CS 498ABD: Algorithms for Big Data

Topics in Streaming
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Topics in Streaming

@ F, estimation for p € (0, 2] via p-stable distributions and
pseudorandom generators

@ Priority Sampling
@ Precision Sampling and Applications to £, sampling in streams
@ /o Sampling
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F, Estimation
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F> Estimation and JL

Fo@stimation and JL and Euclidean LSH we used important
“stability” property of the Normal distribution.

Let Y1, Ya,..., Yq be independent random variables wi

distribution N'(0,1). Z = >, x;Y; has distribution/f[x||2}V (0, 1)

Standard Gaussian is 2-stable. i/
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p-stable distributions

Definition

A real-valued distribution D is p-stable if Z = Y7 | x; Y; has
distribution ||x||,D when the Y; are independent and each of them
is distributed as D.

2)&- Y, = Nx”p%
« ! %/6
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p-stable distributions

Definition

A real-valued distribution D is p-stable if Z = Y7 | x; Y; has
distribution ||x||,D when the Y; are independent and each of them
is distributed as D.

Question: Do p-stable distributions exist for p # 27
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p-stable distributions

Fact: p-stable distributions exist for all p € (0, 2] and do not exist
for p > 2.

p = 1 is the Cauchy distribution which is the distribution of the ratio
of two independent Guassian random variables. Has a closed form

density function —-1—. Mean and variance are not finite.
7(14+x2)
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p-stable distributions

Fact: p-stable distributions exist for all p € (0, 2] and do not exist
for p > 2.

p = 1 is the Cauchy distribution which is the distribution of the ratio
of two independent Guassian random variables. Has a closed form
density function ﬁ Mean and variance are not finite.

For general p no closed form formula for density but can sample from
the distribution.
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p-stable distributions

Fact: p-stable distributions exist for all p € (0, 2] and do not exist
for p > 2.

p = 1 is the Cauchy distribution which is the distribution of the ratio
of two independent Guassian random variables. Has a closed form
density function ﬁ Mean and variance are not finite.

For general p no closed form formula for density but can sample from
the distribution.

Streaming, sketching, LSH ideas for £, generalize to £, for
p € (0, 2] via p-stable distributions and additional technical work.
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Sampling from p-stable distribution

For p € (0, 2] let D, denote p-stable distribution. Sampling from
D, via Chambers-Mallows-Stuck method

@ Sample @ uniformly from [—7 /2,7 /2].

@ Sample r uniformly from [0, 1].

@ Output

sin(p@) (cos((l — p)e))(l—p)/p
(cos 0)1/p In(1/r) y

p-stable distributions need not have finite mean/variance. Hence we
need to work with median of distribution.

Definition

The median of a distribution D is 0 if for Y ~ D,
Pr[Y < p] = 1/2. If ¢(x) is the probability density function of D
then we have [* o(x)dx =1/2.
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F, estimation via p-stable distribution

For p € (0, 2] due to [Indyk]

F,-Estimate:
k < @( log 5)
Let M be a k X n matrix where each Mj ~ D,
y +— Mx
OQutput Y <« median(|y1|,|y2ls---|yk|)

median(|D,|)
~ fx| . .
[2(\ .X'\,)..—, XM) :Pb, C)AL
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F, estimation via p-stable distribution

For p € (0, 2] due to [Indyk]

F,-Estimate:
1 1
k <+ ©( log 5)
Let M_be a k X n matrix where each Mj ~ D,

y

median(|y1[,|y2[,---»|Yk|)
Output Y < median(|Dy])

@ Each y; is distributed according to ||x||p, D,

@ Cannot take average of |y;|P values since mean of distribution is
not finite

@ Take median of absolute values for k independent copies and
normalize by median of distribution
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Concentration Lemma

Lemma
Let € > 0 and let D be a distribution with density function ¢ and a
unique median p > 0. Suppose ¢ is absolutely continuous on

[(1 —€)p, (1 + €)pe] and let

a = min{¢(x) | x € [(1 — p, (1 + ). Let

Y = median(Y1, Ya, ..., Yi) where Yi,..., Yk are independent
samples from the distribution D. Then

PrIlY — p| > ep] < 2e7 3%,

See notes for proof idea.
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Pseudorandom generator for F, Estimation

For F, estimation we need M ; to be independent randomly
distributed according to Dp. Can use sampling from distribution even
though it is not explicit.

How do we store M in small space?
Recall that for F;, estimation and sketching we used matrix M where
each row of M had 4-wise independent random variables. Needed

separate proof to argue correctness.

