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Near-Neighbor Search

Collection of n points P = {xy,...,X,} in a metric space.

NNS: preprocess P to answer near-neighbor queries: given query
point y output arg min . dist(x, y)

c-approximate NINS: given query y, output x such that
dist(x, y) < c min,cp dist(z,y). Here ¢ > 1.
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c-approximate NINS: given query y, output x such that
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Brute force/linear search: when query y comes check all x € P
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Near-Neighbor Search

Collection of n points P = {xy,...,X,} in a metric space.

NNS: preprocess P to answer near-neighbor queries: given query
point y output arg min . dist(x, y)

c-approximate NINS: given query y, output x such that
dist(x, y) < c min,cp dist(z,y). Here ¢ > 1.

Brute force/linear search: when query y comes check all x € P

Beating brute force is hard if one wants near-linear space!
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NNS in Euclidean Spaces

Collection of n points P = {x1,...,x,} in R.
dist(x, y) = ||x — y||2 is Euclidean distance

@ d = 1. Sort and do binary search. O(n) space, O(log n)
query time.

@ d = 2. Voronoi diagram. O(n) space O(log n) query time.

(Figure from Wikipedia)

@ Higher dimensions: Voronoi diagram size grows as nl/2]
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NNS in Euclidean Spaces

Collection of n points P = {x1,...,x,} in R.
dist(x, y) = ||x — y]||2 is Euclidean distance

Assume n and d are large.

@ Linear search with no data structures: @(nd) time, storage is
O(nd)

@ Exact NNS: either query time or space or both are exponential in
dimension d

@ (1 + €)-approximate NNS for dimensionality reduction: reduce d
to O(El2 log n) using JL but exponential in d is still impractical

@ Even for approximate NNS, beating nd query time while keeping
storage close to O(nd) is non-trivial!
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Approximate NNS

Focus on c-approximate NNS for some small ¢ > 1

Simplified problem: given query point y and fixed radius r > 0,
distinguish between the following two scenarios:
@ if there is a point x € P such dist(x, y) < r output a point x’
such that dist(x’, y) < cr
e if dist(x,y) > cr for all x € P then recognize this and fail

Algorithm allowed to make a mistake in intermediate case
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Approximate NNS

Focus on c-approximate NNS for some small ¢ > 1

Simplified problem: given query point y and fixed radius r > 0,
distinguish between the following two scenarios:
@ if there is a point x € P such dist(x, y) < r output a point x’
such that dist(x’, y) < cr
e if dist(x, y) > cr for all x € P then recognize this and fail

Algorithm allowed to make a mistake in intermediate case

Can use binary search and above procedure to obtain c-approximate
NNS.
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Part |

LSH Framework
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LSH Approach for Approximate NNS
[Indyk-Motwani'98]

Initially developed for NNSearch in high-dimensional Euclidean space
and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r, cr, p1, p2)-LSH with p; > p> and
c > 1 if h drawn randomly from the family satisfies the following:

o Pr[h(x) = h(y)] > p1 when dist(x,y) < r pe 0°2°
e Pr[h(x) = h(y)] < p» when dist(x,y) > cr }\;'r o) o
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LSH Approach for Approximate NNS

[Indyk-Motwani'98]

Initially developed for NNSearch in high-dimensional Euclidean space
and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r, cr, p1, p2)-LSH with p; > p> and
c > 1 if h drawn randomly from the family satisfies the following:

@ Pr[h(x) = h(y)] > p1 when dist(x,y) < r
@ Pr[h(x) = h(y)] < p2 when dist(x,y) > cr

Key parameter: the gap between p; and p, measured as p = :‘;g—z;
Pe—
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LSH Example: Hamming Distance
n points Xq, Xz, . . . , Xo € {0,1}9 for some large d

dist(x, y) is the number of coordinates in which x, y differ
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LSH Example: Hamming Distance

n points Xq, Xz, . . . , Xo € {0,1}9 for some large d
dist(x, y) is the number of coordinates in which x, y differ
Question: What is a good (r, cr, p1, p2)-LSH? What is p?

