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Quantiles and Selection

Input: stream of numbers x1, x2, . . . , xn (or elements from a total
order) and integer k

Selection: (Approximate) rank k element in the input.

Quantile summary: A compact data structure that allows
approximate selection queries.
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Summary of previous lecture

Randomized: Pick Θ(1
ε

log(1/δ)) elements. With probability
(1− 1/δ) will provide ε-approximate quantile summary

Deterministic: ε-approximate quantile summary using O(1
ε

log2 n)

elements and can be improved to O(1
ε

log n) elements

Exact selection: With O(n1/p log n) memory and p passes.
Median in 2 passes with O(

√
n log n) memory.
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Random order streams

Question: Can we improve bounds/algorithms if we move beyond
worst case?

Two models:

Elements x1, x2, . . . , xn chosen iid from some probability
distribution. For instance each xi ∈ [0, 1]

Elements x1, x2, . . . , xn chosen adversarially but stream is a
uniformaly random permutation of elements.
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Median in random order streams

[Munro-Paterson 1980]

Theorem

Median in O(
√

n log n) memory in one pass with high probability if
stream is random order.

More generally in p passes with memory O(n1/2p log n)
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Munro-Paterson algorithm

Given a space parameter s algorithm stores a set of s
consecutive elements seen so far in the stream

Maintains counters ` and h
` is number of elements seen so far that are less than min S
h is number of elements seen so far that are more than max S .

Tries to keep ` and h balanced
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Munro-Paterson algorithm

MP-Median (s):
Store the first s elements of the stream in S
` = h = 0
While (stream is not empty) do

x is new element

If (x > max S) then h = h + 1
Else If (x < min S) then ` = ` + 1
Else

Insert x into S
If h > ` discard min S from S and ` = ` + 1
Else discard max S from S and h = h + 1

endWhile

If 1 ≤ n/2− ` ≤ s then

Output n/2− ` ranked element from S
Else output FAIL
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Example

σ = 1, 2, 3, 4, 5, 6, 7, 9, 10 and s = 3
σ = 10, 19, 1, 23, 15, 11, 14, 16, 3, 7 and s = 3.
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Analysis

Theorem

If s = Ω(
√

n log n) and stream is random order then algorithm
outputs median with high probability.
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Recall: Random walk on the line

Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.

After n steps how far from the origin?

At time i let Xi be −1 if move to left and 1 if move to right.
Yn position at time n
Yn =

∑n
i=1 Xi

E[Yn] = 0 and Var(Yn) =
∑n

i=1 Var(Xi) = n

By Chebyshev: Pr
[
|Yn| ≥ t

√
n
]
≤ 1/t2

By Chernoff:

Pr
[
|Yn| ≥ t

√
n
]
≤ 2exp(−t2/2).
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Analysis

Let Hi and Li be random variables for the values of h and ` after
seeing i items in the random stream

Let Di = Hi − Li

Observation: Algorithm fails only if |Dn| ≥ s − 1

Will instead analyse the probability that |Di | ≥ s − 1 at any i
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Analysis

Lemma

Suppose Di = Hi − Li ≥ 0 and Di < s − 1.
Pr[Di+1 = Di + 1] = Hi/(Hi + s + Li) ≤ 1/2.

Lemma

Suppose Di = Hi − Li < 0 and |Di | < s − 1.
Pr[Di+1 = Di − 1] = Li/(Hi + s + Li) ≤ 1/2.

Thus, process behaves better than random walk on the line (formal
proof is technical) and with high probability |Di | ≤ c

√
n log n for

all i . Thus if s > c
√

n log n then algorithm succeeds with high
probability.
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Other results on selection in random order
streams

[Munro-Paterson] extend analysis for p = 1 and show that
Θ(n1/2p log n) memory sufficient for p passes (with high
probability). Note that for adversarial stream one needs Θ(n1/p)
memory

[Guha-MacGregor] show that O(log log n)-passes sufficient for exact
selection in random order streams
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Part I

Secretary Problem
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Secretary Problem

Stream of numbers x1, x2, . . . , xn (value/ranking of
items/people)

Want to select the largest number

Easy if we can store the maximum number

Online setting: have to make a single irrevocable decision
when number seen.

Extensively studied with applications to auction design etc.

In the worst case no guarantees possible. What about random arrival
order?
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Algorithm

Assume n is known.
LearnAndPick (θ):

Let y be max number seen in the first θn numbers

Pick z the first number larger than y in the remaining stream

Question: Assume numbers are in random order. What is a lower
bound on the probability that algorithm will pick the largest element?

Observation: Let a be largest and b the second largest. Algorithm
will pick a if b is in the first θn numbers and a is the residual stream.

If θ = 1/2 then each will occur with probability roughly 1/2 and
hence 1/4 probability.

Optimal strategy: θ = 1/e and probability of picking largest
number is 1/e. A more careful calculation.
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