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Frequency Moments

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream

Consider vector f = (f1, f2, . . . , fn)

For k � 0 the k ’th frequency moment Fk =
P

i f
k
i . We can

also consider the `k norm of f which is (Fk)
1/k .

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5
Problem: Estimate Fk from stream using small memory
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A more general estimation problem

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream

Consider vector f = (f1, f2, . . . , fn)

Define a function g(�) of stream � to be
Pm

i=1
gi(fi) where

gi : R! R is a real-valued function such that gi(0) = 0.

Examples:

Frequency moments Fk where for each i , gi(fi) = h(fi) where
h(x) = x

k

Entropy of stream: g(�) =
P

i fi log(fi)

(assume 0 log 0 = 0)
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Part I

AMS Sampling
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AMS Sampling

An unbiased statistical estimator for g(�)

Sample eJ uniformly at random from stream of length m

Suppose eJ = i where i 2 [n]

Let R = |{j | J  j  m, ej = eJ = i}|

Output (gi(R)� gi(R � 1)) · m

Can be implemented in streaming setting with reservoir sampling.
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Streaming Implementation

AMSEstimate:

s  null

m  0

R  0

While (stream is not done)

m  m + 1

am is current item

Toss a biased coin that is heads with probability 1/m
If (coin turns up heads)

s  am
R  1

Else If (am == s)
R  R + 1

endWhile

Output (gs(R)� gs(R � 1)) · m
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Expectation of output

Let Y be the output of the algorithm.

Lemma

E [Y ] = g(�) =
P

i2[n] gi(fi).

Pr[eJ = i ] = fi/m since eJ is chosen uniformly from stream.

E[Y ] =

X

i2[n]

Pr[aJ = i ] E[Y |aJ = i ]

=

X

i2[n]

fi

m
E[Y |aJ = i ]

=

X

i2[n]

fi

m

fiX

`=1

m
1

fi
(gi(`)� gi(`� 1))

=

X

i2[n]

gi(fi).
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Application to estimating frequency

moments

Suppose g(�) = Fk for some k > 1. That is gi(x) = x
k for each

i . What is Var(Y )?

Lemma

When g(x) = x
k and k � 1, Var [Y ]  kF1F2k�1  kn

1� 1

k F
2

k .

E[Y ] = Fk and Var(Y )  kn
1� 1

k F
2

k . Hence, if we want to use

averaging and Cheybyshev we need to average h = ⌦(
1

✏2
kn

1� 1

k )

parallel runs and space to get a (1± ✏) estimate to Fk with constant
probability.
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Variance calculation

Var [Y ]  E

⇥
Y

2
⇤



X

i2[n]

Pr[aJ = i ]

fiX

`=1

m
2

fi

�
`k
� (`� 1)

k�2



X

i2[n]

fi

m

fiX

`=1

m
2

fi
(`k
� (`� 1)

k
)(`k
� (`� 1)

k
)

 m

X

i2[n]

fiX

`=1

k`k�1
(`k
� (`� 1)

k
) using xk � (x � 1)

k  kxk�1

 km

X

i2[n]

f
k�1

i f
k
i

 kmF2k�1 = kF1F2k�1.
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Variance calculation

Claim: For k � 1, F1F2k�1  n
1�1/k

(Fk)
2.

The function g(x) = x
k is convex for k � 1.

Implies
P

i xi/n  ((
P

i x
k
i )/n)

1/k .

F1F2k�1 = (

X

i

fi)(
X

i

f
2k�1

i )  (

X

i

fi)(F1)
k�1

(

X

i

f
k
i )

 (

X

i

fi)(
X

i

f
k
i )

k�1

k (

X

i

f
k
i )

 n
1�1/k

(

X

i

f
k
i )

1/k
(

X

i

f
k
i )

k�1

k (

X

i

f
k
i )

= n
1�1/k

(Fk)
2

Worst case is when fi = m/n for each i 2 [n].
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Frequency moment estimation

AMS-Estimator shows that Fk can be estimated in O(n
1�1/k

) space.

Question: Can one do better?

For F2 and 1  k  2 one can do O(polylog(n)) space!

For k > 2 space complexity is Õ(n
1�2/k

) which is known to be
essentially tight.

Thus a phase transition at k = 2.
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Part II

F2 Estimation
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Estimating F2

Stream consists of e1, e2, . . . , em where each ei is an integer in
[n]. We know n in advance (or an upper bound)

Given a stream let fi denote the frequency of i or number of
times i is seen in the stream

Consider vector f = (f1, f2, . . . , fn)

Question: Estimate F2 =
Pm

i=1
f
2

i in small space.

Using generic AMS sampling scheme we can do this in O(
p

n log n)

space. Can we do it better?
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AMS Scheme for F2

AMS-F2-Estimate:

Let h : [n]! {�1, 1} be chosen from

a 4-wise independent hash family H.

z  0

While (stream is not empty) do

aj is current item

z  z + h(aj )

endWhile

Output z2

AMS-F2-Estimate:

Let Y1,Y2, . . . ,Yn be {�1,+1} random variable that are

4-wise independent

z  0

While (stream is not empty) do

aj is current item

z  z + Yaj

endWhile

Output z2
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Analysis

Z =
Pn

i=1
fiYi and output is Z

2

E[Yi ] = 0 and Var(Yi) = E

⇥
Y

2

i

⇤
= 1

For i 6= j , since Yi and Yj are pairwise-independent
E[YiYj ] = 0.

