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Subspace Embeddings for
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection N : RY — R such that for every
x € E, ||Nx|l2 = (1 £ ¢€)||x]2?

@ Not possible if kK < d.

@ Possible if k = £. Pick N to be an orthonormal basis for E.
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of R" of dimension d. Let 1 be a
DJL matrix N € Rk*9 with k = O(;i2 log(1/d)) rows. Then with
probability (1 — &) for every x € E,

1
II\/—F”XIIz = (1 % ¢)|lx]]2-

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Part |

Faster algorithms via subspace
embeddings
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Linear model fitting

An important problem in data analysis

@ n data points

@ Each data point a; € R? and real value b;. We think of
a; = (ai1,ai2,...,3ai,4). Interesting special case is when
d=1.

@ What model should one use to explain the data?
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Linear model fitting

An important problem in data analysis

@ n data points

@ Each data point a; € R? and real value b;. We think of

a; = (ai1,ai2,...,3ai,4). Interesting special case is when
d=1.

@ What model should one use to explain the data?

Simplest model? Affine fitting. b; = oy + 2}1:1 aja; j for some real
numbers a, a1, . . ., g. Can restrict to ag = 0 by lifting to
d + 1 dimensions and hence linear model.
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Linear model fitting

An important problem in data analysis

@ n data points

@ Each data point a; € R? and real value b;. We think of

a; = (ai1,ai2,...,3ai,4). Interesting special case is when
d=1.

@ What model should one use to explain the data?

Simplest model? Affine fitting. b; = oy + 2}1:1 aja; j for some real
numbers a, a1, . . ., g. Can restrict to ag = 0 by lifting to
d + 1 dimensions and hence linear model.

But data is noisy so we won't be able to satisfy all data points even if
true model is a linear model. How do we find a good linear model?
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Regression

@ n data points
e Each data point a; € R? and real value b;. We think of
a; =(ai1,3i2,+++,3id).
Linear model fitting: Find real numbers o, . . ., ag such that

d :
bj ~ 3 ;_, aja; for all points.

Let A be matrix with one row per data point a;. We write
X1, X2, « « « 3 Xg as variables for finding a1, ..., ay.

Ideally: Find x € R? such that Ax = b
Best fit: Find x € RY to minimize Ax — b under some norm.

o [[Ax — b, [|Ax — bl[2, [[Ax — bl|x
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||2. Optimal estimator for certain noise models

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||2.

Interesting when n > d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is

closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||2.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?

@ Find an orthonormal basis z;, z5, ..., z, for the columns of A.

@ Compute projection ¢ of b to column space of A as
c= ij:l(b, zj)z; and output answer as ||b — c||».
@ What is x7?
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Linear least squares/Regression

Linear least squares: Given A € R™9 and b € R? find x to
minimize ||Ax — b||2.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in £, norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?

@ Find an orthonormal basis z;, z5, ..., z, for the columns of A.

@ Compute projection ¢ of b to column space of A as
c= ij:l(b, zj)z; and output answer as ||b — c||».
@ What is x? We know that Ax = c. Solve linear system. Can

combine both steps via SVD and other methods.
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Linear least square: Optimization
perspective

Linear least squares: Given A € R"%? and b € R find x to
minimize ||Ax — b||,.

Optimization: Find x € R? to minimize ||Ax — b||3

|Ax — b||2 = xTATAx — 2b" Ax + b'b
The quadratic function f(x) = xTATAx — 2bTAx + b'b is a
convex function since the matrix AT A is positive semi-definite.

Vif(x) =2ATAx — 2bT A and hence optimum solution x* is given
by x* = (ATA)"1bTA.
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Computational perspective
n large (number of data points), d smaller so A is tall and skinny.
Exact solution requires SVD or other methods. Worst case time nd?.

Can we speed up computation with some potential approximation?
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Linear least squares via Subspace
embeddings

Let AD, A@) . A be the columns of A and let E be the
subspace spanned by {A®M), A@) .. A p}

Note columns are in R” corresponding to n data points

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix 'l with

k = O(gz) rows we reduce {AM, A@) . AW b} to
{AO,A@ A b’} which are vectors in R,

Solve min,,cpa||A’X" — b’||2
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Analysis

With probability (1 — 6),

1— in||Ax—b|| < min |[|A'X' —b||, < (1 in|Ax—b
( e)g}g}” x—b|| _Xr/nelﬂ?dﬂ X ll2 < ( +€)21'R'}|| x—bl|
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Analysis

With probability (1 — 6),

1—€) min||Ax—b|| < min |[|A'x'—b'||, < (1 in||Ax—b
(l=a) wliplabe=t]] < il flarsd =Ll < g ol |2 =te]

With probability (1 — d) via the subpsace embedding guarantee, for
all z € E,

(1 =@zl < [[Nz]l2 < (1 + €)llzl2

Now prove two inequalities in lemma separately using above.
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Analysis
Suppose x* is an optimum solution to miny||Ax — b||>.

Let z = Ax* — b. We have ||Nz||2 < (1 + €)||z||2 since z € E.
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Analysis
Suppose x* is an optimum solution to miny||Ax — b||>.
Let z = Ax* — b. We have ||Nz||2 < (1 + €)||z||2 since z € E.

Since x* is a feasible solution to min, ||A’x" — b’||,

min||A’x"—b'[|2 < ||A'x"—b||2 = ||N(Ax*—b)|[2 < (1+¢€)||Ax"—bl|
x/
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Analysis

For any y € RY, ||MAy — Nb||2 > (1 — €)||Ay — b||2 because
Ay — b is a vector in E and I preserves all of them.
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Analysis

For any y € RY, ||MAy — Nb||2 > (1 — €)||Ay — b||2 because
Ay — b is a vector in E and I preserves all of them.

Let y* be optimum solution to min,/||A’x” — b’||. Then
IN(Ay" — b)[l2 = (1 — €)||Ay* — bll2 = (1 — €)||Ax™ — b||,
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Running time

Reduce problem for d vectors in R” to d vectors in R¥ where

k = 0(d/e).

Computing MA, MNb can be done in nnz(A) via sparse/fast JL (input
sparsity time).

Need to solve least squares on A’, b’ which can be done in

O(d?/€?) time.

Essentially reduce n to d/€2. Useful when n >> d/e€? (for this €
should not be too small)
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Further improvement
Reduced dimension of vectors from R” to R¥ where k = O(d/€?).

For small € a dependence of 1/€2 is not so good. Can we improve?

Can use M with kK = O(d/e).
@ Suffices if N has 1/10-approximate subspace embedding
property and property of preserving matrix multiplication
e (MA)T(MNA) has small condition number
@ Use I that has 1/10-approximate subspace embedding property

and then use gradient descent whose convergence depends on
condition number of A.
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Other uses of JL/subspace embeddings in

numerical linear algebra

@ Approximate matrix multiplication
@ Low rank approximation and SVD

@ Compressed Sensing
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