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Models

Richer model:

Want to estimate a function of a vector x 2 Rn which is
initially assume to be the all 0’s vector.

Each element ej of a stream is a tuple (ij ,�j) where ij 2 [n]

and �i 2 R is a real-value: this updates xij to xij + �j . (�j
can be positive or negative)

�j > 0: cash register model. Special case is �j = 1.

�j arbitrary: turnstile model

�j arbitrary but x � 0 at all times: strict turnstile model

Sliding window model: interested only in the last W items
(window)
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Frequent Items Problem

What is Fk when k =1?

Maximum frequency.

F1 very brittle and hard to estimate with low memory. Can show
strong lower bounds for very weak relative approximations.

Hence settle for weaker (additive) guarantees.

Heavy Hitters Problem: Find all items i such that fi > m/k for
some fixed k .

Heavy hitters are very frequent items.
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Finding Majority Element

Majority element problem:

O✏ine: given an array/list A of m integers, is there an element
that occurs more than m/2 times in A?

Streaming: is there an i such that fi > m/2?
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Finding Majority Element

Streaming-Majority:

c = 0, s  null
While (stream is not empty) do

If (ej = s) do

c  c + 1

ElseIf (c = 0)

c = 1

s = ej
Else

c  c � 1

endWhile

Output s, c

Claim: If there is a majority element i then algorithm outputs s = i

and c � fi �m/2.
Caveat: Algorithm may output incorrect element if no majority
element. Can verify correctness in a second pass.
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Misra-Gries Algorithm

Heavy Hitters Problem: Find all items i such that fi > m/k .

MisraGreis(k):
D is an empty associative array

While (stream is not empty) do

ej is current item

If (ej is in keys(D))

D[ej ] D[ej ] + 1

Else if (|keys(A)| < k � 1) then

D[ej ] 1

Else

for each ` 2 keys(D) do

D[`] D[`]� 1

Remove elements from D whose counter values are 0

endWhile

For each i 2 keys(D) set f̂i = D[i ]
For each i 62 keys(D) set f̂i = 0

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 1

€



1<=3
1. 2,1 , 4,5, 1,2310, 1) 3,534 .

- -

I -- 2 I*=o I, -0 fi
I

E- = ' II



Analysis

Space usage O(k).

Theorem

For each i 2 [n]: fi � m
k+1
 f̂i  fi .

Corollary

Any item with fi > m/k is in D at the end of the algorithm.

A second pass to verify can be used to verify correctness of elements
in D.
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Proof of Correctness

Theorem

For each i 2 [n]: fi � m
k+1
 f̂i  fi .

Easy to see: f̂i  fi . Why?

Alternative view of algorithm:

Maintains counts C [i ] for each i (initialized to 0). Only k are
non-zero at any time.

When new element ej comes
If C [ej ] > 0 then increment C [ej ]

ElseIf less then k positive counters then set C [ej ] = 1

Else decrement all positive counters (exactly k of them)

Output f̂i = C [i ] for each i
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Proof of Correctness

Want to show: fi � f̂i  m/(k + 1):

Suppose we have ` occurrences of k counters being
decremented. Then `k + `  m which implies `  m/(k +1).

Consider ↵ = (fi � f̂i) as items are processed. Initially 0. How
big can it get?

If ej = i and C [i ] is incremented ↵ stays same
If ej = i and C [i ] is not incremented then ↵ increases by one
and k counters decremented — charge to `
If ej 6= i and ↵ increases by 1 it is because C [i ] is decremented
— charge to `

Hence total number of times ↵ increases is at most `.
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Deterministic to Randomized Sketches

Cannot improve O(k) space if one wants additive error of at most
m/k . Nice to have a deterministic algorithm that is near-optimal

Why look for randomized solution?

Obtain a sketch that allows for deletions

Additional applications of sketch based solutions

Will see Count-Min and Count sketches
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Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items i such that fi > m/k .

Let b1, b2, . . . , bk be the k heavy hitters

Suppose we pick h : [n]! [ck] for some c > 1

h spreads b1, . . . , bk among the buckets (k balls into ck bins)

In ideal situation each bucket can be used to count a separate
heavy hitter

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 1

E- E E - -
E

→ Feng. 10K buckets


