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Topics in Streaming

Fp estimation for p 2 (0, 2] via p-stable distributions and
pseudorandom generators

Priority Sampling

Precision Sampling and Applications to `2 sampling in streams

`0 Sampling
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Part I

Fp Estimation
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F2 Estimation and JL

For F2 estimation and JL and Euclidean LSH we used important
“stability” property of the Normal distribution.

Lemma

Let Y1,Y2, . . . ,Yd be independent random variables with
distribution N (0, 1). Z =

P
i xiYi has distribution kxk2N (0, 1)

Standard Gaussian is 2-stable.
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p-stable distributions

Definition

A real-valued distribution D is p-stable if Z =
Pn

i=1
xiYi has

distribution kxkpD when the Yi are independent and each of them
is distributed as D.

Question: Do p-stable distributions exist for p 6= 2?
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p-stable distributions

Fact: p-stable distributions exist for all p 2 (0, 2] and do not exist
for p > 2.

p = 1 is the Cauchy distribution which is the distribution of the ratio
of two independent Guassian random variables. Has a closed form
density function 1

⇡(1+x2)
. Mean and variance are not finite.

For general p no closed form formula for density but can sample from
the distribution.

Streaming, sketching, LSH ideas for `2 generalize to `p for
p 2 (0, 2] via p-stable distributions and additional technical work.
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Sampling from p-stable distribution

For p 2 (0, 2] let Dp denote p-stable distribution. Sampling from
Dp via Chambers-Mallows-Stuck method

Sample ✓ uniformly from [�⇡/2,⇡/2].
Sample r uniformly from [0, 1].
Output

sin(p✓)

(cos ✓)1/p

✓
cos((1� p)✓)

ln(1/r)

◆(1�p)/p

.

p-stable distributions need not have finite mean/variance. Hence we
need to work with median of distribution.

Definition

The median of a distribution D is ✓ if for Y ⇠ D,
Pr[Y  µ] = 1/2. If �(x) is the probability density function of D
then we have

R µ

�1 �(x)dx = 1/2.
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Fp estimation via p-stable distribution

For p 2 (0, 2] due to [Indyk]

Fp-Estimate:

k  ⇥(
1

✏2
log

1

�
)

Let M be a k ⇥ n matrix where each Mij ⇠ Dp
y Mx

Output Y  median(|y1|,|y2|,...,|yk |)
median(|Dp|)

Each yj is distributed according to kxkpDp

Cannot take average of |yj |p values since mean of distribution is
not finite

Take median of absolute values for k independent copies and
normalize by median of distribution
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Concentration Lemma

Lemma

Let ✏ > 0 and let D be a distribution with density function � and a
unique median µ > 0. Suppose � is absolutely continuous on
[(1� ✏)µ, (1 + ✏)µ] and let
↵ = min{�(x) | x 2 [(1� ✏)µ, (1 + ✏)µ]. Let
Y = median(Y1,Y2, . . . ,Yk) where Y1, . . . ,Yk are independent
samples from the distribution D. Then

Pr[|Y � µ| � ✏µ]  2e
� 2

3
✏2µ2↵2k .

See notes for proof idea.
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Pseudorandom generator for Fp Estimation

For Fp estimation we need Mi ,j to be independent randomly
distributed according to Dp. Can use sampling from distribution even
though it is not explicit.

How do we store M in small space?

Recall that for F2 estimation and sketching we used matrix M where
each row of M had 4-wise independent random variables. Needed
separate proof to argue correctness.

Is there an equivalent limited independence hashing based algorithm
for Fp estimation?

No but can use a powerful pseudorandomness tool
from TCS.
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Pseudorandom generator

P class of decision problems decided in poly time.

RP class of decision problems decided in randomized poly time
with one-sided error

BPP class of decision problems decided in randomized poly
time with two-sided error allowed

Big Open Problem: Is BPP = P? Equivalently can every
randomized polynomial time algorithm be derandomized with only
polynomial-factor slow down?

Equivalently: Is there a pseudo-random generator that fools every
poly-sized algorithm?
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Nisan’s pseudorandom generator

Nisan constructed explicit pseudo-random generator that fools
space-bounded algorithms.

Theorem

Let A be an algorithm that uses space at most S(n) on an input of
length n. Then there is a pseudo-random generator G that fools A
and has seed length ` = O(S(n) log n) and which is computable in
O(`) space and poly(`) time.