Pick a random coordinate: Hash family = {h; | i =1,...,d}
where h;(x) = x;

@ Suppose dist(x, y) < r then

Prh(x) = h(y)] > (d —r)/d >1—r/d ~e™"/d
@ Suppose dist(x,y) > cr then

Pr[h(x) = h(y)] <1—cr/d ~ e~/
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LSH Example: Hamming Distance

0)00)DOD |
n points X1, X2, . . . , Xp € {0,1} for some large d pllolloo)

dist(x, y) is the number of coordinates in which x, y differ @
Question: What is a good (r, cr, p1, p2)-LSH? What is p?

Pick a random coordinate: Hash family = {h; | i =1,...,d}
where h;(x) = x;

@ Suppose dist(x, y) < r then
Prh(x) = h(y)] > (d —r)/d >1—r/d ~e™"/d
@ Suppose dist(x,y) > cr then
Pr[h(x) = h(y)] <1 —cr/d ~ e=“/¢ I b |
Therefore p = e §‘ Hﬂ»c 5
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LSH Example: 1-d

n points on line and distance is Euclidean -5~
Question: What is a good LSH? ¢k 2> ce
&—s
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LSH Example: 1-d
n points on line and distance is Euclidean
Question: What is a good LSH?

Grid line with cr units.
@ No two far points will be in same bucket and hence p, = 0

@ But close by points may be in different buckets. So do a random
shift of grid to ensure that p; > (1 — 1/c¢).
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LSH Example: 1-d
n points on line and distance is Euclidean
Question: What is a good LSH?

Grid line with cr units.
@ No two far points will be in same bucket and hence p, = 0

@ But close by points may be in different buckets. So do a random
shift of grid to ensure that p; > (1 — 1/c¢).

Main difficulty is in higher dimensions but above idea will play a role.
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LSH Approach for Approximate NNS

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r, cr, p1, p2)-LSH with p; > p> and
c > 1 if h drawn randomly from the family satisfies the following:

@ Pr[h(x) = h(y)] > p1 when dist(x,y) < r
e Pr[h(x) = h(y)] < p2 when dist(x,y) > cr

log p1

Key parameter: the gap between p; and p; measured as p = los ps

usually small.

Two-level hashing scheme:
@ Amplify basic locality sensitive hash family to create better
family by repetition
@ Use several copies of amplified hash functions
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Amplification

Fix some r. Pick k independent hash functions hy, hy, ..., hy. For
each x set

g(x) = hi(x)ha(x) ... he(x)

g(x) is now the larger hash function

o If dist(x, y) < r: Prlg(x) = g(y)] > pf
o If dist(x,y) > cr: Prlg(x) = g(y)] < p§
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Amplification

Fix some r. Pick k independent hash functions hy, hy, ..., hy. For
each x set

g(x) = hi(x)ha(x) ... he(x)
S
P>~
=) k= "[,OS u
‘"l,n}l\,

g(x) is now the larger hash function

o If dist(x,y) < r: Pr[g(x) = g(y)] > p{‘ b |
o If dist(x,y) > cr: Pr[g(x) = < pX = .
t(x,y) [e(x) =) <P ) 1—/\—%’\_

L

Choose k such that p¥ ~ 1/n so that expected number of far awatg
points that collide with query y is < 1. Then p¥ = 1/n?.
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Multiple hash tables

o If dist(x,y) < r: Prlg(x) = g(y)] > p{
o If dist(x,y) > cr: Prlg(x) = g(y)] < p§

Choose k such that pé‘ ~ 1/n so that expected number of far away
points that collide with query y is < 1. Then pf = 1/n”.

k = I'L. Then p¥ = 1/n” which is also small.
og(1/p2) N ) _
To make good point collide with y choose L ~ n” hash functions
———

81+82,.--58L
@ L ~ n” hash tables

@ Storage: nL = n'** (ignoring log factors)
@ Query time: kL = kn” (ignoring log factors)
k- THn
lnpe
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Details

What is the range of each g;? A k tuple
(h1(x), ha(x), . .., hk(x)). Hence depends on range of the h's.

W: 9 — [m)
? ; fm']h
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Details

What is the range of each g;? A k tuple
(h1(x), ha(x), . .., hk(x)). Hence depends on range of the h's.

We leave the range implicit. Say range of g; is [m*] where range of
each h is [m]. We only store non-empty buckets of each g; and

there can be at most n of them. For each g; can use another hash
function £; that maps m* to [n].
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Details

What is the range of each g;? A k tuple
(h1(x), ha(x), . .., hk(x)). Hence depends on range of the h's.

