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F»> estimation in turnstile setting

AMS-£¢,-Estimate:

Let Y1, Y2,..., Y, be {—1,+1} random variables that are
4-wise independent
z+0

While (stream is not empty) do
aj = (ij, Aj) is current update
Z<4+—z+ Aj Y,J

endWhile

Output 22

Claim: Output estimates ||x]||3 where x is the vector at end of
stream of updates.

X1 2-
[\’] YV - YMJ X1 = Z z
LU A | :
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Analysis
Z =", xY:and output is Z?

22 =) XY 42> xixYiY;
i iZj

E[Z%] = Zx,? = |x||3.

and hence

One can show that Var(Z?) < 2(E[Z?])%
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Linear Sketching View

Recall that we take average of independent estimators and take
median to reduce error. Can we view all this as a sketch?

AMS-£,-Sketch:
k = clog(1/6)/€?
Let M be a £ X n matrix with entries in {—1,1} s.t
(i) rows are independent and
(ii) in each row entries are 4-wise independent

z is a £ X 1 vector initialized to 0
While (stream is not empty) do
aj = (ij, Aj) is current update
zZ<+—z+ AjMe,-j
endWhile
Output vector z as sketch.

M is compactly represented via k hash functions, one per row,
independently chosen from 4-wise independent hash family.
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Geometric Interpretation

Given vector x € R" let M the random map z = Mx has the
following features
® E[z] =0 and E[z?] = ||x]||3 for each 1 < i < k where k is
number of rows of M
@ Thus each z,.2 is an estimate of length of x in Euclidean norm
@ When k = @(61—2 log(1/6)) one can obtain an (1 &£ €) estimate
of ||x]||2 by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such
that z contains information to estimate ||x||» accurately
/31 i‘f—r

M
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Geometric Interpretation

Given vector x € R" let M the random map z = Mx has the
following features
® E[z] =0 and E[z?] = ||x]||3 for each 1 < i < k where k is
number of rows of M
@ Thus each z,.2 is an estimate of length of x in Euclidean norm
@ When k = (9(61—2 log(1/6)) one can obtain an (1 &£ €) estimate
of ||x]||2 by averaging and median ideas
Thus we are able to compress x into k-dimensional vector z such
that z contains information to estimate ||x||, accurately

Question: Do we need median trick? Will averaging do?
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Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector x € R? and let M € R¥*9 matrix where each entry N;; is
chosen independently according to standard normal distribution
N(0,1) distribution. If k = Q(el2 log(1/4)), then with probability
(1-9)

(12) IRl & I 3=Nxl 81

Can choose entries from {—1,1} as well.
Note: unlike £5 estimation, entries of I are independent.

Letting z = %I’Ix we have projected x from d dimensions to

k= O(el2 log(1/4)) dimensions while preserving length to within
(1 £ €)-factor.
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Dimensionality reduction

Theorem (Metric JL Lemma)

Let vi, va, ..., V, be any n points/vectors in RY. For any
€ € (0,1/2), there is linear map f : R — Rk where
k < 8Inn/e? such that forall1 < i < j < n,
(11E)
(1 = &)llvi — vill2 < [IF(vi) = F(v)ll2 < [lvi — vjll2-

Moreover f can be obtained in randomized polynomial-time.

Linear map f is S|mp|y given by random matrix M: f(v) = Nv.

oy Hegmth
o S G,
/ ~ < u! =0yl
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Dimensionality reduction

Theorem (Metric JL Lemma)

Let vi, va, ..., V, be any n points/vectors in RY. For any
€ € (0,1/2), there is linear map f : R — Rk where
k < 8Inn/e? such that forall1 < i < j < n,

(1 = €&)llvi — vjll2 < [If(vi) = F(v)ll2 < [lvi = vjl]2-

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix M: f(v) = Mv.

Apply DJL with & = 1/n? and apply union bound to ('2') vectors
(vi—v) i #J. O
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DJL and Metric JL

Key advantage: mapping is oblivious to data!
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Normal Distribution

e

V2ro?