Is there an equivalent limited independence hashing based algorithm
for Fp, estimation?
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Pseudorandom generator for F, Estimation

For F, estimation we need M ; to be independent randomly
distributed according to Dp. Can use sampling from distribution even
though it is not explicit.

How do we store M in small space?

Recall that for F;, estimation and sketching we used matrix M where
each row of M had 4-wise independent random variables. Needed
separate proof to argue correctness.

Is there an equivalent limited independence hashing based algorithm

for Fp, estimation? No but can use a powerful pseudorandomness tool
from TCS.
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Pseudorandom generator

@ P class of decision problems decided in poly time.
@ RP class of decision problems decided in randomized poly time
with one-sided error

@ BPP class of decision problems decided in randomized poly
time with two-sided error allowed
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Pseudorandom generator

@ P class of decision problems decided in poly time.
@ RP class of decision problems decided in randomized poly time
with one-sided error

@ BPP class of decision problems decided in randomized poly
time with two-sided error allowed

Big Open Problem: Is BPP = P? Equivalently can every
randomized polynomial time algorithm be derandomized with only

polynomial-factor slow down?
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Pseudorandom generator

@ P class of decision problems decided in poly time.

@ RP class of decision problems decided in randomized poly time
with one-sided error

@ BPP class of decision problems decided in randomized poly
time with two-sided error allowed

Big Open Problem: Is BPP = P? Equivalently can every
randomized polynomial time algorithm be derandomized with only
polynomial-factor slow down?

Equivalently: Is there a pseudo-random generator that fools every
poly-sized algorithm?
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Nisan’s pseudorandom generator

Nisan constructed explicit pseudo-random generator that fools
space-bounded algorithms.

(AN AT S A
Let A be anz lgorithm thatusés space at most S(n) on an input of

length n. Then there is a pseudo-random generator G that fools A

apd_has seed length £ = O(S(n) log n) and which is computable in
pace and poly(£) time.™™—

Corollary

For S(n) = O(log® n) the generator uses space
S(n) = O(log®*! n) and can generate any of the desired random

pseudo-random bits for algorithm in poly(log n) time.
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Applying Nisan’s generator as a hammer

At a high-level if a streaming algorithm uses small space
(polylogarithmic in input size) assuming access to true random bits
then one can use Nisan's generator to reduce space.

@ Nisan's generator requires small random seed. Store it.

@ Generate required (pseudo)random bits “on the fly". Note that
Nisan's generator itself runs in small space so total space is
small.

Note that algorithm still uses random bits}b[c.
1
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Applying Nisan’s generator as a hammer

At a high-level if a streaming algorithm uses small space
(polylogarithmic in input size) assuming access to true random bits
then one can use Nisan's generator to reduce space.

@ Nisan's generator requires small random seed. Store it.

@ Generate required (pseudo)random bits “on the fly". Note that
Nisan's generator itself runs in small space so total space is

Note that algorithm still uses rando@

With additional discretization tricks one can convert Indyk's Fp
estimation algorithm via Nisan's generator into a true small space
algorithm.

[Kane-Nelson-Woodruff] show how to use limited independence
hashing for F,, estimation instead of above hammer.
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Priority Sampling
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Sampling for data reduction

@ X set of n points in the plane a1, az,...,an.

@ Want to answer queries of the form: given some shape C (say
circles), how many points inside C?

@ standard data structures or brute force linear search say

n -

o G 19
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Sampling for data reduction

@ X set of n points in the plane a1, az,...,an.

@ Want to answer queries of the form: given some shape C (say
circles), how many points inside C?

@ standard data structures or brute force linear search say

Question: Suppose n is too large and we can only store k points for
some k < n.

Sampling approach:
@ S sample of size k (with replacement). Store only S

@ Given query C, compute |C N S|. What should we report as an
estimate for |C N X|?
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Sampling for data reduction

@ X set of n points in the plane a1, az,...,an.

@ Want to answer queries of the form: given some shape C (say
circles), how many points inside C?

@ standard data structures or brute force linear search say

Question: Suppose n is too large and we can only store k points for
some k < n.

Sampling approach:
@ S sample of size k (with replacement). Store only S

@ Given query C, compute |C N S|. What should we report as an
estimate for |[C N X|? £|C N S| which is an unbiased estimator
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Weighted case

@ X set of n points in the plane a;, az, ..., a,. Each point a; has
a non-negative weight w;

@ Want to answer queries of the form: given some shape C (say
circles), what is weight of point inside C?

Question: Suppose n is too large and we can only store k points for
some k < n.

