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F2 estimation in turnstile setting

AMS-`2-Estimate:

Let Y1,Y2, . . . ,Yn be {�1,+1} random variables that are

4-wise independent

z  0

While (stream is not empty) do

aj = (ij ,�j ) is current update

z  z + �jYij

endWhile

Output z2

Claim: Output estimates ||x||2
2
where x is the vector at end of

stream of updates.
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Analysis

Z =
P

n

i=1
xiYi and output is Z

2

Z
2
=

X

i

x
2

i
Y

2

i
+ 2

X

i 6=j

xixjYiYj

and hence
E

⇥
Z

2
⇤
=

X

i

x
2

i
= ||x||2

2
.

One can show that Var(Z
2
)  2(E

⇥
Z

2
⇤
)
2.
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Linear Sketching View

Recall that we take average of independent estimators and take
median to reduce error. Can we view all this as a sketch?

AMS-`2-Sketch:
k = c log(1/�)/✏2

Let M be a `⇥ n matrix with entries in {�1, 1} s.t

(i) rows are independent and

(ii) in each row entries are 4-wise independent

z is a `⇥ 1 vector initialized to 0

While (stream is not empty) do

aj = (ij ,�j ) is current update

z  z + �jMeij

endWhile

Output vector z as sketch.

M is compactly represented via k hash functions, one per row,
independently chosen from 4-wise independent hash family.
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Geometric Interpretation

Given vector x 2 Rn let M the random map z = Mx has the
following features

E[zi ] = 0 and E

⇥
z
2

i

⇤
= kxk2

2
for each 1  i  k where k is

number of rows of M

Thus each z
2

i
is an estimate of length of x in Euclidean norm

When k = ⇥(
1

✏2
log(1/�)) one can obtain an (1± ✏) estimate

of kxk2 by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such
that z contains information to estimate kxk2 accurately

Question: Do we need median trick? Will averaging do?
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Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector x 2 Rd
and let ⇧ 2 Rk⇥d

matrix where each entry ⇧ij is

chosen independently according to standard normal distribution

N (0, 1) distribution. If k = ⌦(
1

✏2
log(1/�)), then with probability

(1� �)

k
1
p

k
⇧xk2 = (1 ± ✏)kxk2.

Can choose entries from {�1, 1} as well.
Note: unlike `2 estimation, entries of ⇧ are independent.

Letting z =
1p
k
⇧x we have projected x from d dimensions to

k = O(
1

✏2
log(1/�)) dimensions while preserving length to within

(1 ± ✏)-factor.
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Dimensionality reduction

Theorem (Metric JL Lemma)

Let v1, v2, . . . , vn be any n points/vectors in Rd
. For any

✏ 2 (0, 1/2), there is linear map f : Rd ! Rk
where

k  8 ln n/✏2 such that for all 1  i < j  n,

(1� ✏)||vi � vj ||2  ||f (vi)� f (vj)||2  ||vi � vj ||2.

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix ⇧: f (v) = ⇧v .

Proof.

Apply DJL with � = 1/n2 and apply union bound to
�
n

2

�
vectors

(vi � vj), i 6= j .
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DJL and Metric JL

Key advantage: mapping is oblivious to data!
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Normal Distribution

Density function: f (x) =
1p
2⇡�2

e
� (x�µ)

2

2�2

Standard normal: N (0, 1) is when µ = 0,� = 1
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Normal Distribution

Cumulative density function for standard normal:
�(x) =

1p
2⇡

R
t

1 e
�t2/2 (no closed form)
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Sum of independent Normally distributed

variables

Lemma

Let X and Y be independent random variables. Suppose

X ⇠ N (µX ,�2

X
) and Y ⇠ N (µY ,�2

Y
). Let Z = X + Y . Then

Z ⇠ N (µX + µY ,�2

X
+ �2

Y
).

Corollary

Let X and Y be independent random variables. Suppose

X ⇠ N (0, 1) and Y ⇠ N (0, 1). Let Z = aX + bY . Then

Z ⇠ N (0, a2
+ b

2
).

Normal distribution is a stable distributions: adding two independent
random variables within the same class gives a distribution inside the
class. Others exist and useful in Fp estimation for p 2 (0, 2).
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Concentration of sum of squares of

normally distributed variables

�2
(k) distribution: distribution of sum of k independent standard

normally distributed variables
Y =

P
k

i=1
Zi where each Zi ' N (0, 1).

E

⇥
Z

2

i

⇤
= 1 hence E[Y ] = k .

Lemma

Let Z1,Z2, . . . ,Zk be independent N (0, 1) random variables and

let Y =
P

i
Z

2

i
. Then, for ✏ 2 (0, 1/2), there is a constant c such

that,

Pr[(1� ✏)2k  Y  (1 + ✏)2k] � 1� 2e
c✏2k .
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�2
distribution

Density function
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�2
distribution

Cumulative density function
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Concentration of sum of squares of

normally distributed variables

�2
(k) distribution: distribution of sum of k independent standard

normally distributed variables

Lemma

Let Z1,Z2, . . . ,Zk be independent N (0, 1) random variables and

let Y =
P

i
Z

2

i
. Then, for ✏ 2 (0, 1/2), there is a constant c such

that, Pr[(1� ✏)2k  Y  (1 + ✏)2k] � 1� 2e
c✏2k .