Density function: f(x) =

Standard normal: A/(0,1) is when p =0,0 =1

—
—

10 I I

0.8

0.0
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Normal Distribution

Cumulative density function for standard normal:
— 1 t _—t2/2
®(x) = 5= [, e™"/? (no closed form)
_

1.0

0.8

7~ 0.6

0.2

0.0
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Sum of independent Normally distributed
variables

Let X and Y be independent random variables. Suppose
X ~ N(px,0%) and Y ~ N(pny,0%). Let Z= X+ Y. Then
Z ~ N(NX + NY’O'E( + U%’)
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Sum of independent Normally distributed

variables

Lemma

Let X and Y be independent random variables. Suppose

X ~ N(px,0%) and Y ~ N(pny,0%). Let Z= X+ Y. Then

Z NN(NX +NY’0'§( +0’%’)'

Corollary

Let X and Y be independent random variables. Suppose
X ~N(0,1) and Y ~ N(0,1). Let Z = aX + bY.
Z ~ N(0,a% + b?).

Then
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Sum of independent Normally distributed
variables

Lemma

Let X and Y be independent random variables. Suppose
X ~ N(px,0%) and Y ~ N(pny,0%). Let Z= X+ Y. Then
Z ~ N(H’X + ,u,y,O'E( + 0%’)

Corollary

Let X and Y be independent random variables. Suppose
X ~N(0,1) and Y ~ N(0,1). Let Z = aX + bY. Then
Z ~ N(0,a% + b?).

Normal distribution is a stable distributions: adding two independent
random variables within the same class gives a distribution inside the
class. Others exist and useful in F, estimation for p € (0, 2).
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Concentration of sum of squares of
normally distributed variables

x2(k) distribution: distribution of sum of k independent standard
normally distributed variables
Y = Y%, Z; where each Z; ~ N(0, 1).
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Concentration of sum of squares of
normally distributed variables

x2(k) distribution: distribution of sum of k independent standard

normally distributed variables
Y = Zf:l Z,?Where each Z; ~ N(0,1). 3 [-?,_ )fD
E[Zﬂ = 1 hence E[Y] = k.

—
——
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Concentration of sum of squares of
normally distributed variables

x2(k) distribution: distribution of sum of k independent standard
normally distributed variables

Y = Y%, Z; where each Z; ~ N(0, 1).

E[Z?] =1 hence E[Y] = k.

Lemma

Let Zy, Z,, ..., Zx be independent N'(0, 1) random variables and
let Y =", Z?. Then, for e € (0,1/2), there is a constant ¢ such
that,

—

Prl(1 — €2k < Y < (14 €)%k] > 1 — 2&°%,
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x? distribution

Density function

fi(w)
0.5 1

0.47
0.3 71
0.27

0.11

0.0
0

Chandra (UIUC)

CS498ABD 13

T[T T

I

I

O© O =W

Fall 2020

13/ 25



x? distribution

Cumulative density function
Fk(l‘) 2
1.01

0.8
0.6 1

0.47

O O =W N =

0.2 1
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Concentration of sum of squares of
normally distributed variables

x2(k) distribution: distribution of sum of k independent standard
normally distributed variables

Let Zy, Z,, ..., Zx be independent N'(0, 1) random variables and
let Y =3, Z2. Then, for e € (0,1/2), there is a constant c such

2 2 ce?k
that,Pr[(l—e)Pl_<§Y§(1+e)£]21—2e .

Recall Chernoff-Hoeffding bound for bounded independent
non-negative random variables. Z,.2 is not bounded, however
Chernoff-Hoeffding bounds extend to sums of random variables with
exponentially decaying tails.
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Proof of DJL Lemma

Without loss of generality assume ’|‘|x||2 =1 (-unit \\’/‘ector) < Eﬂh
Z = Mjx; ""’_" HIBEL
ZJ ! ZL - - X = 2+
e (= . :
o Z,' ~ N(O, 1) ) ‘ZA’—
— kxw
~ X
[ A @

(-3IRl g || \JF: T xll, £ (e 1A
A P""“l' O-~) paen
’ﬁﬂ ~ /U[D/l)- kex ;L; e I
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Proof of DJL Lemma

Without loss of generality assum unit vector)