Sampling approach?
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Weighted case

@ X set of n points in the plane a;, az, ..., a,. Each point a; has
a non-negative weight w;

@ Want to answer queries of the form: given some shape C (say
circles), what is weight of point inside C?

Question: Suppose n is too large and we can only store k points for
some k < n.

Sampling approach?
@ Easy to see that uniform sampling is not ideal
@ Sample in proportion to weight? Say a; sampled with
pi = w;/W where W = > . w;.
@ What do we set the weight of the sampled points to? Can we
control sample size? What is the variance?
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Importance Sampling

\

@ Decide sampling probabilities ‘A, pz, .y p,,

@ Choose a; independently W|th probablllty pi 5: and if i is chosen
set w, = w,/p, If i is not chosen we |mpI|C|t|y set w; = 0.

L5 pe Q;}f :@
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Importance Sampling

@ Decide sampling probabilities p1, P2y ... 5 Pn
@ Choose a; independently with probability p; and if i is chosen
set w; = w;/p;. If i is not chosen we implicitly set w; = 0.

e For any i, E[W;] = w;.
—_—

—
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Importance Sampling

@ Decide sampling probabilities p1, P2y ... 5 Pn

@ Choose a; independently with probability p; and if i is chosen
set w; = w;/p;. If i is not chosen we implicitly set w; = 0.

e For any i, E[W;] = w;. Hence for any C,
E[w(C N S)] = E[w(C N 9)].
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Importance Sampling

@ Decide sampling probabilities p1, P2y ... 5 Pn

@ Choose a; independently with probability p; and if i is chosen
set w; = w;/p;. If i is not chosen we implicitly set w; = 0.
e For any i, E[W;] = w;. Hence for any C,
E[w(C N S)] = E[w(C N 9)].

Question: How should we choose p;’s?
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Importance Sampling

@ Decide sampling probabilities p1, P2y ... 5 Pn
@ Choose a; independently with probability p; and if i is chosen
set w; = w;/p;. If i is not chosen we implicitly set w; = 0.
e For any i, E[W;] = w;. Hence for any C,
E[w(C N S)] = E[w(C N S)].
Question: How should we choose p;’s?

@ Choose to reduce variance for queries of interest (depends on
queries)

@ Expected number of chosen points is > ; p; and hence choose
pi's to roughly meet the memory bound. If we have memory of
size k then can scale p; values (sampling rate) to achieve this.
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Importance Sampling in Streaming Setting

Setting:
@ points ay, ..., a, with weights arriving in stream
@ have a memory size of k

@ want to maintain a k-sample (to utilize memory as well as
possible) such that we can estimate w(C N X) accurately

@ Stream length unknown! How can we adjust sampling rate?
L(D( w-\’ - wv‘

a1)0L7 -7 a\/\ MW -
"L slroat w{w xJ
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—
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Priority Sampling

[Duffield,Lund, Thorup]

@ Queries are arbitrary subset sums so no structure there to exploit

@ Focus on streaming aspect and using memory
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Priority Sampling

[Duffield,Lund, Thorup]

@ Queries are arbitrary subset sums so no structure there to exploit

@ Focus on streaming aspect and using memory

g W U g (o))

Scheme: — Uy

© For each i € [n] set priority gq; = w;/u; where u; is chosen
uniformly (and independently from other items) at random from
[0, 1].

@ S is the set of items with the k highest priorities.

Q@is the (k + 1)'st highest priority. If k > n we set 7 = 0.

Q Ifi € S, set w; = max{w;, T}, else set w; = 0.
— -%—'Tl -
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Priority Sampling

[Duffield,Lund, Thorup]
@ Queries are arbitrary subset sums so no structure there to exploit

@ Focus on streaming aspect and using memory

Scheme:
© For each i € [n] set priority gq; = w;/u; where u; is chosen
uniformly (and independently from other items) at random from
[0,1].
@ S is the set of items with the k highest priorities.
© 7 is the (k + 1)'st highest priority. If kK > n we set 7 = 0.
Q Ifi € S, set w; = max{w;, T}, else set w; = 0.

Claim: Can maintain S, 7 in streaming setting
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Priority Sampling

Intuition: from uniform weight case

@ Suppose w; = 1 for all i. Then sampling k without repetition
can be done via adaptation of reservoir sampling.

@ A different approach: pick a uniformly random r; € [0, 1] for
each i. And pick top k in terms of r; values (simulates random
permutation) but can be done in streaming fashion. Many other
distributions would work too and picking top k according to
1/r; works too.

