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F2 estimation in turnstile setting

AMS-`2-Estimate:
Let Y1,Y2, . . . ,Yn be {−1,+1} random variables that are

4-wise independent

z ← 0
While (stream is not empty) do

aj = (ij ,∆j ) is current update

z ← z + ∆jYij
endWhile

Output z2

Claim: Output estimates ||x||22 where x is the vector at end of
stream of updates.

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 25



Analysis

Z =
∑n

i=1 xiYi and output is Z 2

Z 2 =
∑

i

x2
i Y

2
i + 2

∑
i 6=j

xixjYiYj

and hence

E
[
Z 2
]

=
∑

i

x2
i = ||x||22.

One can show that Var(Z 2) ≤ 2(E
[
Z 2
]
)2.
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Linear Sketching View

Recall that we take average of independent estimators and take
median to reduce error. Can we view all this as a sketch?

AMS-`2-Sketch:
k = c log(1/δ)/ε2

Let M be a `× n matrix with entries in {−1, 1} s.t

(i) rows are independent and

(ii) in each row entries are 4-wise independent

z is a `× 1 vector initialized to 0
While (stream is not empty) do

aj = (ij ,∆j ) is current update

z ← z + ∆jMeij
endWhile

Output vector z as sketch.

M is compactly represented via k hash functions, one per row,
independently chosen from 4-wise independent hash family.
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Geometric Interpretation

Given vector x ∈ Rn let M the random map z = Mx has the
following features

E[zi ] = 0 and E
[
z2
i

]
= ‖x‖2

2 for each 1 ≤ i ≤ k where k is
number of rows of M
Thus each z2

i is an estimate of length of x in Euclidean norm

When k = Θ( 1
ε2 log(1/δ)) one can obtain an (1± ε) estimate

of ‖x‖2 by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such
that z contains information to estimate ‖x‖2 accurately

Question: Do we need median trick? Will averaging do?
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Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector x ∈ Rd and let Π ∈ Rk×d matrix where each entry Πij is
chosen independently according to standard normal distribution
N (0, 1) distribution. If k = Ω( 1

ε2 log(1/δ)), then with probability
(1− δ)

‖
1
√

k
Πx‖2 = (1± ε)‖x‖2.

Can choose entries from {−1, 1} as well.
Note: unlike `2 estimation, entries of Π are independent.

Letting z = 1√
k

Πx we have projected x from d dimensions to

k = O( 1
ε2 log(1/δ)) dimensions while preserving length to within

(1± ε)-factor.
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Dimensionality reduction

Theorem (Metric JL Lemma)

Let v1, v2, . . . , vn be any n points/vectors in Rd . For any
ε ∈ (0, 1/2), there is linear map f : Rd → Rk where
k ≤ 8 ln n/ε2 such that for all 1 ≤ i < j ≤ n,

(1− ε)||vi − vj ||2 ≤ ||f (vi)− f (vj)||2 ≤ ||vi − vj ||2.

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π: f (v) = Πv .

Proof.

Apply DJL with δ = 1/n2 and apply union bound to
(n

2

)
vectors

(vi − vj), i 6= j .
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Normal Distribution

Density function: f (x) = 1√
2πσ2

e−
(x−µ)2

2σ2

Standard normal: N (0, 1) is when µ = 0, σ = 1
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Normal Distribution

Cumulative density function for standard normal:
Φ(x) = 1√

2π

∫ t
∞ e−t2/2 (no closed form)
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Sum of independent Normally distributed
variables

Lemma

Let X and Y be independent random variables. Suppose
X ∼ N (µX , σ

2
X ) and Y ∼ N (µY , σ

2
Y ). Let Z = X + Y . Then

Z ∼ N (µX + µY , σ
2
X + σ2

Y ).

Corollary

Let X and Y be independent random variables. Suppose
X ∼ N (0, 1) and Y ∼ N (0, 1). Let Z = aX + bY . Then
Z ∼ N (0, a2 + b2).

Normal distribution is a stable distributions: adding two independent
random variables within the same class gives a distribution inside the
class. Others exist and useful in Fp estimation for p ∈ (0, 2).

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 25



Sum of independent Normally distributed
variables

Lemma

Let X and Y be independent random variables. Suppose
X ∼ N (µX , σ

2
X ) and Y ∼ N (µY , σ

2
Y ). Let Z = X + Y . Then

Z ∼ N (µX + µY , σ
2
X + σ2

Y ).

Corollary

Let X and Y be independent random variables. Suppose
X ∼ N (0, 1) and Y ∼ N (0, 1). Let Z = aX + bY . Then
Z ∼ N (0, a2 + b2).

Normal distribution is a stable distributions: adding two independent
random variables within the same class gives a distribution inside the
class. Others exist and useful in Fp estimation for p ∈ (0, 2).

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 25



Sum of independent Normally distributed
variables

Lemma

Let X and Y be independent random variables. Suppose
X ∼ N (µX , σ

2
X ) and Y ∼ N (µY , σ

2
Y ). Let Z = X + Y . Then

Z ∼ N (µX + µY , σ
2
X + σ2

Y ).

Corollary

Let X and Y be independent random variables. Suppose
X ∼ N (0, 1) and Y ∼ N (0, 1). Let Z = aX + bY . Then
Z ∼ N (0, a2 + b2).

Normal distribution is a stable distributions: adding two independent
random variables within the same class gives a distribution inside the
class. Others exist and useful in Fp estimation for p ∈ (0, 2).

