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Part I

Estimating Distinct Elements
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Distinct Elements

Given a stream � how many distinct elements did we see?

O✏ine solution via Dictionary data structure
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Hashing based idea

Assume idealized hash function: h : [n]! [0, 1] that is fully
random over the real interval

Suppose there are k distinct elements in the stream

What is the expected value of the minimum of hash values?
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Analyzing idealized hash function

Lemma

Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E[Y ] =

1

(k+1)
.

DistinctElements

Assume ideal hash function h : [n]! [0, 1]
y  1

While (stream is not empty) do

Let e be next item in stream

y  min(z, h(e))
EndWhile

Output
1

y � 1
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Lemma

Suppose X1,X2, . . . ,Xk are random variables that are independent
and uniformaly distributed in [0, 1] and let Y = mini Xi . Then
E

⇥
Y

2
⇤
=

2

(k+1)(k+2)
and Var(Y ) =

k
(k+1)2(k+2)


1

(k+1)2
.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 20



Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to
good bounds:

average h parallel and independent estimates to reduce variance

apply Chebyshev to show that the average estimator is a
(1 + ✏)-approximation with constant probability

use preceding and median trick with O(log 1/�) parallel copies
to obtain a (1 + ✏)-approximation with probability (1� �)

Total space: O(
1

✏2
log(1/�)) hash values to obtain an estimate that

is within (1 ± ✏) approximation with probability at least (1� �).
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Algorithm via regular hashing

Do not have idealized hash function.

Use h : [n]! [N] for appropriate choice of N

Use pairwise independent hash family H so that random h 2 H

can be stored in small space and computation can be done in
small memory and fast

Several variants of idea with di↵erent trade o↵s between

memory

time to process each new element of the stream

approximation quality and probability of success
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Algorithm from BJKST

BJKST-DistinctElements:

H is a 2-universal hash family from [n] to [N = n3
]

choose h at random from H

t  c
✏2

While (stream is not empty) do

ai is current item

Update the smallest t hash values seen so far with h(ai )

endWhile

Let v be the t’th smallest value seen in the hast values.

Output tN/v.

Memory: t = O(1/✏2) values so O(log n/✏2) bits. Also
O(log n) bits to store hash function

Processing time per element: O(log(1/✏)) comparisons of
log n bit numbers by using a binary search tree. And computing
hash value.
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Intuition for algorithm/analysis

Let d be true number of distinct value in stream. Assume d > c✏2;
can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0, 1]. Instead we map to
integers in big range: 1 to N = n

3.

If h were truly random min hash value is around N/(d + 1)

t’th minimum hash value v to be around tN/(d + 1).

Hence tN/v should be around d + 1

t’th min hash value more robust estimator than minimum hash value
and incorporates the averaging trick to reduce variance
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Analysis

Let d be actual number of distinct values in a given stream (assume
d > c/✏2). Let D be the output of the algorithm which is a random
variable.

Lemma

Pr[D < (1� ✏)d ]  1/6.

Lemma

Pr[D > (1 + ✏)d ]  1/6.

Hence Pr[|D � d | � ✏d ] < 1/3. Can do median trick to reduce
error probability to � with O(log 1/�) parallel repetitions.
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Analysis

For simplicity assume no collisions. Prove following as exercise.

Lemma

Since N = n
3 the probability that there are no collisions in h is at

least 1� 1/n.

Recall

Lemma

X = X1 + X2 + . . . + Xk where X1,X2, . . . ,Xk are pairwise
independent. Then Var(X ) =

P
i Var(Xi).

1

1�✏
= 1 + ✏ + ✏2 · · ·) 1 + ✏  1

1�✏
 1 +

3✏
2
for ✏ < 1/2.

1

1+✏
= 1� ✏ + ✏2 . . .) 1� ✏  1

1+✏
 1�

✏
2
.
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Analysis

Let b1, b2, . . . , bd be the distinct values in the stream.
Recall D = tN/v where v is the t’th smallest hash value seen.

Each bi hashed to a uniformly random bucket from 1 to N

Consider buckets in interval I = [1.. tNd ]

Expected number of distinct items hashed into I is t

Estimate D < (1� ✏)d implies less than t hashed in interval
I1 = [1.. tN

(1�✏)d ] when expected is t
1�✏

Esitmate D > (1 + ✏)d implies more than t hashed in interval
I2 = [1.. tN

(1+✏)d ] when expected is t
(1+✏)

.