Recall Cherno↵-Hoe↵ding bound for bounded independent
non-negative random variables. Z

2

i
is not bounded, however

Cherno↵-Hoe↵ding bounds extend to sums of random variables with
exponentially decaying tails.
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Proof of DJL Lemma

Without loss of generality assume kxk2 = 1 (unit vector)

Zi =
P

n

j=1
⇧ijxi

Zi ⇠ N (0, 1)

Let Y =
P

k

i=1
Z

2

i
. Y ’s distribution is �2 since Z1, . . . ,Zk are

iid.

Hence Pr[(1� ✏)2k  Y  (1 + ✏)2k] � 1� 2e
c✏2k

Since k = ⌦(
1

✏2
log(1/�)) we have

Pr[(1� ✏)2k  Y  (1 + ✏)2k] � 1� �

Therefore kzk2 =
p

Y /k has the property that with
probability (1� �), kzk2 = (1 ± ✏)kxk2.
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JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we
do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.
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Fast JL and Sparse JL

Projection matrix ⇧ is dense and hence ⇧x takes ⇥(kd) time.

Question: Can we find ⇧ to improve time bound?

Two scenarios: x is dense and x is sparse

Known results:

Choose ⇧ij to be {�1, 0, 1} with probability 1/6, 1/3, 1/6.
Also works. Roughly 1/3 entries are 0

Fast JL: Choose ⇧ in a dependent way to ensure ⇧x can be
computed in O(d log d + k

2
) time. For dense x .

Sparse JL: Choose ⇧ such that each column is s-sparse. The
best known is s = O(

1

✏
log(1/�)). Helps in sparse x .
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viii. . .tn → vi. be' , - . .vn
'

k.

End Rk
- - - I

iii. ui
'

I' fifaOded) un
'

i



Fast JL and Sparse JL

Projection matrix ⇧ is dense and hence ⇧x takes ⇥(kd) time.

Question: Can we find ⇧ to improve time bound?

Two scenarios: x is dense and x is sparse

Known results:

Choose ⇧ij to be {�1, 0, 1} with probability 1/6, 1/3, 1/6.
Also works. Roughly 1/3 entries are 0

Fast JL: Choose ⇧ in a dependent way to ensure ⇧x can be
computed in O(d log d + k

2
) time. For dense x .

Sparse JL: Choose ⇧ such that each column is s-sparse. The
best known is s = O(

1

✏
log(1/�)). Helps in sparse x .

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 25

ooo L'

=



Part I

(Oblivious) Subspace

Embeddings
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Subspace Embedding

Question: Suppose we have linear subspace E of Rn of dimension
d . Can we find a projection ⇧ : Rn ! Rk such that for every
x 2 E , k⇧xk2 = (1 ± ✏)kxk2?

Not possible if k < d . Why? ⇧ maps E to a lower dimension.
Implies some non-zero vector x 2 E mapped to 0

Possible if k = d . Why? Pick ⇧ to be an orthonormal basis for
E . Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn
of dimension d . Let ⇧ be a

DJL matrix ⇧ 2 Rk⇥n
with k = O(

d

✏2
log(1/�)) rows. Then with

probability (1� �) for every x 2 E ,

k
1
p

k
⇧xk2 = (1 ± ✏)kxk2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Proof Idea

How do we prove that ⇧ works for all x 2 E which is an infinite set?

Several proofs but one useful argument that is often a starting
hammer is the “net argument”

Choose a large but finite set of vectors T carefully (the net)

Prove that ⇧ preserves lengths of vectors in T (via naive union
bound)

Argue that any vector x 2 E is su�ciently close to a vector in
T and hence ⇧ also preserves length of x

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 25
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Net argument

Su�cient to focus on unit vectors in E . Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

Claim: There is a net T of size e
O(d) such that preserving lengths

of vectors in T su�ces.

Assuming claim: use DJL with k = O(
d

✏2
log(1/�)) and union

bound to show that all vectors in T are preserved in length up to
(1 ± ✏) factor.
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Net argument

Su�cient to focus on unit vectors in E .

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

A weaker net:

Consider the box [�1, 1]d and make a grid with side length ✏/d

Number of grid vertices is (2d/✏)d

Su�cient to take T to be the grid vertices

Gives a weaker bound of O(
1

✏2
d log(d/✏)) dimensions

A more careful net argument gives tight bound
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Net argument: analysis

Fix any x 2 E such that kxk2 = 1 (unit vector)
There is grid point y such that kyk2  1 and x is close to y

Let z = x � y . We have |zi |  ✏/d for 1  i  i  d and
zi = 0 for i > d

k⇧xk = k⇧y + ⇧zk  k⇧yk+ k⇧zk

 (1 + ✏) + (1 + ✏)
dX

i=1

|zi |

 (1 + ✏) + ✏(1 + ✏)  1 + 3✏

Similarly k⇧xk � 1� O(✏).
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Application of Subspace Embeddings

Faster algorithms for approximate

matrix multiplication

regression

SVD

Basic idea: Want to perform operations on matrix A with n data
columns (say in large dimension Rh) with small e↵ective rank d .
Want to reduce to a matrix of size roughly Rd⇥d by spending time
proportional to nnz(A).

Later in course.
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