Zi =30 Mg @ Zﬂq XJ

o Z ~N(0,1) ZEX:
o Let Y = Z, 1 22 Y's distribution is X(Hsmce Ziy...y 2y are

iid. -€|
e

2, <
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Proof of DJL Lemma

Without loss of generality assume ||x||2 = 1 (unit vector)

Z; = ZJ X = l
—_— = ?‘;
(*]

i~ N(Oa 1)
o let Y = Zle Z?. Y's distribution is x? since Zy, ..., Z are
id.
o Hence Pr[(1 — €)?k < Y < (1 + €)%k] > 1 — 26
—C 3% 1L
£

"Ze
> |- £
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Proof of DJL Lemma

Without loss of generality assume ||x||2 = 1 (unit vector)
Z; =37 Nyx

("] Z,NN(O,].)

o let Y = Zle Z?. Y's distribution is x? since Zy, ..., Z are
id.

o Hence Pr[(1 — €)?k < Y < (1 + €)2k] > 1 — 2e°k
@ Since k = Q(El—2 log(1/6)) we have
Pril — )’k <Y <(1+4+¢€)k]>1-4
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Proof of DJL Lemma

Without loss of generality assume ||x||2 = 1 (unit vector)
Z; =30 Nyx

1 Z,' ~ N(O, 1)

o let Y = Zle Z?. Y's distribution is x? since Zy, ..., Z are
id.

o Hence Pr[(1 — €)?k < Y < (1 + €)2k] > 1 — 2e°k

@ Since k = Q(El—2 log(1/6)) we have
Pril —e)2%k <Y <(1+¢€)3?k]>1-6

o Therefore ||z||2 = /Y /k has the property that with
probability (1 — 6), ||z]]2 = (1 £ €)||x]|2.
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JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we
do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.
n VCU{A:/' n ﬂ- — N wedn
/Z_k k= Ldun

;)
¢k p&(z{;‘;w
o
P [\,um
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Fast JL and Sparse JL

Projection matrix I is dense and hence Mx takes O (kd) time.
Question: Can we find I to improve time bound?

Two scenarios: x is dense and x is sparse
~ - o
Vi, Vy -V - VI ,V,) 'ym k.

,,ML"L T . x

e vl IR O
— - - | | = =
OQAJ-JW -(
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Fast JL and Sparse JL

Projection matrix I is dense and hence Mx takes O (kd) time.
Question: Can we find@o improve time bound

Two scenarios: @is dense and@s sparse

Known results:

@ Choose Nj; to be {—1,0, 1} with probability 1/6,1/3,1/6.
Also works. Roughly 1/3 entries are 0

ARRES

|

\

@ Fast JL: Choose N in a dependent way to ensure MNx can be
computed in O(d log d + k?) time. For dense x.
—_——

@ Sparse JL: Choose N such that each column is s-sparse. The
best known is s = O(% log(1/4)). Helps in sparse x.
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Part |

(Oblivious) Subspace
Embeddings

Chandra (UIUC) CS498ABD 19 Fall 2020 19 /25



Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection I : R" — R¥ such that for every
x € E, ||Nx|l2 = (1 £ ¢€)||x]2?
n
X a,uwh; ua ﬂ- — L
Nix e

Tutn. //7/-;//, x M xl, yen.

Ral
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection M : R" — R&such that for every

x € E, [[Nx|l2 = (1 £ €)][x][2? -
_ —_—

@ Not possible if k < d. Why?

P

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 25



Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection I : R" — R¥ such that for every
x € E, [[Nx]l2 = (1 £ €)|lx][2?

@ Not possible if k < d. Why? T1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection I : R" — R¥ such that for every
x € E, [[Nx]l2 = (1 £ €)|lx][2?

@ Not possible if k < d. Why? T1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0

@ Possible if k = d. Why?
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection I : R" — R¥ such that for every
x € E, [[Nx]l2 = (1 £ €)|lx][2?

@ Not possible if k < d. Why? T1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0

@ Possible if k = d. Why? Pick I to be an orthonormal basis for
E.
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection I : R" — R¥ such that for every
x € E, ||Nx|l2 = (1 £ ¢€)||x]2?