We leave the range implicit. Say range of g; is [m*] where range of
each h is [m]. We only store non-empty buckets of each g; and
there can be at most n of them. For each g; can use another hash
function £; that maps m* to [n].

So what is actually stored?

@ L hash tables one for each g; using chaining

@ Each item x in database is hashed and stored in each of the L
tables.

@ Total storage O(Ln)

@ Time to hash an item: Lk evaluations of basic LSH functions h;
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Query

e X
Given new point y how to query? Rty om0 2

@ Hash y using gi for 1 < i < L

@ For each i check all items in bucket of gj(y) and compute all
their distances and output first item x such that X
dist(x,y) < cr. K P"S:M %,

@ If no item found report FAIL 9 l—\‘f‘l T Tl CTTUT

@ dilys
ML LT TIOID

: !\r ('ﬂ}vxb?‘\m \)J(\'
‘ 7Lr(|\\\ VR W
- Quly)
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Query

Given new point y how to query?

@ Hash y using gi for 1 < i < L

@ For each i check all items in bucket of gj(y) and compute all
their distances and output first item x such that
dist(x,y) < cr.

@ If no item found report FAIL

What if too many items collide with y? How do we bound query
time?

Fix: Stop search after comparing with ©(L) items and report failure
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Analysis
Query correctly fails if no item x such that dist(x, y) < cr
If query outputs a point x then dist(x, y) < cr

Main issue: What is the probability that there be a good point x*
such that dist(:¥ y) < r and algorithm fails?

x 14

ij
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Analysis
Query correctly fails if no item x such that dist(x, y) < cr
If query outputs a point x then dist(x, y) < cr

Main issue: What is the probability that there be a good point x*
such that dist(x, y) < r and algorithm fails?

Two reasons
oms'not collide with y k

@ too many bad points (more than 10L collide with y and cause
A query algorithm to stop and fail without discovering x*)

®
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Analysis

Main issue: What is the probability that there be a good point x*
such that dist(x, y) < r and algorithm fails?
Two reasons

@ x* does not collide with y

@ too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x*)

First issue: L, Mg

Prlgi(x*) = g&(y)] = pf >

If L > 10n” then Pr[g;(x*) # gi(y)Vi] < 1/10.
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Analysis

Main issue: What is the probability that there be a good point x*
such that dist(x, y) < r and algorithm fails?
Two reasons
@ x* does not collide with y
@ too many bad points (more than 10L collide with y and cause
query algorithm to stop and fail without discovering x*)

Second issue: let x be a bad point, that is dist(x, y) > cr

Prlgi(x) = gi(y)] = p¥ < 1/n by choice of k

Hence expected number of bad points that collide with y in any table
is < 1. Hence expected number of bad points that collide with y in
all tables is at most L. By Markov, probability of more than 10L
colliding with y is at most 1/10
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Analysis
Hence query for y succeeds with probability 1 — 2/10 > 4/5.
Query time:

@ Hashing y in L tables with gy, g2, ...,g where each gj is a k
tuple of basic LSH functions. Hence kL = kn?”.

@ Compute d(y, x) for at most O(L) points so total of O(L)
distance computations.

Amplify success probability to 1 — (1/5)* by constructing t copies
Data structure only for one radius r. Need separate data structure

for geometrically increasing values of r in some range [fimins fmax)
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Part Il

LSH for Hamming Cube
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Hamming Distance

d

n points Xq, Xz, . . . , Xo € {0,1}9 for some large d 2 i
=

c
dist(x, y) is the number of coordinates in which x, y differ /(?) la

Recall that minhash and simhash reduce to Hamming distance
estimation

Closely related to more general £; distance (ideas carry over)

Question: What is a good (r, cr, p1, p2)-LSH? What is p?

U=k, = lx»—.%(
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LSH for Hamming Cube

Question: What is a good (r, cr, p1, p2)-LSH? What is p?

Pick a random coordinate. Hash family = {h; | i =1,...,d}
where hifx) = x A=l 1pp1o(10000]
Hs{h-l) Lt,'l-;-') A.d%‘ ( )
L(,L (X)" e he [x)= h: U
H x=%
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LSH for Hamming Cube

Question: What is a good (r, cr, p1, p2)-LSH? What is p?

