high probability
outputs i € [n] such that
Pr[i is output] = (1 & €)x?/||x||2 + 1/n°.
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Application of ¢, sampling to F, estimation

For p > 2 AMS-Sampling gives algorithm to estimate F, using
(N)(nl_l/P)‘ipace. Optimal space i

(an 5{’&‘«»’1 [:;-o £ 46; é/‘ /;:0
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Application of ¢, sampling to F, estimation

For p > 2 AMS-Sampling gives algorithm to estimate F, using
O(n'~1/P) space. Optimal space is O(n'~%/P). X

P
— ) 1%/l
@ Use £, sampling algorithm to generate (l, Eq)) " p
= Z,xl:(

o Estimate [|x[1 il
@ Output T = ||X2|L2|.)?,-|"_2 as estimate

To simplify anTysis/notation assume sampling is exact.

E[T] = I-I*IT"’Z M&.IX,I” 2= =2 il

_’_——
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Application of ¢, sampling to F, estimation

For p > 2 AMS-Sampling gives algorithm to estimate F, using
O(n'~1/P) space. Optimal space is O(n'~%/P).

@ Use £, sampling algorithm to generate (i, |X;|) P@ lrt
o Estimate ||x]|3
G ce -

e Output T = ||x2]|?|X;|P~2 as estimate
To simplify analysis/notation assume sampling is exact.
ET] = [IxI3 5 g xilP=2 = X2, |xilP
Var[T) < [Ix[13 50 2iaxt 2 < I35, %P7 <
[w2lels, ey

{Now do average plus median. L&'W-
verast b > et

/__

Chandra (UIUC) CS498ABD 37 Fall 2020 37 /44



Part V

£y Sampling
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£y Sampling
Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate i among all
non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register
model

X~ [01 0,0, )
(0,7, 1, 0)
(9, 0, 2 o)
f 1, O, -1, "D

(-1,0, 9, 3)
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£y Sampling
Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate i among all
non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register
model

Goal: illustrate a simple algorithm via two powerful hammers
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Sparse Recovery

x|

Recall sparse recovery using Count Sketch.

There is a linear sketch with size O(f2 polylog(n)) that returns z
such that ||z||o < k and with high probability
Ix — z||2 < (1+e)er/‘(x)

errs(x) = min ||x — z
S0 = _min_|lx— 2]

Hence space is proportional to desired output. Assumption k is
typically quite small compared to n, the dimension of x.

ZNote that if x is k-sparse vector is exactly reconstructed 7
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Random Sampling plus Sparse Recovery

x is updated in turnstile streaming fashion. Let J be the non-zero

indices of x @ ["; ©,0,%,0) = J: Ll, [43.

Suppose we knew |J| is small, say < s. Then can use sparse
recovering with O(s) space to completely recover x and can then

sample uniformly. ‘\S b@{‘ﬂ(n,
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Random Sampling plus Sparse Recovery

x is updated in turnstile streaming fashion. Let J be the non-zero
indices of x

Suppose we knew |J| is small, say < s. Then can use sparse

recovering with (~)(s) space to completely recover x and can then
sample uniformly.

-
What if |J] is large? l ijs fr
@ Guess |J| to within factor of 2.

@ More formally, for j = 0 to log n let I; be n/2J coordinates of
[n] sampled uniformly at random. Note Iy = [n].
————

@ Let y/ be vector obtained by restricting x to coordinates in ;.
0
y = x.
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Random Sampling plus Sparse Recovery
Choose s = Q(log(1/9)). l,0/_0

Forj=0,1,...,logn
@ Use s-sparse recovery on yJ.

@ If yJ is not s-sparse discard. Else pick a random non-zero
coordinate in ¥/ and output it. And stop.
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Random Sampling plus Sparse Recovery
Choose s = Q(log(1/9)).

Forj=0,1,...,logn
@ Use s-sparse recovery on yJ.

@ If yJ is not s-sparse discard. Else pick a random non-zero
coordinate in ¥/ and output it. And stop.

Uses O(log n) s-sparse recovery data structures and hence space is
poly-logarithmic assuming & is 2(n—°) for some fixed constant c.
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Random Sampling plus Sparse Recovery
Choose s = Q(log(1/9)).

Forj=0,1,...,logn
@ Use s-sparse recovery on yJ.

@ If yJ is not s-sparse discard. Else pick a random non-zero
coordinate in ¥/ and output it. And stop.

Uses O(log n) s-sparse recovery data structures and hence space is
poly-logarithmic assuming & is 2(n—°) for some fixed constant c.

How can we implement random coordinates of x? Cannot store them.
So how can we run sparse recovery on y/7
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Random Sampling plus Sparse Recovery
Choose s = Q(log(1/9)).

Forj=0,1,...,logn
@ Use s-sparse recovery on yJ.

@ If yJ is not s-sparse discard. Else pick a random non-zero
coordinate in ¥/ and output it. And stop.

Uses O(log n) s-sparse recovery data structures and hence space is
poly-logarithmic assuming & is 2(n—°) for some fixed constant c.

How can we implement random coordinates of x? Cannot store them.
So how can we run sparse recovery on y/7 Use Nisan's generator!
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Analysis

Question: Will algorithm output a random non-zero coordinate?
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Analysis

Question: Will algorithm output a random non-zero coordinate?

Suppose |J| < s then algorithm outputs a uniform non-zero
coordinate of x with high probability.

y% = x is s-sparse. Sparse recovery algorithm succeeds with high
probability.
U) j; [ODO K
—
T
<k
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Analysis

Question: Will algorithm output a random non-zero coordinate?

Suppose |J| < s then algorithm outputs a uniform non-zero
coordinate of x with high probability.

y% = x is s-sparse. Sparse recovery algorithm succeeds with high

probability.

Assume |J| > s. There is an index k such that with probability
(1 — &), y* is s-sparse and has at least one non-zero coordinate.
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Analysis

Question: Will algorithm output a random non-zero coordinate?

Suppose |J| < s then algorithm outputs a uniform non-zero
coordinate of x with high probability.

y% = x is s-sparse. Sparse recovery algorithm succeeds with high

probability.

Assume |J| > s. There is an index k such that with probability
(1 — &), y* is s-sparse and has at least one non-zero coordinate.

Expected number of coordinates of J in y/ is |J|/2/. Find j such
that expected number is between s/4 and s and use Chernoff bound.
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Analysis continued

Assume |J| > s. There is an index k such that with probability
(1 — &), y* is s-sparse and has at least one non-zero coordinate.

s-sparse recovery of y* will reconstruct it exactly. y* has random
sample of coordinates of x hence has random sample of non-zero
coordinates as well. Output random non-zero coordinate of y*.

Algorithm fails only if every y/ fails sparse recovery and |J| > 0 but
we see that yk*1 succeeds with probability at least (1 — &).
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