Z
2
=

X

i

f
2

i Y
2

i + 2

X

i 6=j

fi fjYiYj

and hence
E

⇥
Z

2
⇤
=

X

i

f
2

i = F2.
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Variance

What is Var(Z
2
)?

E [Z
4
] =

X

i2[n]

X

j2[n]

X

k2[n]

X

`2[n]

fi fj fkf`E [YiYjYkY`].

4-wise independence implies E[YiYjYkY`] = 0 if there is a number
among i , j , k, ` that occurs only once. Otherwise 1.

E [Z
4
] =

X

i2[n]

X

j2[n]

X

k2[n]

X

`2[n]

fi fj fkf`E [YiYjYkY`]

=

X

i2[n]

f
4

i + 6

nX

i=1

nX

j=i+1

f
2

i f
2

j .
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Variance

Var(Z
2
) = E

⇥
Z

4
⇤
� (E

⇥
Z

2
⇤
)
2

= F4 � F
2

2
+ 6

nX

i=1

nX

j=i+1

f
2

i f
2

j

= F4 � (F4 + 2

nX

i=1

nX

j=i+1

f
2

i f
2

j ) + 6

nX

i=1

nX

j=i+1

f
2

i f
2

j

= 4

nX

i=1

nX

j=i+1

f
2

i f
2

j

 2F
2

2
.
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Averaging and median trick again

Output is Z
2: and E

⇥
Z

2
⇤
= F2 and Var(Z

4
)  2F

2

2

Reduce variance by averaging 8/✏2 independent estimates. Let
Y be the averaged estimator.

Apply Chebyshev to average estimator.
Pr[|Y � F2| � ✏F2]  1/4.

Reduce error probability to � by independently doing
O(log(1/�)) estimators above.

Total space O(log(1/�) 1

✏2
log n)
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Geometric Interpretation

Observation: The estimation algorithm works even when fi ’s can be
negative. What does this mean?

Richer model:

Want to estimate a function of a vector x 2 Rn which is
initially assume to be the all 0’s vector. (previously we were
thinking of the frequency vector f )

Each element ej of a stream is a tuple (ij ,�j) where ij 2 [n]

and �i 2 R is a real-value: this updates xij to xij + �j . (�j
can be positive or negative)
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Algorithm revisited

AMS-`2-Estimate:

Let Y1,Y2, . . . ,Yn be {�1,+1} random variable that are

4-wise independent

z  0

While (stream is not empty) do

aj = (ij ,�j ) is current update

z  z + �jYij
endWhile

Output z2

Claim: Output estimates ||x||2
2
where x is the vector at end of

stream of updates.
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Analysis

Z =
Pn

i=1
xiYi and output is Z

2

E[Yi ] = 0 and Var(Yi) = E

⇥
Y

2

i

⇤
= 1

For i 6= j , since Yi and Yj are pairwise-independent
E[YiYj ] = 0.

Z
2
=

X

i

x
2

i Y
2

i + 2

X

i 6=j

xixjYiYj

and hence
E

⇥
Z

2
⇤
=

X

i

x
2

i = ||x||
2

2
.

And as before one can show that Var(Z
2
)  2(E

⇥
Z

2
⇤
)
2.
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Introduction to (Linear) Sketching

A sketch of a stream � is a summary data structure C(�) (ideally of
small space) such that the sketch of the composition �1 · �2 of two
streams �1 and �1 can be computed from C(�1) and C(�2). The
output of the algorithm is some function of the sketch.

What is the summary of algorithm for F2 estimation? Is it a sketch?

A sketch is a linear sketch if C(�1 · �2) = C(�1) + C(�2).

Is the sketch for F2 estimation a linear sketch?
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F2 Estimation as Linear Sketching

Recall that we take average of independent estimators and take
median to reduce error. Can we view all this as a sketch?

AMS-`2-Sketch:
` = c log(1/�)/✏2

Let M be a `⇥ n matrix with entries in {�1, 1} s.t

(i) rows are independent and

(ii) in each row entries are 4-wise independent

z is a `⇥ 1 vector initialized to 0

While (stream is not empty) do

aj = (ij ,�j ) is current update

z  z + �jMeij
endWhile

Output vector z as sketch.

M is compactly represented via ` hash functions, one per row,
independently chosen from 4-wise independent hash familty.
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An Application to Join Size Estimation

In Databases an important operation is the “join” operation

A relation/table r of arity k consists of tuples of size k where
each tuple element is from some given type. Example: (netid,
uin, last name, first name, dob, address) in a student data base

Given two relations r and s and a common attribute a one often
needs to compute their join r ./ s over some common attribute
that they share

r ./ s can have size quadratic in size of r and s

Question: Estimate size of r ./ s without computing it explicitly.
Very useful in database query optimization.

Estimating r ./ r over an attribute a is same as F2 estimation.
Why?
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Sketching: a shift in perspective

Sketching ideas have many powerful applications in theory and
practice

In particular linear sketches are powerful. Allows one to handle
negative entries and deletions. Surprisingly linear sketches are
feasible in several settings.

Connected to dimension reduction (JL Lemma), subspace
embeddings and other important topics
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