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Near-Neighbor Search

Collection of n points P = {x1, . . . , xn} in a metric space.

NNS: preprocess P to answer near-neighbor queries: given query
point y output arg minx∈P dist(x, y)

c-approximate NNS: given query y , output x such that
dist(x, y) ≤ c minz∈P dist(z, y). Here c > 1.

Brute force/linear search: when query y comes check all x ∈ P

Beating brute force is hard if one wants near-linear space!
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NNS in Euclidean Spaces

Collection of n points P = {x1, . . . , xn} in Rd .
dist(x, y) = ‖x − y‖2 is Euclidean distance

d = 1. Sort and do binary search. O(n) space, O(log n)
query time.

d = 2. Voronoi diagram. O(n) space O(log n) query time.

(Figure from Wikipedia)

Higher dimensions: Voronoi diagram size grows as nbd/2c.
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NNS in Euclidean Spaces

Collection of n points P = {x1, . . . , xn} in Rd .
dist(x, y) = ‖x − y‖2 is Euclidean distance

Assume n and d are large.

Linear search with no data structures: Θ(nd) time, storage is
Θ(nd)

Exact NNS: either query time or space or both are exponential in
dimension d
(1 + ε)-approximate NNS for dimensionality reduction: reduce d
to O( 1

ε2 log n) using JL but exponential in d is still impractical

Even for approximate NNS, beating nd query time while keeping
storage close to O(nd) is non-trivial!
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Approximate NNS

Focus on c-approximate NNS for some small c > 1

Simplified problem: given query point y and fixed radius r > 0,
distinguish between the following two scenarios:

if there is a point x ∈ P such dist(x, y) ≤ r output a point x ′

such that dist(x ′, y) ≤ cr
if dist(x, y) ≥ cr for all x ∈ P then recognize this and fail

Algorithm allowed to make a mistake in intermediate case

Can use binary search and above procedure to obtain c-approximate
NNS.
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Part I

LSH Framework
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LSH Approach for Approximate NNS

[Indyk-Motwani’98]

Initially developed for NNSearch in high-dimensional Euclidean space
and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r , cr , p1, p2)-LSH with p1 > p2 and
c > 1 if h drawn randomly from the family satisfies the following:

Pr[h(x) = h(y)] ≥ p1 when dist(x, y) ≤ r
Pr[h(x) = h(y)] ≤ p2 when dist(x, y) ≥ cr

Key parameter: the gap between p1 and p2 measured as ρ = log p1

log p2
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LSH Example: Hamming Distance

n points x1, x2, . . . , xn ∈ {0, 1}d for some large d

dist(x, y) is the number of coordinates in which x, y differ

Question: What is a good (r , cr , p1, p2)-LSH? What is ρ?

Pick a random coordinate: Hash family = {hi | i = 1, . . . , d}
where hi(x) = xi

Suppose dist(x, y) ≤ r then
Pr[h(x) = h(y)] ≥ (d − r)/d ≥ 1− r/d ' e−r/d

Suppose dist(x, y) ≥ cr then
Pr[h(x) = h(y)] ≤ 1− cr/d ' e−cr/d

Therefore ρ = log p1

log p2
≤ 1/c
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LSH Example: 1-d

n points on line and distance is Euclidean

Question: What is a good LSH?

Grid line with cr units.

No two far points will be in same bucket and hence p2 = 0

But close by points may be in different buckets. So do a random
shift of grid to ensure that p1 ≥ (1− 1/c).

Main difficulty is in higher dimensions but above idea will play a role.
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LSH Approach for Approximate NNS

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r , cr , p1, p2)-LSH with p1 > p2 and
c > 1 if h drawn randomly from the family satisfies the following:

Pr[h(x) = h(y)] ≥ p1 when dist(x, y) ≤ r
Pr[h(x) = h(y)] ≤ p2 when dist(x, y) ≥ cr

Key parameter: the gap between p1 and p2 measured as ρ = log p1

log p2

usually small.

Two-level hashing scheme:

Amplify basic locality sensitive hash family to create better
family by repetition

Use several copies of amplified hash functions
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Amplification

Fix some r . Pick k independent hash functions h1, h2, . . . , hk . For
each x set

g(x) = h1(x)h2(x) . . . hk(x)

g(x) is now the larger hash function

If dist(x, y) ≤ r : Pr[g(x) = g(y)] ≥ pk
1

If dist(x, y) ≥ cr : Pr[g(x) = g(y)] ≤ pk
2

Choose k such that pk
2 ' 1/n so that expected number of far away

points that collide with query y is ≤ 1. Then pk
1 = 1/nρ.
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Multiple hash tables

If dist(x, y) ≤ r : Pr[g(x) = g(y)] ≥ pk
1

If dist(x, y) ≥ cr : Pr[g(x) = g(y)] ≤ pk
2

Choose k such that pk
2 ' 1/n so that expected number of far away

points that collide with query y is ≤ 1. Then pk
1 = 1/nρ.

k = log n
log(1/p2)

. Then pk
1 = 1/nρ which is also small.