@ Why 1/r;? What is the expected value of 77
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Priority Sampling: Properties
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Priority Sampling: Properties

E[wi] = w;. I

{@max{O,T —@ ifi €S
0 ifigs

Var|w;] = E[V;] where ¥; =
—

Useful: storing 7 and w; gives Var[w;].
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Priority Sampling: Properties

E[wi] = w;.

Tmax{0, 7 — w;} ifie$S
0 ifigs

Var|[w;] = E[V;] where ¥; =

Useful: storing 7 and w; gives Var[w;].

If k > 2 for any i # j, E[W;W;] = w;w;.
—

Fix any set C C [n]. E[[L;cc Wi] = [Tiec wi if|C| < k and is 0
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Variance of subset sum

If k > 2 for any i # j, E[W;W;] = w;w;.

Consequence:
@ Fix C. Unbiased estimator of w(C N X) is w(C N S).
@ Can we know the variance of the estimate to know if we are
doing ok?

o Var[w(C N S)] =D iccns Var[wi] = > iccns E[Vi]. Hence,
storing 7 and w; values suffices to estimate the variance of the
estimate.
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Priority Sampling: Properties

E[wi] = w;. I
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Priority Sampling: Properties

E[wi] = w;. l

Fix i. Let A(T") be the event that the k'th highest priority among
items j # i is 7.

Note that u; is independent of /. Hence i € Sif q; = w;/u; > 7'
and if i € S then w; = max{w;, 7'}, otherwise w; = 0. To
evaluate Pr[i € S | A(7’)] we consider two cases.

Case 1: w; > 7’. Here we have Pr[i € S | A(7')] =1 and

W,' = w;.

Case 2: w; < 7'. Then Pr[i € S | A(7')] = % and w; = 7',

In both cases we see that E[w;] = w;.
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Variance

Tmax{0, 7 — w;} ifieS
0 ifi ¢S

Var[vT/,-] = E[\?,] where v; = {
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Variance

Var|w;] = E[V;] where ¥; = { gmaX{O’ 7= vk ;;: ; g

Fix i. We define A(7’) to be the event that 7’ is the k'th highest
priority among elements j # i.

Show that

E[0: | A(T)] = E[W;] | A(T)] — w;.

Since u; is independent of 7/ we can remove conditioning

Chandra (UIUC) CS498ABD 24 Fall 2020 24 / 37



Variance

E[v: | A(T)] = E[W; | A(T)] — w;.

E[V; | A(7')] = Pr[ie S| A()] X E[V; | i € SAA(T)]
min{l, w;/7’'} X 7' max{0, 7" — w;}

= max{0, w;7" — w?}.
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Variance

E[v: | A(T)] = E[W; | A(T)] — w;.

E[V; | A(7')] = Pr[ie S| A()] X E[V; | i € SAA(T)]
min{l, w;/7’'} X 7' max{0, 7" — w;}

= max{0, w;7" — w?}.

E[W? | A(T')] = Pr[i e S| A(T)] X E[W? | i € SAA(T)]
min{1, w;/7’} x (max{w;, 7'})?

= max{w?, w;T'}.
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Variance of subset sum

If k > 2 for any i # j, E[W;W;] = w;w;.

More generally

Fix any set C C [n]. E[[T;cc Wi] = [Tiec wi if |C| < k and is 0
if |C| > k.
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Variance of subset sum

If k > 2 for any i # j, E[W;W;] = w;w;.

More generally

Fix any set C C [n]. E[[T;cc Wi] = [Tiec wi if |C| < k and is 0
if |C| > k.

Requires a proof by induction. See notes
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Variance of subset sum

If k > 2 for any i # j, E[W;W;] = w;w;.

More generally

Fix any set C C [n]. E[[T;cc Wi] = [Tiec wi if |C| < k and is 0
if |C| > k.

Requires a proof by induction. See notes

Why is this interesting/non-obvious? In vanilla importance sampling
the variables w; are independent. However, here the variables are
correlated because we choose exactly k. Nevertheless, they exhibit
properties similar to independence.
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Application of ¢, sampling to F, estimation

For p > 2 AMS-Sampling gives algorithm to estimate F, using
O(n'~1/P) space. Optimal space is O(n'~%/P).

@ Use £, sampling algorithm to generate (i, |X;|)

o Estimate ||x]|3

e Output T = ||x2]|?|X;|P~2 as estimate
To simplify analysis/notation assume sampling is exact.
ET] = [IxI3 5 g xilP=2 = X2, |xilP
Var ] < IIx]13 35 i ™ < Il 35,7 % <
n' =P (3 |xilP)2.

Now do average plus median.
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