Corollary

For S(n) = O(log
c
n) the generator uses space

S(n) = O(log
c+1

n) and can generate any of the desired random
pseudo-random bits for algorithm in poly(log n) time.
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Applying Nisan’s generator as a hammer

At a high-level if a streaming algorithm uses small space
(polylogarithmic in input size) assuming access to true random bits
then one can use Nisan’s generator to reduce space.

Nisan’s generator requires small random seed. Store it.

Generate required (pseudo)random bits “on the fly”. Note that
Nisan’s generator itself runs in small space so total space is
small.

Note that algorithm still uses random bits!

With additional discretization tricks one can convert Indyk’s Fp
estimation algorithm via Nisan’s generator into a true small space
algorithm.
[Kane-Nelson-Woodru↵] show how to use limited independence
hashing for Fp estimation instead of above hammer.
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Part II

Priority Sampling
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Sampling for data reduction

X set of n points in the plane a1, a2, . . . , an.

Want to answer queries of the form: given some shape C (say
circles), how many points inside C?

standard data structures or brute force linear search say

Question: Suppose n is too large and we can only store k points for
some k < n.

Sampling approach:

S sample of size k (with replacement). Store only S

Given query C , compute |C \ S|. What should we report as an
estimate for |C \ X |? n

k |C \ S| which is an unbiased estimator
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Weighted case

X set of n points in the plane a1, a2, . . . , an. Each point ai has
a non-negative weight wi

Want to answer queries of the form: given some shape C (say
circles), what is weight of point inside C?

Question: Suppose n is too large and we can only store k points for
some k < n.

Sampling approach?

Easy to see that uniform sampling is not ideal

Sample in proportion to weight? Say ai sampled with
pi = wi/W where W =

P
i wi .

What do we set the weight of the sampled points to? Can we
control sample size? What is the variance?
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Importance Sampling

Decide sampling probabilities p1, p2, . . . , pn

Choose ai independently with probability pi and if i is chosen
set ŵi = wi/pi . If i is not chosen we implicitly set ŵi = 0.

For any i , E[ŵi ] = wi . Hence for any C ,
E[ŵ(C \ S)] = E[w(C \ S)].

Question: How should we choose pi ’s?

Choose to reduce variance for queries of interest (depends on
queries)

Expected number of chosen points is
P

i pi and hence choose
pi ’s to roughly meet the memory bound. If we have memory of
size k then can scale pi values (sampling rate) to achieve this.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 37
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set ŵi = wi/pi . If i is not chosen we implicitly set ŵi = 0.

For any i , E[ŵi ] = wi . Hence for any C ,
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For any i , E[ŵi ] = wi . Hence for any C ,
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Importance Sampling in Streaming Setting

Setting:

points a1, . . . , an with weights arriving in stream

have a memory size of k

want to maintain a k-sample (to utilize memory as well as
possible) such that we can estimate w(C \ X ) accurately

Stream length unknown! How can we adjust sampling rate?
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We W
z

- - Wu
Ai , a r ,

- - -

, an
Meurig Kc .

given query C - reclaim TX

wait to estimate w(¥XD
=



Priority Sampling

[Du�eld,Lund,Thorup]

Queries are arbitrary subset sums so no structure there to exploit

Focus on streaming aspect and using memory

Scheme:

1 For each i 2 [n] set priority qi = wi/ui where ui is chosen
uniformly (and independently from other items) at random from
[0, 1].

2 S is the set of items with the k highest priorities.
3 ⌧ is the (k + 1)’st highest priority. If k � n we set ⌧ = 0.
4 If i 2 S , set ŵi = max{wi , ⌧}, else set ŵi = 0.

Claim: Can maintain S, ⌧ in streaming setting
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Priority Sampling

Intuition: from uniform weight case

Suppose wi = 1 for all i . Then sampling k without repetition
can be done via adaptation of reservoir sampling.

A di↵erent approach: pick a uniformly random ri 2 [0, 1] for
each i . And pick top k in terms of ri values (simulates random
permutation) but can be done in streaming fashion. Many other
distributions would work too and picking top k according to
1/ri works too.

Why 1/ri? What is the expected value of ⌧?
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Priority Sampling: Properties

Lemma

E[ŵi ] = wi .

Lemma

Var [ŵi ] = E[v̂i ] where v̂i = { ⌧ max{0, ⌧ � wi} if i 2 S

0 if i 62 S

Useful: storing ⌧ and wi gives Var [ŵi ].

Lemma

If k � 2 for any i 6= j , E[ŵi ŵj ] = wiwj .