To make good point collide with y choose L ' nρ hash functions
g1, g2, . . . , gL

L ' nρ hash tables

Storage: nL = n1+ρ (ignoring log factors)

Query time: kL = knρ (ignoring log factors)
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Details

What is the range of each gi ? A k tuple
(h1(x), h2(x), . . . , hk(x)). Hence depends on range of the h’s.

We leave the range implicit. Say range of gi is [mk] where range of
each h is [m]. We only store non-empty buckets of each gi and
there can be at most n of them. For each gi can use another hash
function `i that maps mk to [n].
So what is actually stored?

L hash tables one for each gi using chaining

Each item x in database is hashed and stored in each of the L
tables.

Total storage O(Ln)

Time to hash an item: Lk evaluations of basic LSH functions hj
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Query

Given new point y how to query?

Hash y using gi for 1 ≤ i ≤ L
For each i check all items in bucket of gi(y) and compute all
their distances and output first item x such that
dist(x, y) ≤ cr .

If no item found report FAIL

What if too many items collide with y? How do we bound query
time?

Fix: Stop search after comparing with Θ(L) items and report failure
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Analysis

Query correctly fails if no item x such that dist(x, y) ≤ cr

If query outputs a point x then dist(x, y) ≤ cr

Main issue: What is the probability that there be a good point x∗

such that dist(x, y) ≤ r and algorithm fails?

Two reasons

x∗ does not collide with y
too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x∗)
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Analysis

Main issue: What is the probability that there be a good point x∗

such that dist(x, y) ≤ r and algorithm fails?
Two reasons

x∗ does not collide with y
too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x∗)

First issue:

Pr[gi(x∗) = gi(y)] = pk
1 ≥ 1/nρ

If L > 10nρ then Pr[gi(x∗) 6= gi(y)∀i ] ≤ 1/10.

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 25



Analysis

Main issue: What is the probability that there be a good point x∗

such that dist(x, y) ≤ r and algorithm fails?
Two reasons

x∗ does not collide with y
too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x∗)

Second issue: let x be a bad point, that is dist(x, y) > cr

Pr[gi(x) = gi(y)] = pk
2 ≤ 1/n by choice of k

Hence expected number of bad points that collide with y in any table
is ≤ 1. Hence expected number of bad points that collide with y in
all tables is at most L. By Markov, probability of more than 10L
colliding with y is at most 1/10
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Analysis

Hence query for y succeeds with probability 1− 2/10 ≥ 4/5.

Query time:

Hashing y in L tables with g1, g2, . . . , gL where each gi is a k
tuple of basic LSH functions. Hence kL = knρ.

Compute d(y , x) for at most O(L) points so total of O(L)
distance computations.

Amplify success probability to 1− (1/5)t by constructing t copies

Data structure only for one radius r . Need separate data structure
for geometrically increasing values of r in some range [rmin, rmax]
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Part II

LSH for Hamming Cube
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Hamming Distance

n points x1, x2, . . . , xn ∈ {0, 1}d for some large d

dist(x, y) is the number of coordinates in which x, y differ

Recall that minhash and simhash reduce to Hamming distance
estimation

Closely related to more general `1 distance (ideas carry over)

Question: What is a good (r , cr , p1, p2)-LSH? What is ρ?
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LSH for Hamming Cube

Question: What is a good (r , cr , p1, p2)-LSH? What is ρ?

Pick a random coordinate. Hash family = {hi | i = 1, . . . , d}
where hi(x) = xi

Suppose dist(x, y) ≤ r then

Pr[h(x) = h(y)] ≥ (d − r)/d ≥ 1− r/d ' e−r/d

Suppose dist(x, y) ≥ cr then

Pr[h(x) = h(y)] ≤ 1− cr/d ' e−cr/d

Therefore ρ = log p1

log p2
≤ 1/c
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LSH for Hamming Cube

ρ = 1/c

Say c = 2 meaning we are setting for a 2-approximate near neighbor

query time is Õ(d
√

n)

space is Õ(dn + n
√

n)

while exact/brute force requires O(nd) and O(nd). Thus improved
query time at expense of increased space.

Questions:

Is c-approximation good in “high”-dimensions?

Isn’t space a big bottleneck?

Practice: use heuristic choices to settle for reasonable performance.
LSH allows for a high-level non-trivial tradeoff between approximation
and query time which is not apriori obvious
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Part III

LSH for Euclidean Distances
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LSH for Euclidean Distances

Now x1, x2, . . . , xn ∈ Rd and dist(x, y) = ‖x − y‖2

First do dimensionality reduction (JL) to reduce d (if necessary) to
O(log n) (since we are using c-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we
want a hashing approach that makes nearby points more likely to
collide than farther away points.

Projections onto random lines plus bucketing
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LSH for Euclidean Distances

Recall we are interested in (r , cr , p1, p2) lsh family for a radius r

Consider hash family with two parameters ā,w where a is a random
unit vector (line) in Rd and w is a uniform number from [0, r ]

ha,w(x) = b
x · a + w

r
c

In other words we consider r length buckets on the line defined by
vector a where the origin of the bucketing is via a random shift w

ρ < 1/c for this scheme though it is quite close to 1/c .

Can achieve ρ = (1 + o(1)) 1
c2 using more advanced schemes and

this is close to optimal modulo constant factors.
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