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 25



Concentration of sum of squares of
normally distributed variables

χ2(k) distribution: distribution of sum of k independent standard
normally distributed variables
Y =

∑k
i=1 Zi where each Zi ' N (0, 1).

E
[
Z 2

i

]
= 1 hence E[Y ] = k .

Lemma

Let Z1,Z2, . . . ,Zk be independent N (0, 1) random variables and
let Y =

∑
i Z

2
i . Then, for ε ∈ (0, 1/2), there is a constant c such

that,

Pr[(1− ε)2k ≤ Y ≤ (1 + ε)2k] ≥ 1− 2ecε2k .
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χ2 distribution

Density function
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χ2 distribution

Cumulative density function
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Concentration of sum of squares of
normally distributed variables

χ2(k) distribution: distribution of sum of k independent standard
normally distributed variables

Lemma

Let Z1,Z2, . . . ,Zk be independent N (0, 1) random variables and
let Y =

∑
i Z

2
i . Then, for ε ∈ (0, 1/2), there is a constant c such

that, Pr[(1− ε)2k ≤ Y ≤ (1 + ε)2k] ≥ 1− 2ecε2k .

Recall Chernoff-Hoeffding bound for bounded independent
non-negative random variables. Z 2

i is not bounded, however
Chernoff-Hoeffding bounds extend to sums of random variables with
exponentially decaying tails.
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Proof of DJL Lemma

Without loss of generality assume ‖x‖2 = 1 (unit vector)

Zi =
∑n

j=1 Πijxi

Zi ∼ N (0, 1)

Let Y =
∑k

i=1 Z 2
i . Y ’s distribution is χ2 since Z1, . . . ,Zk are

iid.

Hence Pr[(1− ε)2k ≤ Y ≤ (1 + ε)2k] ≥ 1− 2ecε2k

Since k = Ω( 1
ε2 log(1/δ)) we have

Pr[(1− ε)2k ≤ Y ≤ (1 + ε)2k] ≥ 1− δ
Therefore ‖z‖2 =

√
Y /k has the property that with

probability (1− δ), ‖z‖2 = (1± ε)‖x‖2.
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JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we
do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.
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Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes Θ(kd) time.

Question: Can we find Π to improve time bound?

Two scenarios: x is dense and x is sparse

Known results:

Choose Πij to be {−1, 0, 1} with probability 1/6, 1/3, 1/6.
Also works. Roughly 1/3 entries are 0

Fast JL: Choose Π in a dependent way to ensure Πx can be
computed in O(d log d + k2) time. For dense x .

Sparse JL: Choose Π such that each column is s-sparse. The
best known is s = O(1

ε
log(1/δ)). Helps in sparse x .
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Part I

(Oblivious) Subspace
Embeddings
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Subspace Embedding

Question: Suppose we have linear subspace E of Rd of dimension `.
Can we find a projection Π : Rd → Rk such that for every x ∈ E ,
‖Πx‖2 = (1± ε)‖x‖2?

Not possible if k < `. Why? Π maps E to a lower dimension.
Implies some non-zero vector x ∈ E mapped to 0

Possible if k = `. Why? Pick Π to be an orthonormal basis for
E . Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn of dimension d . Let Π be a
DJL matrix Π ∈ Rk×n with k = O( d

ε2 log(1/δ)) rows. Then with
probability (1− δ) for every x ∈ E ,

‖
1
√

k
Πx‖2 = (1± ε)‖x‖2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Proof Idea

How do we prove that Π works for all x ∈ E which is an infinite set?

Several proofs but one useful argument that is often a starting
hammer is the “net argument”

Choose a large but finite set of vectors T carefully (the net)

Prove that Π preserves lengths of vectors in T (via naive union
bound)

Argue that any vector x ∈ E is sufficiently close to a vector in
T and hence Π also preserves length of x
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Net argument

Sufficient to focus on unit vectors in E . Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

Claim: There is a net T of size eO(d) such that preserving lengths
of vectors in T suffices.

Assuming claim: use DJL with k = O( d
ε2 log(1/δ)) and union

bound to show that all vectors in T are preserved in length up to
(1± ε) factor.
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Net argument

Sufficient to focus on unit vectors in E .

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

A weaker net:

Consider the box [−1, 1]d and make a grid with side length ε/d
Number of grid vertices is (2d/ε)d

Sufficient to take T to be the grid vertices

Gives a weaker bound of O( 1
ε2 d log(d/ε)) dimensions

A more careful net argument gives tight bound
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Net argument: analysis

Fix any x ∈ E such that ‖x‖2 = 1 (unit vector)
There is grid point y such that ‖y‖2 ≤ 1 and x is close to y
Let z = x − y . We have |zi | ≤ ε/d for 1 ≤ i ≤ i ≤ d and
zi = 0 for i > d

‖Πx‖ = ‖Πy + Πz‖ ≤ ‖Πy‖+ ‖Πz‖

≤ (1 + ε) + (1 + ε)
d∑

i=1

|zi |

≤ (1 + ε) + ε(1 + ε) ≤ 1 + 3ε

Similarly ‖Πx‖ ≥ 1− O(ε).
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Application of Subspace Embeddings

Faster algorithms for approximate

matrix multiplication

regression

SVD

Basic idea: Want to perform operations on matrix A with n data
columns (say in large dimension Rh) with small effective rank d .
Want to reduce to a matrix of size roughly Rd×d by spending time
proportional to nnz(A).

Later in course.
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