Pick a random coordinate. Hash family = {h; | i =1,...,d}
where h;(x) = x;

Suppose dist(x, y) < r then
Pr[h(x)_h(y)] > (d_r)/d> l—r/dNQ r/d - P‘

@)
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LSH for Hamming Cube

Question: What is a good (r, cr, p1, p2)-LSH? What is p?

Pick a random coordinate. Hash family = {h; | i =1,...,d}
where h;(x) = x;

Suppose dist(x, y) < r then

Pria(x) = h(y)] > (d —r)/d > 1—r/d ~ e_—'/d/vi

—
Suppose dist(x, y) > cr then z
Prih(x) = h(y)] <1 —cr/d &e “/?
Therefore p = 2821 < 1 /¢ 'nf

log p>
Chandra (UIUC) CS498ABD 21 Fall 2020 21 /25



LSH for Hamming Cube

= i
dn U
Say ¢ =@neaning we are setting for a 2-approximate near neighbor
e query time is O(d+/n &~

@ space is (5 n\/ﬁL 'L
while exact/brute force requires O(nd) and O(nd). Thus improved
query time at expense of increased space.

Sree = L = n'*S
Qug = EL > b0 Aitace
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LSH for Hamming Cube
p=1/c _('7 ,ll‘- c= I\

Say ¢ = 2 meaning we are setting for a 2- approxmaji near neighbor
@ query time is O(d\/_)é—~ ')’lg = g I
@ space is O(dn + n\/_)’r- ‘7114"‘:"

while exact/brute force requires O(nd) and O(nd). Thus improved
query time at expense of increased space.

Questions:
@ Is c-approximation good in “high”-dimensions?
@ Isn't space a big bottleneck?

Practice: use heuristic choices to settle for reasonable performance.
LSH allows for a high-level non-trivial tradeoff between approximation

and query time which is not apriori obvious
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LSH for Euclidean Distances
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LSH for Euclidean Distances

Now X1, X2, - - - , Xo € R? and dist(x, y) = ||x — y||2

First do dimensionality reduction (JL) to reduce d (if necessary) to
O(log n) (since we are using c-approximation anyway)
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LSH for Euclidean Distances
Now X1, X2, - - - , Xo € R? and dist(x, y) = ||x — y||2

First do dimensionality reduction (JL) to reduce d (if necessary) to
O(log n) (since we are using c-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we

want a hashing approach that makes nearby points more likely to
collide than farther away points.
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LSH for Euclidean Distances

Now X1, X2, - - - , Xo € R? and dist(x, y) = ||x — y||2

First do dimensionality reduction (JL) to reduce d (if necessary) to
O(log n) (since we are using c-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we
want a hashing approach that makes nearby points more likely to
collide than farther away points.

Projections onto random lines plus bucketing
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LSH for Euclidean Distances

Recall we are interested in (r, cr, p1, p2) Ish family for a radius r

Consider hash family with two parameters 3, w where a is a random
unit vector (line) in R? and w is a uniform number from [0, r]

X+a+w

haw(x) = Lf]

In other words we consider r length buckets on the line defined by
vector a where the origin of the bucketing is via a random shift w
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LSH for Euclidean Distances

Recall we are interested in (r, cr, p1, p2) Ish family for a radius r

Consider hash family with two parameters 3, w where a is a random
unit vector (line) in R? and w is a uniform number from [0, r]

X+a+w

haw(x) = Lf]

In other words we consider r length buckets on the line defined by
vector a where the origin of the bucketing is via a random shift w

p < 1/c for this scheme though it is quite close to 1/c.
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LSH for Euclidean Distances

Recall we are interested in (r, cr, p1, p2) Ish family for a radius r

Consider hash family with two parameters 3, w where a is a random
unit vector (line) in R? and w is a uniform number from [0, r]
x-a+w

haw(x) = Lf]

In other words we consider r length buckets on the line defined by
vector a where the origin of the bucketing is via a random shift w

p < 1/c for this scheme though it is quite close to 1/c.

Can achieve p = (1 + o(l))é using more advanced schemes and
this is close to optimal modulo constant factors.
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