Use Chebyshev to analyse “bad” event probabilities via pairwise
independence of hash function.
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Analysis

Lemma

Pr[D < (1� ✏)d ]  1/6.

Let b1, b2, . . . , bd be the distinct values in the stream.
Recall D = tN/v where v is the t’th smallest hash value seen.

D < (1� ✏)d i↵ v > tN
(1�✏)d . Implies less than t hash values fell in

the interval I = [1.. tN
(1�✏)d ].

What is the probability of this event?

Let Xi be indicator for h(bi) 
tN

(1�✏)d .

And X =
Pd

i=1
Xi is number that hashed to I

Pr[D < (1� ✏)d ] = Pr[X < t] .
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Analysis

Let Xi be indicator for h(bi) 
tN

(1�✏)d . And X =
Pd

i=1
Xi

Since h(bi) is uniformly distributed in {1, . . . ,N},
E[Xi ] = Pr[Xi = 1] =

t
(1�✏)d � (1 + ✏)t/d .

E[X ] � (1 + ✏)t.

Recall Pr[D < (1� ✏)d ] = Pr[X < t]

Thus D < (1� ✏)d only if X � E[X ] < ✏t. Use Chebyshev to
upper bound this probability.
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Analysis

Let Xi be indicator for h(bi) 
tN

(1�✏)d . And X =
Pd

i=1
Xi

Since h(bi) is uniformly distributed in {1, . . . ,N},
E[Xi ] = Pr[Xi = 1] =

t
(1�✏)d � (1 + ✏/2)t/d

E[X ] � (1 + ✏)t.

Xi is a binary rv hence Var(Xi)  E[Xi ]  (1 + 3✏/2)t/d .

X1,X2, . . . ,Xd are pair-wise independent random variables
hence Var(X ) =

P
i Var(Xi)  (1 + 3✏/2)t.

By Chebyshev:

Pr[X < t]  Pr[|X � E[X ] | > ✏t]  Var(X )/✏2t2

 (1 + 3✏/2)/c

Choose c su�ciently large to ensure ratio is at most 1/6.
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Analysis

Lemma

Pr[D > (1 + ✏)d ]  1/6].

Let b1, b2, . . . , bd be the distinct values in the stream.
Recall D = tN/v where v is the t’th smallest hash value seen.

D > (1 + ✏)d i↵ v < tN
(1+✏)d . Implies more than t hash values fell

in the interval [1.. tN
(1+✏)d ].

What is the probability of this event?

Let Xi be indicator for h(bi) 
tN

(1+✏)d .

And X =
Pd

i=1
Xi

Pr[D > (1 + ✏)d ] = Pr[Y > t] .
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Analysis

Let Xi be indicator for h(bi) 
tN

(1+✏)d . And X =
Pd

i=1
Xi

Since h(bi) is uniformly distributed in {1, . . . ,N},
E[Xi ] = Pr[Xi = 1] =

t
(1+✏)d  (1� ✏/2)t/d .

E[X ]  (1� ✏/2)t.

Xi is a binary rv hence Var(Xi)  E[Xi ]  (1� ✏/2)t/d .

X1,X2, . . . ,Xd are pair-wise independent random variables
hence Var(X ) =

P
i Var(Xi)  (1� ✏/2)t.

By Chebyshev:

Pr[X > t]  Pr[|X � E[X ] | > ✏t/2]  4Var(X )/✏2t2

 4(1� ✏/2)/c

Choose c su�ciently large to ensure ratio is at most 1/6.
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Question

Where did we use the fact that d � c/✏2?

Analysis need to be more careful in using N
(1�✏)d and N

(1+✏)d since we
need to round them to nearest integer; technically have to use floor
and cielings. If d > c/✏2 then rounding error of 1 does not matter
— adds only ✏d error.

We avoid floor and ceiling etc in lecture for clarity.
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Summary on Distinct Elements

with O(
1

✏2
log(1/�) log n) bits algorithm output estimate D

such that |D � d |  ✏d with probability at least (1� �)

Best known memory bound: O(
log(1/�)

✏2
+ log n) bits and for

any fixed � this meets lower bound within constant factors.
Both lower bound and upper bound quite technical — potential
reading for projects.

Continuous monitoring: want estimate to be correct not only at
end of stream but also at all intermediate steps. Can be done
with O(

log log n+log(1/�)
✏2

+ log n) bits.

Deletions allowed! Can also be done. More on this later.
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