@ Not possible if k < d. Why? T1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0

@ Possible if k = d. Why? Pick I to be an orthonormal basis for
E. Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.
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Subspace Embedding

Question: Suppose we have linear subspace E of R" of dimension
d. Can we find a projection I : R" — R¥ such that for every
x € E, ||Nx|l2 = (1 £ ¢€)||x]2?

@ Not possible if k < d. Why? T1 maps E to a lower dimension.
Implies some non-zero vector x € E mapped to 0

@ Possible if k = d. Why? Pick I to be an orthonormal basis for
E. Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of R" of dimension d. Let 1 be a
DJL matrix M € Rk*" with k = O(g2 log(1/6)) rows. Then with
probability (1 — &) for every x € E,

1
II\/—F”XIIz = (1 % ¢)|lx]]2-

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Proof Idea

How do we prove that I'l works for all x € E which is an infinite set?

Several proofs but one useful argument that is often a starting
hammer is the “net argument”

@ Choose a large but finite set of vectors T carefully (the net)

@ Prove that I preserves lengths of vectors in T (via naive union
bound)

@ Argue that any vector x € E is sufficiently close to a vector in
T and hence I also preserves length of x

/ >
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Net argument

Sufficient to focus on unit vectors in E. Why?

A~
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Net argument
Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

£ots liveae hlipe 7 A-dewr 1w
i
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Net argument
Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

Claim: There is a net T of size e9(9) such that preserving lengths

d

of vectors in T suffices. —
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Net argument
Sufficient to focus on unit vectors in E. Why?

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

Claim: There is a net T of sizuch thaﬂpreserving lengths
of vectors in T suffices. “— 4{
J Alad.

Assuming claim: use DJL with k = O(d log(1/6)) and union
bound to show that all vectors in T are preserved in length up to

(1 % €) factor.
i xed vecha o
“I JD__ |~ axp("f-(-)
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Net argument

Sufficient to focus on unit vectors in E.

Also assume wlog and ease of notation that E is the subspace formed
by the first d coordinates in standard basis.

A weaker net:

@ Consider the box [—1, 1] and make a grid with side length €/d
@ Number of grid vertices is (2d/€)?

o Sufficient to take T to be the grid vertices

@ Gives a weaker bound of O(elzd log(d/€)) dimensions

@ A more careful net argument gives tight bound
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Net argument: analysis

Fix any x_€ E such that ||x||2 = 1 (unit vector)

There is grid point y such that ||y||2 < 1 and x is close to y
Let z=x — y. We have |z;| <€/d for1 <i < i< d and
zi=0fori>d =
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Net argument: analysis

Fix any x € E such that ||x||2 = 1 (unit vector)
There is grid point y such that ||y||2 < 1 and x is close to y
Let z=x —y. We have |z;| < €/dforl <i<i<dand

zi=0fori>d - -
“W d}' zlel"‘e,ev
IMx|l = (INy +Nz[| < [INy[[ + [[Nz]

_—

— d

< (1+a9+(1+e)) la

< (I+9+e(l+e<1+3e
ABxll > 1-2¢ \Tyllz (-l

> [I*Q)?T-C) > ';Zﬁ

Chandra (UIUC) CS498ABD 25 Fall 2020 25/ 25



Net argument: analysis

Fix any x € E such that ||x||2 = 1 (unit vector)

There is grid point y such that ||y||2 < 1 and x is close to y
Let z=x —y. We have |z;| < €/dforl <i<i<dand
zi=0fori>d

Mx]| =[Ny +Nz[ < |Ay]| + |[Nz]]

d
(1+e)+(1+e)_Z|z,-|

I+e)+e(l+e€) <1+ 3¢

IA

IA

Similarly [|[Mx|| > 1 — O(e).
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Application of Subspace Embeddings

Faster algorithms for approximate
@ matrix multiplication
@ regression
e SVD

Basic idea: Want to perform operations on matrix A with n data
columns (say in large dimension R") with small effective rank d.
Want to reduce to a matrix of size roughly R¥%9 by spending time

proportional to nnz(A). ,,. TI— o 'Djb
5 ﬂ“ L “““““"

Later in course. ,

e 1)
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