Lemma

Fix any set C ⇢ [n]. E
⇥Q

i2C ŵi
⇤
=

Q
i2C wi if |C |  k and is 0

if |C | > k .
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Variance of subset sum

Lemma

If k � 2 for any i 6= j , E[ŵi ŵj ] = wiwj .

Consequence:

Fix C . Unbiased estimator of w(C \ X ) is ŵ(C \ S).

Can we know the variance of the estimate to know if we are
doing ok?

Var [ŵ(C \ S)] =
P

i2C\S Var [ŵi ] =
P

i2C\S E[v̂i ]. Hence,
storing ⌧ and ŵi values su�ces to estimate the variance of the
estimate.
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Priority Sampling: Properties

Lemma

E[ŵi ] = wi .

Fix i . Let A(⌧ 0
) be the event that the k ’th highest priority among

items j 6= i is ⌧ 0.
Note that ui is independent of ⌧ 0. Hence i 2 S if qi = wi/ui � ⌧ 0

and if i 2 S then ŵi = max{wi , ⌧ 0}, otherwise ŵi = 0. To
evaluate Pr[i 2 S | A(⌧ 0

)] we consider two cases.
Case 1: wi � ⌧ 0. Here we have Pr[i 2 S | A(⌧ 0

)] = 1 and
ŵi = wi .
Case 2: wi < ⌧ 0. Then Pr[i 2 S | A(⌧ 0

)] =
wi
⌧ 0 and ŵi = ⌧ 0.

In both cases we see that E [ŵi ] = wi .
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Variance

Lemma

Var [ŵi ] = E[v̂i ] where v̂i = { ⌧ max{0, ⌧ � wi} if i 2 S

0 if i 62 S

Fix i . We define A(⌧ 0
) to be the event that ⌧ 0 is the k ’th highest

priority among elements j 6= i .

Show that

E [v̂i | A(⌧ 0
)] = E [ŵ

2

i | A(⌧ 0
)]� w

2

i .

Since ui is independent of ⌧ 0 we can remove conditioning
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Since ui is independent of ⌧ 0 we can remove conditioning
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Variance

E [v̂i | A(⌧ 0
)] = E [ŵ

2

i | A(⌧ 0
)]� w

2

i .

E[v̂i | A(⌧ 0
)] = Pr[i 2 S | A(⌧ 0

)]⇥ E[v̂i | i 2 S ^ A(⌧ 0
)]

= min{1,wi/⌧
0}⇥ ⌧ 0

max{0, ⌧ 0 � wi}
= max{0,wi⌧

0 � w
2

i }.

E

⇥
ŵ

2

i | A(⌧ 0
)
⇤

= Pr[i 2 S | A(⌧ 0
)]⇥ E

⇥
ŵ

2

i | i 2 S ^ A(⌧ 0
)
⇤

= min{1,wi/⌧
0}⇥ (max{wi , ⌧

0})2

= max{w 2

i ,wi⌧
0}.
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Variance of subset sum

Lemma

If k � 2 for any i 6= j , E[ŵi ŵj ] = wiwj .

More generally

Lemma

Fix any set C ⇢ [n]. E
⇥Q

i2C ŵi
⇤
=

Q
i2C wi if |C |  k and is 0

if |C | > k .

Requires a proof by induction. See notes

Why is this interesting/non-obvious? In vanilla importance sampling
the variables ŵi are independent. However, here the variables are
correlated because we choose exactly k . Nevertheless, they exhibit
properties similar to independence.
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the variables ŵi are independent. However, here the variables are
correlated because we choose exactly k . Nevertheless, they exhibit
properties similar to independence.

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 37



Variance of subset sum

Lemma

If k � 2 for any i 6= j , E[ŵi ŵj ] = wiwj .
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Application of `2 sampling to Fp estimation

For p > 2 AMS-Sampling gives algorithm to estimate Fp using
Õ(n

1�1/p
) space. Optimal space is Õ(n

1�2/p
).

Use `2 sampling algorithm to generate (i , |x̃i |)
Estimate kxk2

2

Output T = kx2k2|x̃i |p�2 as estimate

To simplify analysis/notation assume sampling is exact.

E[T ] = kxk2
2

P
i

x2

i
kxk2

2

|xi |p�2
=

P
i |xi |p

Var [T ]  kxk4
2

P
i

x2

i
kxk2

2

x
2(p�2)

i  kxk2
2

P
i x

2p�2

i 
n
1�2/p

(
P

i |xi |p)2.
Now do average plus median.
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